期刊文献+
共找到55,427篇文章
< 1 2 250 >
每页显示 20 50 100
Comparative analysis of GA and PSO algorithms for optimal cost management in on-grid microgrid energy systems with PV-battery integration
1
作者 Mouna EL-Qasery Ahmed Abbou +2 位作者 Mohamed Laamim Lahoucine Id-Khajine Abdelilah Rochd 《Global Energy Interconnection》 2025年第4期572-580,共9页
The advent of microgrids in modern energy systems heralds a promising era of resilience,sustainability,and efficiency.Within the realm of grid-tied microgrids,the selection of an optimal optimization algorithm is crit... The advent of microgrids in modern energy systems heralds a promising era of resilience,sustainability,and efficiency.Within the realm of grid-tied microgrids,the selection of an optimal optimization algorithm is critical for effective energy management,particularly in economic dispatching.This study compares the performance of Particle Swarm Optimization(PSO)and Genetic Algorithms(GA)in microgrid energy management systems,implemented using MATLAB tools.Through a comprehensive review of the literature and sim-ulations conducted in MATLAB,the study analyzes performance metrics,convergence speed,and the overall efficacy of GA and PSO,with a focus on economic dispatching tasks.Notably,a significant distinction emerges between the cost curves generated by the two algo-rithms for microgrid operation,with the PSO algorithm consistently resulting in lower costs due to its effective economic dispatching capabilities.Specifically,the utilization of the PSO approach could potentially lead to substantial savings on the power bill,amounting to approximately$15.30 in this evaluation.Thefindings provide insights into the strengths and limitations of each algorithm within the complex dynamics of grid-tied microgrids,thereby assisting stakeholders and researchers in arriving at informed decisions.This study contributes to the discourse on sustainable energy management by offering actionable guidance for the advancement of grid-tied micro-grid technologies through MATLAB-implemented optimization algorithms. 展开更多
关键词 MICROGRID EMS GA algorithm PSO algorithm Cost optimization Economic dispatch
在线阅读 下载PDF
Optimal performance design of bat algorithm:An adaptive multi-stage structure
2
作者 Helong Yu Jiuman Song +4 位作者 Chengcheng Chen Ali Asghar Heidari Yuntao Ma Huiling Chen Yudong Zhang 《CAAI Transactions on Intelligence Technology》 2025年第3期755-814,共60页
The bat algorithm(BA)is a metaheuristic algorithm for global optimisation that simulates the echolocation behaviour of bats with varying pulse rates of emission and loudness,which can be used to find the globally opti... The bat algorithm(BA)is a metaheuristic algorithm for global optimisation that simulates the echolocation behaviour of bats with varying pulse rates of emission and loudness,which can be used to find the globally optimal solutions for various optimisation problems.Knowing the recent criticises of the originality of equations,the principle of BA is concise and easy to implement,and its mathematical structure can be seen as a hybrid particle swarm with simulated annealing.In this research,the authors focus on the performance optimisation of BA as a solver rather than discussing its originality issues.In terms of operation effect,BA has an acceptable convergence speed.However,due to the low proportion of time used to explore the search space,it is easy to converge prematurely and fall into the local optima.The authors propose an adaptive multi-stage bat algorithm(AMSBA).By tuning the algorithm's focus at three different stages of the search process,AMSBA can achieve a better balance between exploration and exploitation and improve its exploration ability by enhancing its performance in escaping local optima as well as maintaining a certain convergence speed.Therefore,AMSBA can achieve solutions with better quality.A convergence analysis was conducted to demonstrate the global convergence of AMSBA.The authors also perform simulation experiments on 30 benchmark functions from IEEE CEC 2017 as the objective functions and compare AMSBA with some original and improved swarm-based algorithms.The results verify the effectiveness and superiority of AMSBA.AMSBA is also compared with eight representative optimisation algorithms on 10 benchmark functions derived from IEEE CEC 2020,while this experiment is carried out on five different dimensions of the objective functions respectively.A balance and diversity analysis was performed on AMSBA to demonstrate its improvement over the original BA in terms of balance.AMSBA was also applied to the multi-threshold image segmentation of Citrus Macular disease,which is a bacterial infection that causes lesions on citrus trees.The segmentation results were analysed by comparing each comparative algorithm's peak signal-to-noise ratio,structural similarity index and feature similarity index.The results show that the proposed BA-based algorithm has apparent advantages,and it can effectively segment the disease spots from citrus leaves when the segmentation threshold is at a low level.Based on a comprehensive study,the authors think the proposed optimiser has mitigated the main drawbacks of the BA,and it can be utilised as an effective optimisation tool. 展开更多
关键词 bat-inspired algorithm Citrus Macular disease global optimization multi-threshold image segmentation Otsu algorithm
在线阅读 下载PDF
Multi-objective optimal design of asymmetric base-isolated structures using NSGA-Ⅱ algorithm for improving torsional resistance
3
作者 Zhang Jiayu Qi Ai Yang Mianyue 《Earthquake Engineering and Engineering Vibration》 2025年第3期811-825,共15页
Finding an optimal isolator arrangement for asymmetric structures using traditional conceptual design methods that can significantly minimize torsional response while ensuring efficient horizontal seismic isolation is... Finding an optimal isolator arrangement for asymmetric structures using traditional conceptual design methods that can significantly minimize torsional response while ensuring efficient horizontal seismic isolation is cumbersome and inefficient.Thus,this work develops a multi-objective optimization method to enhance the torsional resistance of asymmetric base-isolated structures.The primary objective is to simultaneously minimize the interstory rotation of the superstructure,the rotation of the isolation layer,and the interstory displacement of the superstructure without exceeding the isolator displacement limits.A fast non-dominated sorting genetic algorithm(NSGA-Ⅱ)is employed to satisfy this optimization objective.Subsequently,the isolator arrangement,encompassing both positions and categories,is optimized according to this multi-objective optimization method.Additionally,an optimization design platform is developed to streamline the design operation.This platform integrates the input of optimization parameters,the output of optimization results,the finite element analysis,and the multi-objective optimization method proposed herein.Finally,the application of this multi-objective optimization method and its associated platform are demonstrated on two asymmetric base-isolated structures of varying heights and plan configurations.The results indicate that the optimal isolator arrangement derived from the optimization method can further improve the control over the lateral and torsional responses of asymmetric base-isolated structures compared to conventional conceptual design methods.Notably,the interstory rotation of the optimal base-isolated structure is significantly reduced,constituting only approximately 33.7%of that observed in the original base-isolated structure.The proposed platform facilitates the automatic generation of the optimal design scheme for the isolators of asymmetric base-isolated structures,offering valuable insights and guidance for the burgeoning field of intelligent civil engineering design. 展开更多
关键词 asymmetric base-isolated structures isolator arrangement multi-objective optimization NSGA-Ⅱalgorithm optimization design platform
在线阅读 下载PDF
Research on the Optimal Scheduling Model of Energy Storage Plant Based on Edge Computing and Improved Whale Optimization Algorithm
4
作者 Zhaoyu Zeng Fuyin Ni 《Energy Engineering》 2025年第3期1153-1174,共22页
Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device ... Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device energy utilization.To tackle these challenges,this study proposes an optimal scheduling model for energy storage power plants based on edge computing and the improved whale optimization algorithm(IWOA).The proposed model designs an edge computing framework,transferring a large share of data processing and storage tasks to the network edge.This architecture effectively reduces transmission costs by minimizing data travel time.In addition,the model considers demand response strategies and builds an objective function based on the minimization of the sum of electricity purchase cost and operation cost.The IWOA enhances the optimization process by utilizing adaptive weight adjustments and an optimal neighborhood perturbation strategy,preventing the algorithm from converging to suboptimal solutions.Experimental results demonstrate that the proposed scheduling model maximizes the flexibility of the energy storage plant,facilitating efficient charging and discharging.It successfully achieves peak shaving and valley filling for both electrical and heat loads,promoting the effective utilization of renewable energy sources.The edge-computing framework significantly reduces transmission delays between energy devices.Furthermore,IWOA outperforms traditional algorithms in optimizing the objective function. 展开更多
关键词 Energy storage plant edge computing optimal energy scheduling improved whale optimization algorithm
在线阅读 下载PDF
A Sine and Wormhole Energy Whale Optimization Algorithm for Optimal FACTS Placement in Uncertain Wind Integrated Scenario Based Power Systems
5
作者 Sunilkumar P.Agrawal Pradeep Jangir +4 位作者 Arpita Sundaram B.Pandya Anil Parmar Ahmad O.Hourani Bhargavi Indrajit Trivedi 《Journal of Bionic Engineering》 2025年第4期2115-2134,共20页
The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACT... The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACTS)devices which include Thyristor-Controlled Series Compensator(TCSC),Thyristor-Controlled Phase Shifter(TCPS),and Static Var Compensator(SVC).SWEWOA expands Whale Optimization Algorithm(WOA)through the integration of sine and wormhole energy features thus improving exploration and exploitation capabilities for efficient convergence in complex non-linear OPF problems.A performance evaluation of SWEWOA takes place on the IEEE-30 bus test system through static and dynamic loading scenarios where it demonstrates better results than five contemporary algorithms:Adaptive Chaotic WOA(ACWOA),WOA,Chaotic WOA(CWOA),Sine Cosine Algorithm Differential Evolution(SCADE),and Hybrid Grey Wolf Optimization(HGWO).The research shows that SWEWOA delivers superior generation cost reduction than other algorithms by reaching a minimum of 0.9%better performance.SWEWOA demonstrates superior power loss performance by achieving(P_(loss,min))at the lowest level compared to all other tested algorithms which leads to better system energy efficiency.The dynamic loading performance of SWEWOA leads to a 4.38%reduction in gross costs which proves its capability to handle different operating conditions.The algorithm achieves top performance in Friedman Rank Test(FRT)assessments through multiple performance metrics which verifies its consistent reliability and strong stability during changing power demands.The repeated simulations show that SWEWOA generates mean costs(C_(gen,min))and mean power loss values(P_(loss,min))with small deviations which indicate its capability to maintain cost-effective solutions in each simulation run.SWEWOA demonstrates great potential as an advanced optimization solution for power system operations through the results presented in this study. 展开更多
关键词 Sine and wormhole energy whale optimization algorithm(SWEWOA) optimal power flow(OPF) Wind integration FACTS devices Power system optimization
在线阅读 下载PDF
Enhancing ITS Reliability and Efficiency through Optimal VANET Clustering Using Grasshopper Optimization Algorithm
6
作者 Seongsoo Cho Yeonwoo Lee Cheolhee Yoon 《Computer Modeling in Engineering & Sciences》 2025年第6期3769-3793,共25页
As vehicular networks grow increasingly complex due to high node mobility and dynamic traffic conditions,efficient clustering mechanisms are vital to ensure stable and scalable communication.Recent studies have emphas... As vehicular networks grow increasingly complex due to high node mobility and dynamic traffic conditions,efficient clustering mechanisms are vital to ensure stable and scalable communication.Recent studies have emphasized the need for adaptive clustering strategies to improve performance in Intelligent Transportation Systems(ITS).This paper presents the Grasshopper Optimization Algorithm for Vehicular Network Clustering(GOAVNET)algorithm,an innovative approach to optimal vehicular clustering in Vehicular Ad-Hoc Networks(VANETs),leveraging the Grasshopper Optimization Algorithm(GOA)to address the critical challenges of traffic congestion and communication inefficiencies in Intelligent Transportation Systems(ITS).The proposed GOA-VNET employs an iterative and interactive optimization mechanism to dynamically adjust node positions and cluster configurations,ensuring robust adaptability to varying vehicular densities and transmission ranges.Key features of GOA-VNET include the utilization of attraction zone,repulsion zone,and comfort zone parameters,which collectively enhance clustering efficiency and minimize congestion within Regions of Interest(ROI).By managing cluster configurations and node densities effectively,GOA-VNET ensures balanced load distribution and seamless data transmission,even in scenarios with high vehicular densities and varying transmission ranges.Comparative evaluations against the Whale Optimization Algorithm(WOA)and Grey Wolf Optimization(GWO)demonstrate that GOA-VNET consistently outperforms these methods by achieving superior clustering efficiency,reducing the number of clusters by up to 10%in high-density scenarios,and improving data transmission reliability.Simulation results reveal that under a 100-600 m transmission range,GOA-VNET achieves an average reduction of 8%-15%in the number of clusters and maintains a 5%-10%improvement in packet delivery ratio(PDR)compared to baseline algorithms.Additionally,the algorithm incorporates a heat transfer-inspired load-balancing mechanism,ensuring equitable distribution of nodes among cluster leaders(CLs)and maintaining a stable network environment.These results validate GOA-VNET as a reliable and scalable solution for VANETs,with significant potential to support next-generation ITS.Future research could further enhance the algorithm by integrating multi-objective optimization techniques and exploring broader applications in complex traffic scenarios. 展开更多
关键词 Grasshopper optimization algorithm VANET intelligent transportation systems traffic congestion clustering efficiency
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
7
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Grid-Connected/Islanded Switching Control Strategy for Photovoltaic Storage Hybrid Inverters Based on Modified Chimpanzee Optimization Algorithm
8
作者 Chao Zhou Narisu Wang +1 位作者 Fuyin Ni Wenchao Zhang 《Energy Engineering》 EI 2025年第1期265-284,共20页
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th... Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability. 展开更多
关键词 Photovoltaic storage hybrid inverters modified chimpanzee optimization algorithm droop control seamless switching
在线阅读 下载PDF
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
9
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
原文传递
Narwhal Optimizer:A Nature-Inspired Optimization Algorithm for Solving Complex Optimization Problems
10
作者 Raja Masadeh Omar Almomani +4 位作者 Abdullah Zaqebah Shayma Masadeh Kholoud Alshqurat Ahmad Sharieh Nesreen Alsharman 《Computers, Materials & Continua》 2025年第11期3709-3737,共29页
This research presents a novel nature-inspired metaheuristic optimization algorithm,called theNarwhale Optimization Algorithm(NWOA).The algorithm draws inspiration from the foraging and prey-hunting strategies of narw... This research presents a novel nature-inspired metaheuristic optimization algorithm,called theNarwhale Optimization Algorithm(NWOA).The algorithm draws inspiration from the foraging and prey-hunting strategies of narwhals,“unicorns of the sea”,particularly the use of their distinctive spiral tusks,which play significant roles in hunting,searching prey,navigation,echolocation,and complex social interaction.Particularly,the NWOA imitates the foraging strategies and techniques of narwhals when hunting for prey but focuses mainly on the cooperative and exploratory behavior shown during group hunting and in the use of their tusks in sensing and locating prey under the Arctic ice.These functions provide a strong assessment basis for investigating the algorithm’s prowess at balancing exploration and exploitation,convergence speed,and solution accuracy.The performance of the NWOA is evaluated on 30 benchmark test functions.A comparison study using the Grey Wolf Optimizer(GWO),Whale Optimization Algorithm(WOA),Perfumer Optimization Algorithm(POA),Candle Flame Optimization(CFO)Algorithm,Particle Swarm Optimization(PSO)Algorithm,and Genetic Algorithm(GA)validates the results.As evidenced in the experimental results,NWOA is capable of yielding competitive outcomes among these well-known optimizers,whereas in several instances.These results suggest thatNWOAhas proven to be an effective and robust optimization tool suitable for solving many different complex optimization problems from the real world. 展开更多
关键词 optimization metaheuristic optimization algorithm narwhal optimization algorithm benchmarks
在线阅读 下载PDF
Dynamic Multi-Objective Gannet Optimization(DMGO):An Adaptive Algorithm for Efficient Data Replication in Cloud Systems
11
作者 P.William Ved Prakash Mishra +3 位作者 Osamah Ibrahim Khalaf Arvind Mukundan Yogeesh N Riya Karmakar 《Computers, Materials & Continua》 2025年第9期5133-5156,共24页
Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple dat... Cloud computing has become an essential technology for the management and processing of large datasets,offering scalability,high availability,and fault tolerance.However,optimizing data replication across multiple data centers poses a significant challenge,especially when balancing opposing goals such as latency,storage costs,energy consumption,and network efficiency.This study introduces a novel Dynamic Optimization Algorithm called Dynamic Multi-Objective Gannet Optimization(DMGO),designed to enhance data replication efficiency in cloud environments.Unlike traditional static replication systems,DMGO adapts dynamically to variations in network conditions,system demand,and resource availability.The approach utilizes multi-objective optimization approaches to efficiently balance data access latency,storage efficiency,and operational costs.DMGO consistently evaluates data center performance and adjusts replication algorithms in real time to guarantee optimal system efficiency.Experimental evaluations conducted in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,achieving faster data access,lower storage overhead,reduced energy consumption,and improved scalability.The proposed methodology offers a robust and adaptable solution for modern cloud systems,ensuring efficient resource consumption while maintaining high performance. 展开更多
关键词 Cloud computing data replication dynamic optimization multi-objective optimization gannet optimization algorithm adaptive algorithms resource efficiency SCALABILITY latency reduction energy-efficient computing
在线阅读 下载PDF
Multi-Strategy Improved Secretary Bird Optimization Algorithm
12
作者 Fengkai Wang Bo Wang 《Journal of Computer and Communications》 2025年第1期90-107,共18页
This paper addresses the shortcomings of the Sparrow and Eagle Optimization Algorithm (SBOA) in terms of convergence accuracy, convergence speed, and susceptibility to local optima. To this end, an improved Sparrow an... This paper addresses the shortcomings of the Sparrow and Eagle Optimization Algorithm (SBOA) in terms of convergence accuracy, convergence speed, and susceptibility to local optima. To this end, an improved Sparrow and Eagle Optimization Algorithm (HS-SBOA) is proposed. Initially, the algorithm employs Iterative Mapping to generate an initial sparrow and eagle population, enhancing the diversity of the population during the global search phase. Subsequently, an adaptive weighting strategy is introduced during the exploration phase of the algorithm to achieve a balance between exploration and exploitation. Finally, to avoid the algorithm falling into local optima, a Cauchy mutation operation is applied to the current best individual. To validate the performance of the HS-SBOA algorithm, it was applied to the CEC2021 benchmark function set and three practical engineering problems, and compared with other optimization algorithms such as the Grey Wolf Optimization (GWO), Particle Swarm Optimization (PSO), and Whale Optimization Algorithm (WOA) to test the effectiveness of the improved algorithm. The simulation experimental results show that the HS-SBOA algorithm demonstrates significant advantages in terms of convergence speed and accuracy, thereby validating the effectiveness of its improved strategies. 展开更多
关键词 Secretary Bird optimization algorithm Iterative Mapping Adaptive Weight Strategy Cauchy Variation Convergence Speed
在线阅读 下载PDF
Optimized Deployment Method for Finite Access Points Based on Virtual Force Fusion Bat Algorithm
13
作者 Jian Li Qing Zhang +2 位作者 Tong Yang Yu’an Chen Yongzhong Zhan 《Computer Modeling in Engineering & Sciences》 2025年第9期3029-3051,共23页
In the deployment of wireless networks in two-dimensional outdoor campus spaces,aiming at the problem of efficient coverage of the monitoring area by limited number of access points(APs),this paper proposes a deployme... In the deployment of wireless networks in two-dimensional outdoor campus spaces,aiming at the problem of efficient coverage of the monitoring area by limited number of access points(APs),this paper proposes a deployment method of multi-objective optimization with virtual force fusion bat algorithm(VFBA)using the classical four-node regular distribution as an entry point.The introduction of Lévy flight strategy for bat position updating helps to maintain the population diversity,reduce the premature maturity problem caused by population convergence,avoid the over aggregation of individuals in the local optimal region,and enhance the superiority in global search;the virtual force algorithm simulates the attraction and repulsion between individuals,which enables individual bats to precisely locate the optimal solution within the search space.At the same time,the fusion effect of virtual force prompts the bat individuals to move faster to the potential optimal solution.To validate the effectiveness of the fusion algorithm,the benchmark test function is selected for simulation testing.Finally,the simulation result verifies that the VFBA achieves superior coverage and effectively reduces node redundancy compared to the other three regular layout methods.The VFBA also shows better coverage results when compared to other optimization algorithms. 展开更多
关键词 Multi-objective optimization deployment virtual force algorithm bat algorithm fusion algorithm
在线阅读 下载PDF
Multi-Objective Hybrid Sailfish Optimization Algorithm for Planetary Gearbox and Mechanical Engineering Design Optimization Problems
14
作者 Miloš Sedak Maja Rosic Božidar Rosic 《Computer Modeling in Engineering & Sciences》 2025年第2期2111-2145,共35页
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op... This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain. 展开更多
关键词 Multi-objective optimization planetary gearbox gear efficiency sailfish optimization differential evolution hybrid algorithms
在线阅读 下载PDF
Barber Optimization Algorithm:A New Human-Based Approach for Solving Optimization Problems
15
作者 Tareq Hamadneh Belal Batiha +8 位作者 Omar Alsayyed Widi Aribowo Zeinab Montazeri Mohammad Dehghani Frank Werner Haider Ali Riyadh Kareem Jawad Ibraheem Kasim Ibraheem Kei Eguchi 《Computers, Materials & Continua》 2025年第5期2677-2718,共42页
In this study,a completely different approach to optimization is introduced through the development of a novel metaheuristic algorithm called the Barber Optimization Algorithm(BaOA).Inspired by the human interactions ... In this study,a completely different approach to optimization is introduced through the development of a novel metaheuristic algorithm called the Barber Optimization Algorithm(BaOA).Inspired by the human interactions between barbers and customers,BaOA captures two key processes:the customer’s selection of a hairstyle and the detailed refinement during the haircut.These processes are translated into a mathematical framework that forms the foundation of BaOA,consisting of two critical phases:exploration,representing the creative selection process,and exploitation,which focuses on refining details for optimization.The performance of BaOA is evaluated using 52 standard benchmark functions,including unimodal,high-dimensional multimodal,fixed-dimensional multimodal,and the Congress on Evolutionary Computation(CEC)2017 test suite.This comprehensive assessment highlights BaOA’s ability to balance exploration and exploitation effectively,resulting in high-quality solutions.A comparative analysis against twelve widely known metaheuristic algorithms further demonstrates BaOA’s superior performance,as it consistently delivers better results across most benchmark functions.To validate its real-world applicability,BaOA is tested on four engineering design problems,illustrating its capability to address practical challenges with remarkable efficiency.The results confirm BaOA’s versatility and reliability as an optimization tool.This study not only introduces an innovative algorithm but also establishes its effectiveness in solving complex problems,providing a foundation for future research and applications in diverse scientific and engineering domains. 展开更多
关键词 optimization METAHEURISTIC barber HAIRSTYLE human-based algorithm exploration EXPLOITATION
在线阅读 下载PDF
Hybrid Spotted Hyena and Whale Optimization Algorithm-Based Dynamic Load Balancing Technique for Cloud Computing Environment
16
作者 N Jagadish Kumar R Praveen +1 位作者 D Selvaraj D Dhinakaran 《China Communications》 2025年第8期206-227,共22页
The uncertain nature of mapping user tasks to Virtual Machines(VMs) causes system failure or execution delay in Cloud Computing.To maximize cloud resource throughput and decrease user response time,load balancing is n... The uncertain nature of mapping user tasks to Virtual Machines(VMs) causes system failure or execution delay in Cloud Computing.To maximize cloud resource throughput and decrease user response time,load balancing is needed.Possible load balancing is needed to overcome user task execution delay and system failure.Most swarm intelligent dynamic load balancing solutions that used hybrid metaheuristic algorithms failed to balance exploitation and exploration.Most load balancing methods were insufficient to handle the growing uncertainty in job distribution to VMs.Thus,the Hybrid Spotted Hyena and Whale Optimization Algorithm-based Dynamic Load Balancing Mechanism(HSHWOA) partitions traffic among numerous VMs or servers to guarantee user chores are completed quickly.This load balancing approach improved performance by considering average network latency,dependability,and throughput.This hybridization of SHOA and WOA aims to improve the trade-off between exploration and exploitation,assign jobs to VMs with more solution diversity,and prevent the solution from reaching a local optimality.Pysim-based experimental verification and testing for the proposed HSHWOA showed a 12.38% improvement in minimized makespan,16.21% increase in mean throughput,and 14.84% increase in network stability compared to baseline load balancing strategies like Fractional Improved Whale Social Optimization Based VM Migration Strategy FIWSOA,HDWOA,and Binary Bird Swap. 展开更多
关键词 cloud computing load balancing Spotted Hyena optimization algorithm(SHOA) THROUGHPUT Virtual Machines(VMs) Whale optimization algorithm(WOA)
在线阅读 下载PDF
Metaheuristic-Driven Abnormal Traffic Detection Model for SDN Based on Improved Tyrannosaurus Optimization Algorithm
17
作者 Hui Xu Jiahui Chen Zhonghao Hu 《Computers, Materials & Continua》 2025年第6期4495-4513,共19页
Nowadays,abnormal traffic detection for Software-Defined Networking(SDN)faces the challenges of large data volume and high dimensionality.Since traditional machine learning-based detection methods have the problem of ... Nowadays,abnormal traffic detection for Software-Defined Networking(SDN)faces the challenges of large data volume and high dimensionality.Since traditional machine learning-based detection methods have the problem of data redundancy,the Metaheuristic Algorithm(MA)is introduced to select features beforemachine learning to reduce the dimensionality of data.Since a Tyrannosaurus Optimization Algorithm(TROA)has the advantages of few parameters,simple implementation,and fast convergence,and it shows better results in feature selection,TROA can be applied to abnormal traffic detection for SDN.However,TROA suffers frominsufficient global search capability,is easily trapped in local optimums,and has poor search accuracy.Then,this paper tries to improve TROA,namely the Improved Tyrannosaurus Optimization Algorithm(ITROA).It proposes a metaheuristic-driven abnormal traffic detection model for SDN based on ITROA.Finally,the validity of the ITROA is verified by the benchmark function and the UCI dataset,and the feature selection optimization operation is performed on the InSDN dataset by ITROA and other MAs to obtain the optimized feature subset for SDN abnormal traffic detection.The experiment shows that the performance of the proposed ITROA outperforms compared MAs in terms of the metaheuristic-driven model for SDN,achieving an accuracy of 99.37%on binary classification and 96.73%on multiclassification. 展开更多
关键词 Software-defined networking abnormal traffic detection feature selection metaheuristic algorithm tyrannosaurus optimization algorithm
在线阅读 下载PDF
Reaction process optimization based on interpretable machine learning and metaheuristic optimization algorithms
18
作者 Dian Zhang Bo Ouyang Zheng-Hong Luo 《Chinese Journal of Chemical Engineering》 2025年第8期77-85,共9页
The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and u... The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and uncertainties during optimization remains a formidable challenge. In this study, a strategy combining interpretable machine learning with metaheuristic optimization algorithms is employed to optimize the reaction process. First, experimental data from a biodiesel production process are collected to establish a database. These data are then used to construct a predictive model based on artificial neural network (ANN) models. Subsequently, interpretable machine learning techniques are applied for quantitative analysis and verification of the model. Finally, four metaheuristic optimization algorithms are coupled with the ANN model to achieve the desired optimization. The research results show that the methanol: palm fatty acid distillate (PFAD) molar ratio contributes the most to the reaction outcome, accounting for 41%. The ANN-simulated annealing (SA) hybrid method is more suitable for this optimization, and the optimal process parameters are a catalyst concentration of 3.00% (mass), a methanol: PFAD molar ratio of 8.67, and a reaction time of 30 min. This study provides deeper insights into reaction process optimization, which will facilitate future applications in various reaction optimization processes. 展开更多
关键词 Reaction process optimization Interpretable machine learning Metaheuristic optimization algorithm BIODIESEL
在线阅读 下载PDF
Energy Efficient Clustering and Sink Mobility Protocol Using Hybrid Golden Jackal and Improved Whale Optimization Algorithm for Improving Network Longevity in WSNs
19
作者 S B Lenin R Sugumar +2 位作者 J S Adeline Johnsana N Tamilarasan R Nathiya 《China Communications》 2025年第3期16-35,共20页
Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability... Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches. 展开更多
关键词 Cluster Heads(CHs) Golden Jackal optimization algorithm(GJOA) Improved Whale optimization algorithm(IWOA) unequal clustering
在线阅读 下载PDF
Derivative Free and Dispatch Algorithm-Based Optimization and Power System Assessment of a Biomass-PV-Hydrogen Storage-Grid Hybrid Renewable Microgrid for Agricultural Applications
20
作者 Md.Fatin Ishraque Akhlaqur Rahman +5 位作者 Kamil Ahmad Sk.A.Shezan Md.Meheraf Hossain Sheikh Rashel Al Ahmed Md.Iasir Arafat Noor E Nahid Bintu 《Energy Engineering》 2025年第8期3347-3375,共29页
In this research work,the localized generation from renewable resources and the distribution of energy to agricultural loads,which is a local microgrid concept,have been considered,and its feasibility has been assesse... In this research work,the localized generation from renewable resources and the distribution of energy to agricultural loads,which is a local microgrid concept,have been considered,and its feasibility has been assessed.Two dispatch algorithms,named Cycle Charging and Load Following,are implemented to find the optimal solution(i.e.,net cost,operation cost,carbon emission.energy cost,component sizing,etc.)of the hybrid system.The microgrid is also modeled in the DIgSILENT Power Factory platform,and the respective power system responses are then evaluated.The development of dispatch algorithms specifically tailored for agricultural applications has enabled to dynamically manage energy flows,responding to fluctuating demands and resource availability in real-time.Through careful consideration of factors such as seasonal variations and irrigation requirements,these algorithms have enhanced the resilience and adaptability of the microgrid to dynamic operational conditions.However,it is revealed that both approaches have produced the same techno-economic results showing no significant difference.This illustrates the fact that the considered microgrid can be implemented with either strategy without significant fluctuation in performance.The study has shown that the harmful gas emission has also been limited to only 17,928 kg/year of CO_(2),and 77.7 kg/year of Sulfur Dioxide.For the proposed microgrid and load profile of 165.29 kWh/day,the net present cost is USD 718,279,and the cost of energy is USD 0.0463 with a renewable fraction of 97.6%.The optimal sizes for PV,Bio,Grid,Electrolyzer,and Converter are 1494,500,999,999,500,and 495 kW,respectively.For a hydrogen tank(HTank),the optimal size is found to be 350 kg.This research work provides critical insights into the techno-economic feasibility and environmental impact of integrating biomass-PV-hydrogen storage-Grid hybrid renewable microgrids into agricultural settings. 展开更多
关键词 Renewable energy derivative-free algorithm optimIZATION hybrid system energy storage
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部