期刊文献+
共找到5,906篇文章
< 1 2 250 >
每页显示 20 50 100
Joint jammer selection and power optimization in covert communications against a warden with uncertain locations 被引量:1
1
作者 Zhijun Han Yiqing Zhou +3 位作者 Yu Zhang Tong-Xing Zheng Ling Liu Jinglin Shi 《Digital Communications and Networks》 2025年第4期1113-1123,共11页
In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(... In covert communications,joint jammer selection and power optimization are important to improve performance.However,existing schemes usually assume a warden with a known location and perfect Channel State Information(CSI),which is difficult to achieve in practice.To be more practical,it is important to investigate covert communications against a warden with uncertain locations and imperfect CSI,which makes it difficult for legitimate transceivers to estimate the detection probability of the warden.First,the uncertainty caused by the unknown warden location must be removed,and the Optimal Detection Position(OPTDP)of the warden is derived which can provide the best detection performance(i.e.,the worst case for a covert communication).Then,to further avoid the impractical assumption of perfect CSI,the covert throughput is maximized using only the channel distribution information.Given this OPTDP based worst case for covert communications,the jammer selection,the jamming power,the transmission power,and the transmission rate are jointly optimized to maximize the covert throughput(OPTDP-JP).To solve this coupling problem,a Heuristic algorithm based on Maximum Distance Ratio(H-MAXDR)is proposed to provide a sub-optimal solution.First,according to the analysis of the covert throughput,the node with the maximum distance ratio(i.e.,the ratio of the distances from the jammer to the receiver and that to the warden)is selected as the friendly jammer(MAXDR).Then,the optimal transmission and jamming power can be derived,followed by the optimal transmission rate obtained via the bisection method.In numerical and simulation results,it is shown that although the location of the warden is unknown,by assuming the OPTDP of the warden,the proposed OPTDP-JP can always satisfy the covertness constraint.In addition,with an uncertain warden and imperfect CSI,the covert throughput provided by OPTDP-JP is 80%higher than the existing schemes when the covertness constraint is 0.9,showing the effectiveness of OPTDP-JP. 展开更多
关键词 Covert communications Uncertain warden Jammer selection Power optimization Throughput maximization
在线阅读 下载PDF
Enhanced Particle Swarm Optimization Algorithm Based on SVM Classifier for Feature Selection
2
作者 Xing Wang Huazhen Liu +2 位作者 Abdelazim G.Hussien Gang Hu Li Zhang 《Computer Modeling in Engineering & Sciences》 2025年第3期2791-2839,共49页
Feature selection(FS)is essential in machine learning(ML)and data mapping by its ability to preprocess high-dimensional data.By selecting a subset of relevant features,feature selection cuts down on the dimension of t... Feature selection(FS)is essential in machine learning(ML)and data mapping by its ability to preprocess high-dimensional data.By selecting a subset of relevant features,feature selection cuts down on the dimension of the data.It excludes irrelevant or surplus features,thus boosting the performance and efficiency of the model.Particle Swarm Optimization(PSO)boasts a streamlined algorithmic framework and exhibits rapid convergence traits.Compared with other algorithms,it incurs reduced computational expenses when tackling high-dimensional datasets.However,PSO faces challenges like inadequate convergence precision.Therefore,regarding FS problems,this paper presents a binary version enhanced PSO based on the Support Vector Machines(SVM)classifier.First,the Sand Cat Swarm Optimization(SCSO)is added to enhance the global search capability of PSO and improve the accuracy of the solution.Secondly,the Latin hypercube sampling strategy initializes populations more uniformly and helps to increase population diversity.The last is the roundup search strategy introducing the grey wolf hierarchy idea to help improve convergence speed.To verify the capability of Self-adaptive Cooperative Particle Swarm Optimization(SCPSO),the CEC2020 test suite and CEC2022 test suite are selected for experiments and applied to three engineering problems.Compared with the standard PSO algorithm,SCPSO converges faster,and the convergence accuracy is significantly improved.Moreover,SCPSO’s comprehensive performance far exceeds that of other algorithms.Six datasets from the University of California,Irvine(UCI)database were selected to evaluate SCPSO’s effectiveness in solving feature selection problems.The results indicate that SCPSO has significant potential for addressing these problems. 展开更多
关键词 Feature selection SVM particle swarm optimization sand cat swarm optimization engineering problems
在线阅读 下载PDF
An Improved Chaotic Quantum Multi-Objective Harris Hawks Optimization Algorithm for Emergency Centers Site Selection Decision Problem
3
作者 Yuting Zhu Wenyu Zhang +3 位作者 Hainan Wang Junjie Hou Haining Wang Meng Wang 《Computers, Materials & Continua》 2025年第2期2177-2198,共22页
Addressing the complex issue of emergency resource distribution center site selection in uncertain environments, this study was conducted to comprehensively consider factors such as uncertainty parameters and the urge... Addressing the complex issue of emergency resource distribution center site selection in uncertain environments, this study was conducted to comprehensively consider factors such as uncertainty parameters and the urgency of demand at disaster-affected sites. Firstly, urgency cost, economic cost, and transportation distance cost were identified as key objectives. The study applied fuzzy theory integration to construct a triangular fuzzy multi-objective site selection decision model. Next, the defuzzification theory transformed the fuzzy decision model into a precise one. Subsequently, an improved Chaotic Quantum Multi-Objective Harris Hawks Optimization (CQ-MOHHO) algorithm was proposed to solve the model. The CQ-MOHHO algorithm was shown to rapidly produce high-quality Pareto front solutions and identify optimal site selection schemes for emergency resource distribution centers through case studies. This outcome verified the feasibility and efficacy of the site selection decision model and the CQ-MOHHO algorithm. To further assess CQ-MOHHO’s performance, Zitzler-Deb-Thiele (ZDT) test functions, commonly used in multi-objective optimization, were employed. Comparisons with Multi-Objective Harris Hawks Optimization (MOHHO), Non-dominated Sorting Genetic Algorithm II (NSGA-II), and Multi-Objective Grey Wolf Optimizer (MOGWO) using Generational Distance (GD), Hypervolume (HV), and Inverted Generational Distance (IGD) metrics showed that CQ-MOHHO achieved superior global search ability, faster convergence, and higher solution quality. The CQ-MOHHO algorithm efficiently achieved a balance between multiple objectives, providing decision-makers with satisfactory solutions and a valuable reference for researching and applying emergency site selection problems. 展开更多
关键词 Site selection triangular fuzzy theory chaotic quantum Harris Hawks optimization multi-objective optimization
在线阅读 下载PDF
Particle Swarm Optimization Algorithm for Feature Selection Inspired by Peak Ecosystem Dynamics
4
作者 Shaobo Deng Meiru Xie +3 位作者 Bo Wang Shuaikun Zhang Sujie Guan Min Li 《Computers, Materials & Continua》 2025年第2期2723-2751,共29页
In recent years, particle swarm optimization (PSO) has received widespread attention in feature selection due to its simplicity and potential for global search. However, in traditional PSO, particles primarily update ... In recent years, particle swarm optimization (PSO) has received widespread attention in feature selection due to its simplicity and potential for global search. However, in traditional PSO, particles primarily update based on two extreme values: personal best and global best, which limits the diversity of information. Ideally, particles should learn from multiple advantageous particles to enhance interactivity and optimization efficiency. Accordingly, this paper proposes a PSO that simulates the evolutionary dynamics of species survival in mountain peak ecology (PEPSO) for feature selection. Based on the pyramid topology, the algorithm simulates the features of mountain peak ecology in nature and the competitive-cooperative strategies among species. According to the principles of the algorithm, the population is first adaptively divided into many subgroups based on the fitness level of particles. Then, particles within each subgroup are divided into three different types based on their evolutionary levels, employing different adaptive inertia weight rules and dynamic learning mechanisms to define distinct learning modes. Consequently, all particles play their respective roles in promoting the global optimization performance of the algorithm, similar to different species in the ecological pattern of mountain peaks. Experimental validation of the PEPSO performance was conducted on 18 public datasets. The experimental results demonstrate that the PEPSO outperforms other PSO variant-based feature selection methods and mainstream feature selection methods based on intelligent optimization algorithms in terms of overall performance in global search capability, classification accuracy, and reduction of feature space dimensions. Wilcoxon signed-rank test also confirms the excellent performance of the PEPSO. 展开更多
关键词 Machine learning feature selection evolutionary algorithm particle swarm optimization
在线阅读 下载PDF
Joint Optimization of Resource Allocation and Radar Receiver Selection in Integrated Communication-Radar Systems
5
作者 Zhong Chen Zhou Xufeng +1 位作者 Tang Lan Lou Mengting 《China Communications》 2025年第8期114-133,共20页
In this paper,we investigate a distributed multi-input multi-output and orthogonal frequency division multiplexing(MIMO-OFDM) dual-functional radar-communication(DFRC) system,which enables simultaneous communication a... In this paper,we investigate a distributed multi-input multi-output and orthogonal frequency division multiplexing(MIMO-OFDM) dual-functional radar-communication(DFRC) system,which enables simultaneous communication and sensing in different subcarrier sets.To obtain the best tradeoff between communication and sensing performance,we first derive Cramer-Rao Bound(CRB) of targets in detection area,and then maximize the transmission rate by jointly optimizing the power/subcarriers allocation and the selection of radar receivers under the constraints of detection performance and total transmit power.To tackle the non-convex mixed integer programming problem,we decompose the original problem into a semidefinite programming(SDP) problem and a convex quadratic integer problem and solve them iteratively.The numerical results demonstrate the effectiveness of our proposed algorithm,as well as the performance improvement brought by optimizing radar receivers selection. 展开更多
关键词 alternative optimization DFRC system MIMO-OFDM power/subcarrier allocation radar receivers selection
在线阅读 下载PDF
Optimizing Feature Selection by Enhancing Particle Swarm Optimization with Orthogonal Initialization and Crossover Operator
6
作者 Indu Bala Wathsala Karunarathne Lewis Mitchell 《Computers, Materials & Continua》 2025年第7期727-744,共18页
Recent advancements in computational and database technologies have led to the exponential growth of large-scale medical datasets,significantly increasing data complexity and dimensionality in medical diagnostics.Effi... Recent advancements in computational and database technologies have led to the exponential growth of large-scale medical datasets,significantly increasing data complexity and dimensionality in medical diagnostics.Efficient feature selection methods are critical for improving diagnostic accuracy,reducing computational costs,and enhancing the interpretability of predictive models.Particle Swarm Optimization(PSO),a widely used metaheuristic inspired by swarm intelligence,has shown considerable promise in feature selection tasks.However,conventional PSO often suffers from premature convergence and limited exploration capabilities,particularly in high-dimensional spaces.To overcome these limitations,this study proposes an enhanced PSO framework incorporating Orthogonal Initializa-tion and a Crossover Operator(OrPSOC).Orthogonal Initialization ensures a diverse and uniformly distributed initial particle population,substantially improving the algorithm’s exploration capability.The Crossover Operator,inspired by genetic algorithms,introduces additional diversity during the search process,effectively mitigating premature convergence and enhancing global search performance.The effectiveness of OrPSOC was rigorously evaluated on three benchmark medical datasets—Colon,Leukemia,and Prostate Tumor.Comparative analyses were conducted against traditional filter-based methods,including Fast Clustering-Based Feature Selection Technique(Fast-C),Minimum Redundancy Maximum Relevance(MinRedMaxRel),and Five-Way Joint Mutual Information(FJMI),as well as prominent metaheuristic algorithms such as standard PSO,Ant Colony Optimization(ACO),Comprehensive Learning Gravitational Search Algorithm(CLGSA),and Fuzzy-Based CLGSA(FCLGSA).Experimental results demonstrated that OrPSOC consistently outperformed these existing methods in terms of classification accuracy,computational efficiency,and result stability,achieving significant improvements even with fewer selected features.Additionally,a sensitivity analysis of the crossover parameter provided valuable insights into parameter tuning and its impact on model performance.These findings highlight the superiority and robustness of the proposed OrPSOC approach for feature selection in medical diagnostic applications and underscore its potential for broader adoption in various high-dimensional,data-driven fields. 展开更多
关键词 Machine learning feature selection classification medical diagnosis orthogonal initialization CROSSOVER particle swarm optimization
在线阅读 下载PDF
An Adaptive and Parallel Metaheuristic Framework for Wrapper-Based Feature Selection Using Arctic Puffin Optimization
7
作者 Wy-Liang Cheng Wei Hong Lim +5 位作者 Kim Soon Chong Sew Sun Tiang Yit Hong Choo El-Sayed M.El-kenawy Amal H.Alharbi Marwa M.Eid 《Computers, Materials & Continua》 2025年第10期2021-2050,共30页
The exponential growth of data in recent years has introduced significant challenges in managing high-dimensional datasets,particularly in industrial contexts where efficient data handling and process innovation are c... The exponential growth of data in recent years has introduced significant challenges in managing high-dimensional datasets,particularly in industrial contexts where efficient data handling and process innovation are critical.Feature selection,an essential step in data-driven process innovation,aims to identify the most relevant features to improve model interpretability,reduce complexity,and enhance predictive accuracy.To address the limitations of existing feature selection methods,this study introduces a novel wrapper-based feature selection framework leveraging the recently proposed Arctic Puffin Optimization(APO)algorithm.Specifically,we incorporate a specialized conversion mechanism to effectively adapt APO from continuous optimization to discrete,binary feature selection problems.Moreover,we introduce a fully parallelized implementation of APO in which both the search operators and fitness evaluations are executed concurrently using MATLAB’s Parallel Computing Toolbox.This parallel design significantly improves runtime efficiency and scalability,particularly for high-dimensional feature spaces.Extensive comparative experiments conducted against 14 state-of-the-art metaheuristic algorithms across 15 benchmark datasets reveal that the proposed APO-based method consistently achieves superior classification accuracy while selecting fewer features.These findings highlight the robustness and effectiveness of APO,validating its potential for advancing process innovation,economic productivity and smart city application in real-world machine learning scenarios. 展开更多
关键词 Wrapper-based feature selection Arctic puffin optimization metaheuristic search algorithm
在线阅读 下载PDF
Optimized Feature Selection for Leukemia Diagnosis Using Frog-Snake Optimization and Deep Learning Integration
8
作者 Reza Goodarzi Ali Jalali +2 位作者 Omid Hashemi Pour Tafreshi Jalil Mazloum Peyman Beygi 《Computers, Materials & Continua》 2025年第7期653-679,共27页
Acute lymphoblastic leukemia(ALL)is characterized by overgrowth of immature lymphoid cells in the bone marrow at the expense of normal hematopoiesis.One of the most prioritized tasks is the early and correct diagnosis... Acute lymphoblastic leukemia(ALL)is characterized by overgrowth of immature lymphoid cells in the bone marrow at the expense of normal hematopoiesis.One of the most prioritized tasks is the early and correct diagnosis of this malignancy;however,manual observation of the blood smear is very time-consuming and requires labor and expertise.Transfer learning in deep neural networks is of growing importance to intricate medical tasks such as medical imaging.Our work proposes an application of a novel ensemble architecture that puts together Vision Transformer and EfficientNetV2.This approach fuses deep and spatial features to optimize discriminative power by selecting features accurately,reducing redundancy,and promoting sparsity.Besides the architecture of the ensemble,the advanced feature selection is performed by the Frog-Snake Prey-Predation Relationship Optimization(FSRO)algorithm.FSRO prioritizes the most relevant features while dynamically reducing redundant and noisy data,hence improving the efficiency and accuracy of the classification model.We have compared our method for feature selection against state-of-the-art techniques and recorded an accuracy of 94.88%,a recall of 94.38%,a precision of 96.18%,and an F1-score of 95.63%.These figures are therefore better than the classical methods for deep learning.Though our dataset,collected from four different hospitals,is non-standard and heterogeneous,making the analysis more challenging,although computationally expensive,our approach proves diagnostically superior in cancer detection.Source codes and datasets are available on GitHub. 展开更多
关键词 Acute lymphocyte leukemia feature fusion deep learning feature selection frog-snake prey-predation relationship optimization
在线阅读 下载PDF
A Feature Selection Method for Software Defect Prediction Based on Improved Beluga Whale Optimization Algorithm
9
作者 Shaoming Qiu Jingjie He +1 位作者 Yan Wang Bicong E 《Computers, Materials & Continua》 2025年第6期4879-4898,共20页
Software defect prediction(SDP)aims to find a reliable method to predict defects in specific software projects and help software engineers allocate limited resources to release high-quality software products.Software ... Software defect prediction(SDP)aims to find a reliable method to predict defects in specific software projects and help software engineers allocate limited resources to release high-quality software products.Software defect prediction can be effectively performed using traditional features,but there are some redundant or irrelevant features in them(the presence or absence of this feature has little effect on the prediction results).These problems can be solved using feature selection.However,existing feature selection methods have shortcomings such as insignificant dimensionality reduction effect and low classification accuracy of the selected optimal feature subset.In order to reduce the impact of these shortcomings,this paper proposes a new feature selection method Cubic TraverseMa Beluga whale optimization algorithm(CTMBWO)based on the improved Beluga whale optimization algorithm(BWO).The goal of this study is to determine how well the CTMBWO can extract the features that are most important for correctly predicting software defects,improve the accuracy of fault prediction,reduce the number of the selected feature and mitigate the risk of overfitting,thereby achieving more efficient resource utilization and better distribution of test workload.The CTMBWO comprises three main stages:preprocessing the dataset,selecting relevant features,and evaluating the classification performance of the model.The novel feature selection method can effectively improve the performance of SDP.This study performs experiments on two software defect datasets(PROMISE,NASA)and shows the method’s classification performance using four detailed evaluation metrics,Accuracy,F1-score,MCC,AUC and Recall.The results indicate that the approach presented in this paper achieves outstanding classification performance on both datasets and has significant improvement over the baseline models. 展开更多
关键词 Software defect prediction feature selection beluga optimization algorithm triangular wandering strategy cauchy mutation reverse learning
在线阅读 下载PDF
Heart Disease Prediction Model Using Feature Selection and Ensemble Deep Learning with Optimized Weight
10
作者 Iman S.Al-Mahdi Saad M.Darwish Magda M.Madbouly 《Computer Modeling in Engineering & Sciences》 2025年第4期875-909,共35页
Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irr... Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irrelevant or redundant features,and the variability in risk factors such as age,lifestyle,andmedical history.These challenges often lead to inefficient and less accuratemodels.Traditional predictionmethodologies face limitations in effectively handling large feature sets and optimizing classification performance,which can result in overfitting poor generalization,and high computational cost.This work proposes a novel classification model for heart disease prediction that addresses these challenges by integrating feature selection through a Genetic Algorithm(GA)with an ensemble deep learning approach optimized using the Tunicate Swarm Algorithm(TSA).GA selects the most relevant features,reducing dimensionality and improvingmodel efficiency.Theselected features are then used to train an ensemble of deep learning models,where the TSA optimizes the weight of each model in the ensemble to enhance prediction accuracy.This hybrid approach addresses key challenges in the field,such as high dimensionality,redundant features,and classification performance,by introducing an efficient feature selection mechanism and optimizing the weighting of deep learning models in the ensemble.These enhancements result in a model that achieves superior accuracy,generalization,and efficiency compared to traditional methods.The proposed model demonstrated notable advancements in both prediction accuracy and computational efficiency over traditionalmodels.Specifically,it achieved an accuracy of 97.5%,a sensitivity of 97.2%,and a specificity of 97.8%.Additionally,with a 60-40 data split and 5-fold cross-validation,the model showed a significant reduction in training time(90 s),memory consumption(950 MB),and CPU usage(80%),highlighting its effectiveness in processing large,complex medical datasets for heart disease prediction. 展开更多
关键词 Heart disease prediction feature selection ensemble deep learning optimization genetic algorithm(GA) ensemble deep learning tunicate swarm algorithm(TSA) feature selection
在线阅读 下载PDF
AI-Integrated Feature Selection of Intrusion Detection for Both SDN and Traditional Network Architectures Using an Improved Crayfish Optimization Algorithm
11
作者 Hui Xu Wei Huang Longtan Bai 《Computers, Materials & Continua》 2025年第8期3053-3073,共21页
With the birth of Software-Defined Networking(SDN),integration of both SDN and traditional architectures becomes the development trend of computer networks.Network intrusion detection faces challenges in dealing with ... With the birth of Software-Defined Networking(SDN),integration of both SDN and traditional architectures becomes the development trend of computer networks.Network intrusion detection faces challenges in dealing with complex attacks in SDN environments,thus to address the network security issues from the viewpoint of Artificial Intelligence(AI),this paper introduces the Crayfish Optimization Algorithm(COA)to the field of intrusion detection for both SDN and traditional network architectures,and based on the characteristics of the original COA,an Improved Crayfish Optimization Algorithm(ICOA)is proposed by integrating strategies of elite reverse learning,Levy flight,crowding factor and parameter modification.The ICOA is then utilized for AI-integrated feature selection of intrusion detection for both SDN and traditional network architectures,to reduce the dimensionality of the data and improve the performance of network intrusion detection.Finally,the performance evaluation is performed by testing not only the NSL-KDD dataset and the UNSW-NB 15 dataset for traditional networks but also the InSDN dataset for SDN-based networks.Experimental results show that ICOA improves the accuracy by 0.532%and 2.928%respectively compared with GWO and COA in traditional networks.In SDN networks,the accuracy of ICOA is 0.25%and 0.3%higher than COA and PSO.These findings collectively indicate that AI-integrated feature selection based on the proposed ICOA can promote network intrusion detection for both SDN and traditional architectures. 展开更多
关键词 Software-defined networking(SDN) intrusion detection artificial intelligence(AI) feature selection crayfish optimization algorithm(COA)
在线阅读 下载PDF
Optimal urban EV charging station site selection and capacity determination considering comprehensive benefits of vehicle-station-grid
12
作者 Hongwei Li Yufeng Song +4 位作者 Jiuding Tan Yi Cui Shuaibing Li Yongqiang Kang Haiying Dong 《iEnergy》 2024年第3期162-174,共13页
This paper presents an optimization model for the location and capacity of electric vehicle(EV)charging stations.The model takes the multiple factors of the“vehicle-station-grid”system into account.Then,ArcScene is ... This paper presents an optimization model for the location and capacity of electric vehicle(EV)charging stations.The model takes the multiple factors of the“vehicle-station-grid”system into account.Then,ArcScene is used to couple the road and power grid models and ensure that the coupling system is strictly under the goal of minimizing the total social cost,which includes the operator cost,user charging cost,and power grid loss.An immune particle swarm optimization algorithm(IPSOA)is proposed in this paper to obtain the optimal coupling strategy.The simulation results show that the algorithm has good convergence and performs well in solving multi-modal problems.It also balances the interests of users,operators,and the power grid.Compared with other schemes,the grid loss cost is reduced by 11.1%and 17.8%,and the total social cost decreases by 9.96%and 3.22%. 展开更多
关键词 EVS charging station site selection and capacity determination ArcScene immune particle swarm optimization algorithm(IPSOA) road electrical coupling
在线阅读 下载PDF
Multi-Strategy Assisted Multi-Objective Whale Optimization Algorithm for Feature Selection 被引量:1
13
作者 Deng Yang Chong Zhou +2 位作者 Xuemeng Wei Zhikun Chen Zheng Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1563-1593,共31页
In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature sel... In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA. 展开更多
关键词 Multi-objective optimization whale optimization algorithm multi-strategy feature selection
在线阅读 下载PDF
A splicing algorithm for best subset selection in sliced inverse regression
14
作者 Borui Tang Jin Zhu +1 位作者 Tingyin Wang Junxian Zhu 《中国科学技术大学学报》 北大核心 2025年第5期22-34,21,I0001,共15页
In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by re... In this study,we examine the problem of sliced inverse regression(SIR),a widely used method for sufficient dimension reduction(SDR).It was designed to find reduced-dimensional versions of multivariate predictors by replacing them with a minimally adequate collection of their linear combinations without loss of information.Recently,regularization methods have been proposed in SIR to incorporate a sparse structure of predictors for better interpretability.However,existing methods consider convex relaxation to bypass the sparsity constraint,which may not lead to the best subset,and particularly tends to include irrelevant variables when predictors are correlated.In this study,we approach sparse SIR as a nonconvex optimization problem and directly tackle the sparsity constraint by establishing the optimal conditions and iteratively solving them by means of the splicing technique.Without employing convex relaxation on the sparsity constraint and the orthogonal constraint,our algorithm exhibits superior empirical merits,as evidenced by extensive numerical studies.Computationally,our algorithm is much faster than the relaxed approach for the natural sparse SIR estimator.Statistically,our algorithm surpasses existing methods in terms of accuracy for central subspace estimation and best subset selection and sustains high performance even with correlated predictors. 展开更多
关键词 splicing technique best subset selection sliced inverse regression nonconvex optimization sparsity constraint optimal conditions
在线阅读 下载PDF
Comparison of debris flow susceptibility assessment methods:support vector machine,particle swarm optimization,and feature selection techniques 被引量:1
15
作者 ZHAO Haijun WEI Aihua +3 位作者 MA Fengshan DAI Fenggang JIANG Yongbing LI Hui 《Journal of Mountain Science》 SCIE CSCD 2024年第2期397-412,共16页
The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques we... The selection of important factors in machine learning-based susceptibility assessments is crucial to obtain reliable susceptibility results.In this study,metaheuristic optimization and feature selection techniques were applied to identify the most important input parameters for mapping debris flow susceptibility in the southern mountain area of Chengde City in Hebei Province,China,by using machine learning algorithms.In total,133 historical debris flow records and 16 related factors were selected.The support vector machine(SVM)was first used as the base classifier,and then a hybrid model was introduced by a two-step process.First,the particle swarm optimization(PSO)algorithm was employed to select the SVM model hyperparameters.Second,two feature selection algorithms,namely principal component analysis(PCA)and PSO,were integrated into the PSO-based SVM model,which generated the PCA-PSO-SVM and FS-PSO-SVM models,respectively.Three statistical metrics(accuracy,recall,and specificity)and the area under the receiver operating characteristic curve(AUC)were employed to evaluate and validate the performance of the models.The results indicated that the feature selection-based models exhibited the best performance,followed by the PSO-based SVM and SVM models.Moreover,the performance of the FS-PSO-SVM model was better than that of the PCA-PSO-SVM model,showing the highest AUC,accuracy,recall,and specificity values in both the training and testing processes.It was found that the selection of optimal features is crucial to improving the reliability of debris flow susceptibility assessment results.Moreover,the PSO algorithm was found to be not only an effective tool for hyperparameter optimization,but also a useful feature selection algorithm to improve prediction accuracies of debris flow susceptibility by using machine learning algorithms.The high and very high debris flow susceptibility zone appropriately covers 38.01%of the study area,where debris flow may occur under intensive human activities and heavy rainfall events. 展开更多
关键词 Chengde Feature selection Support vector machine Particle swarm optimization Principal component analysis Debris flow susceptibility
原文传递
Optimal Location of Renewable Energy Generators in Transmission and Distribution System of Deregulated Power Sector:A Review
16
作者 Digambar Singh Najat Elgeberi +3 位作者 Mohammad Aljaidi Ramesh Kumar Rabia Emhamed Al Mamlook Manish Kumar Singla 《Energy Engineering》 2025年第3期823-859,共37页
The literature on multi-attribute optimization for renewable energy source(RES)placement in deregulated power markets is extensive and diverse in methodology.This study focuses on the most relevant publications direct... The literature on multi-attribute optimization for renewable energy source(RES)placement in deregulated power markets is extensive and diverse in methodology.This study focuses on the most relevant publications directly addressing the research problem at hand.Similarly,while the body of work on optimal location and sizing of renewable energy generators(REGs)in balanced distribution systems is substantial,only the most pertinent sources are cited,aligning closely with the study’s objective function.A comprehensive literature review reveals several key research areas:RES integration,RES-related optimization techniques,strategic placement of wind and solar generation,and RES promotion in deregulated powermarkets,particularly within transmission systems.Furthermore,the optimal location and sizing of REGs in both balanced and unbalanced distribution systems have been extensively studied.RESs demonstrate significant potential for standalone applications in remote areas lacking conventional transmission and distribution infrastructure.Also presents a thorough review of current modeling and optimization approaches for RES-based distribution system location and sizing.Additionally,it examines the optimal positioning,sizing,and performance of hybrid and standalone renewable energy systems.This paper provides a comprehensive review of current modeling and optimization approaches for the location and sizing of Renewable Energy Sources(RESs)in distribution systems,focusing on both balanced and unbalanced networks. 展开更多
关键词 optimization of RESs distributed generation modeling and selection of RESs hybrid systems standalone systems optimal location
在线阅读 下载PDF
A sample selection mechanism for multi-UCAV air combat policy training using multi-agent reinforcement learning
17
作者 Zihui YAN Xiaolong LIANG +3 位作者 Yueqi HOU Aiwu YANG Jiaqiang ZHANG Ning WANG 《Chinese Journal of Aeronautics》 2025年第6期501-516,共16页
Policy training against diverse opponents remains a challenge when using Multi-Agent Reinforcement Learning(MARL)in multiple Unmanned Combat Aerial Vehicle(UCAV)air combat scenarios.In view of this,this paper proposes... Policy training against diverse opponents remains a challenge when using Multi-Agent Reinforcement Learning(MARL)in multiple Unmanned Combat Aerial Vehicle(UCAV)air combat scenarios.In view of this,this paper proposes a novel Dominant and Non-dominant strategy sample selection(DoNot)mechanism and a Local Observation Enhanced Multi-Agent Proximal Policy Optimization(LOE-MAPPO)algorithm to train the multi-UCAV air combat policy and improve its generalization.Specifically,the LOE-MAPPO algorithm adopts a mixed state that concatenates the global state and individual agent's local observation to enable efficient value function learning in multi-UCAV air combat.The DoNot mechanism classifies opponents into dominant or non-dominant strategy opponents,and samples from easier to more challenging opponents to form an adaptive training curriculum.Empirical results demonstrate that the proposed LOE-MAPPO algorithm outperforms baseline MARL algorithms in multi-UCAV air combat scenarios,and the DoNot mechanism leads to stronger policy generalization when facing diverse opponents.The results pave the way for the fast generation of cooperative strategies for air combat agents with MARLalgorithms. 展开更多
关键词 Unmanned combat aerial vehicle Air combat Sample selection Multi-agent reinforcement learning Policyproximal optimization
原文传递
A Review of Methods for“Pump as Turbine”(PAT)Performance Prediction and Optimal Design
18
作者 Xiao Sun Huifan Huang +3 位作者 Yanjuan Zhao Lianghuai Tong Haibin Lin Yuliang Zhang 《Fluid Dynamics & Materials Processing》 2025年第6期1261-1298,共38页
The reverse operation of existing centrifugal pumps,commonly referred to as“Pump as Turbine”(PAT),is a key approach for recovering liquid pressure energy.As a type of hydraulic machinery characterized by a simple st... The reverse operation of existing centrifugal pumps,commonly referred to as“Pump as Turbine”(PAT),is a key approach for recovering liquid pressure energy.As a type of hydraulic machinery characterized by a simple structure and user-friendly operation,PAT holds significant promise for application in industrial waste energy recovery systems.This paper reviews recent advancements in this field,with a focus on pump type selection,performance prediction,and optimization design.First,the advantages of various prototype pumps,including centrifugal,axial-flow,mixed-flow,screw,and plunger pumps,are examined in specific application scenarios while analyzing their suitability for turbine operation.Next,performance prediction techniques for PATs are discussed,encompassing theoretical calculations,numerical simulations,and experimental testing.Special emphasis is placed on the crucial role of Computational Fluid Dynamics(CFD)and internal flow field testing technologies in analyzing PAT internal flow characteristics.Additionally,the impact of multi-objective optimization methods and the application of advanced materials on PAT performance enhancement is addressed.Finally,based on current research findings and existing technical challenges,this review also indicates future development directions;in particular,four key breakthrough areas are identified:advanced materials,innovative design methodologies,internal flow diagnostics,and in-depth analysis of critical components. 展开更多
关键词 Pump as Turbine(PAT) type selection performance prediction internal and external characteristics optimal design
在线阅读 下载PDF
An Improved Northern Goshawk Optimization Algorithm for Feature Selection
19
作者 Rongxiang Xie Shaobo Li Fengbin Wu 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期2034-2072,共39页
Feature Selection(FS)is an important data management technique that aims to minimize redundant information in a dataset.This work proposes DENGO,an improved version of the Northern Goshawk Optimization(NGO),to address... Feature Selection(FS)is an important data management technique that aims to minimize redundant information in a dataset.This work proposes DENGO,an improved version of the Northern Goshawk Optimization(NGO),to address the FS problem.The NGO is an efficient swarm-based algorithm that takes its inspiration from the predatory actions of the northern goshawk.In order to overcome the disadvantages that NGO is prone to local optimum trap,slow convergence speed and low convergence accuracy,two strategies are introduced in the original NGO to boost the effectiveness of NGO.Firstly,a learning strategy is proposed where search members learn by learning from the information gaps of other members of the population to enhance the algorithm's global search ability while improving the population diversity.Secondly,a hybrid differential strategy is proposed to improve the capability of the algorithm to escape from the trap of the local optimum by perturbing the individuals to improve convergence accuracy and speed.To prove the effectiveness of the suggested DENGO,it is measured against eleven advanced algorithms on the CEC2015 and CEC2017 benchmark functions,and the obtained results demonstrate that the DENGO has a stronger global exploration capability with higher convergence performance and stability.Subsequently,the proposed DENGO is used for FS,and the 29 benchmark datasets from the UCL database prove that the DENGO-based FS method equipped with higher classification accuracy and stability compared with eight other popular FS methods,and therefore,DENGO is considered to be one of the most prospective FS techniques.DENGO's code can be obtained at https://www.mathworks.com/matlabcentral/fileexchange/158811-project1. 展开更多
关键词 Northern goshawk optimization Learning strategy Hybrid differential strategy Numerical optimization Feature selection
在线阅读 下载PDF
A Proposed Feature Selection Particle Swarm Optimization Adaptation for Intelligent Logistics--A Supply Chain Backlog Elimination Framework
20
作者 Yasser Hachaichi Ayman E.Khedr Amira M.Idrees 《Computers, Materials & Continua》 SCIE EI 2024年第6期4081-4105,共25页
The diversity of data sources resulted in seeking effective manipulation and dissemination.The challenge that arises from the increasing dimensionality has a negative effect on the computation performance,efficiency,a... The diversity of data sources resulted in seeking effective manipulation and dissemination.The challenge that arises from the increasing dimensionality has a negative effect on the computation performance,efficiency,and stability of computing.One of the most successful optimization algorithms is Particle Swarm Optimization(PSO)which has proved its effectiveness in exploring the highest influencing features in the search space based on its fast convergence and the ability to utilize a small set of parameters in the search task.This research proposes an effective enhancement of PSO that tackles the challenge of randomness search which directly enhances PSO performance.On the other hand,this research proposes a generic intelligent framework for early prediction of orders delay and eliminate orders backlogs which could be considered as an efficient potential solution for raising the supply chain performance.The proposed adapted algorithm has been applied to a supply chain dataset which minimized the features set from twenty-one features to ten significant features.To confirm the proposed algorithm results,the updated data has been examined by eight of the well-known classification algorithms which reached a minimum accuracy percentage equal to 94.3%for random forest and a maximum of 99.0 for Naïve Bayes.Moreover,the proposed algorithm adaptation has been compared with other proposed adaptations of PSO from the literature over different datasets.The proposed PSO adaptation reached a higher accuracy compared with the literature ranging from 97.8 to 99.36 which also proved the advancement of the current research. 展开更多
关键词 optimization particle swarm optimization algorithm feature selection LOGISTICS supply chain management backlogs
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部