For carrier-based unmanned aerial vehicles(UAVs),one of the important problems is the design of an automatic carrier landing system(ACLS)that would enable the UAVs to accomplish autolanding on the aircraft carrier.How...For carrier-based unmanned aerial vehicles(UAVs),one of the important problems is the design of an automatic carrier landing system(ACLS)that would enable the UAVs to accomplish autolanding on the aircraft carrier.However,due to the movements of the flight deck with six degree-of-freedom,the autolanding becomes sophisticated.To solve this problem,an accurate and effective ACLS is developed,which is composed of an optimal preview control based flight control system and a Kalman filter based deck motion predictor.The preview control fuses the future information of the reference glide slope to improve landing precision.The reference glide slope is normally a straight line.However,the deck motion will change the position of the ideal landing point,and tracking the ideal straight glide slope may cause landing failure.Therefore,the predictive deck motion information from the deck motion predictor is used to correct the reference glide slope,which decreases the dispersion around the desired landing point.Finally,simulations are carried out to verify the performance of the designed ACLS based on a nonlinear UAV model.展开更多
The paper presents a preview controller design for ATS (active trailer steering) systems to improve high-speed stability of AHVs (articulated heavy vehicles). An AHV consists of a towing unit, namely tractor or tr...The paper presents a preview controller design for ATS (active trailer steering) systems to improve high-speed stability of AHVs (articulated heavy vehicles). An AHV consists of a towing unit, namely tractor or truck, and one or more towed units which called trailers. Individual units are connected to one another at articulated joints by mechanical couplings. Due to the multi-unit configurations, AHVs exhibit unique unstable motion modes, including jack-knifing, trailer swing and rollover. These unstable motion modes are the leading cause of highway accidents. To prevent these unstable motion modes, the preview controller, namely the LPDP (lateral position deviation preview) controller, is proposed. For a truck/full-trailer combination, the LPDP controller is designed to control the steering of the front and rear axle wheels of the trailing unit. The calculation of the corrective steering angle of the trailer front axle wheels is based on the preview information of the lateral position deviation of the trajectory of the axle center from that of the truck front axle center. Similarly, the steering angle of the trailer rear axle wheels is calculated by using the lateral position deviation of the trajectory of the axle center from that of the truck front axle. To perform closed-loop dynamic simulations and evaluate the vehicle performance measure, a driver model is introduced and it 'derives' the AHV model based on well-defined testing specifications. The proposed preview control scheme in the continuous time domain is developed by using the LQR (linear quadratic regular) technique. The closed-loop simulation results indicate that the performance of the AHV with the LPDP controller is improved by decreasing rearward amplification ratio from the baseline value of 1.28 to 0.98 and reducing transient off-tracking by 95.03%. The proposed LPDP control algorithm provides an alternative method for the design optimization of AHVs with ATS systems.展开更多
基金supported in part by the National Natural Science Foundations of China(Nos.61304223,61673209,61533008)the Aeronautical Science Foundation(No.2016ZA 52009)the Fundamental Research Funds for the Central Universities(No.NJ20160026)
文摘For carrier-based unmanned aerial vehicles(UAVs),one of the important problems is the design of an automatic carrier landing system(ACLS)that would enable the UAVs to accomplish autolanding on the aircraft carrier.However,due to the movements of the flight deck with six degree-of-freedom,the autolanding becomes sophisticated.To solve this problem,an accurate and effective ACLS is developed,which is composed of an optimal preview control based flight control system and a Kalman filter based deck motion predictor.The preview control fuses the future information of the reference glide slope to improve landing precision.The reference glide slope is normally a straight line.However,the deck motion will change the position of the ideal landing point,and tracking the ideal straight glide slope may cause landing failure.Therefore,the predictive deck motion information from the deck motion predictor is used to correct the reference glide slope,which decreases the dispersion around the desired landing point.Finally,simulations are carried out to verify the performance of the designed ACLS based on a nonlinear UAV model.
文摘The paper presents a preview controller design for ATS (active trailer steering) systems to improve high-speed stability of AHVs (articulated heavy vehicles). An AHV consists of a towing unit, namely tractor or truck, and one or more towed units which called trailers. Individual units are connected to one another at articulated joints by mechanical couplings. Due to the multi-unit configurations, AHVs exhibit unique unstable motion modes, including jack-knifing, trailer swing and rollover. These unstable motion modes are the leading cause of highway accidents. To prevent these unstable motion modes, the preview controller, namely the LPDP (lateral position deviation preview) controller, is proposed. For a truck/full-trailer combination, the LPDP controller is designed to control the steering of the front and rear axle wheels of the trailing unit. The calculation of the corrective steering angle of the trailer front axle wheels is based on the preview information of the lateral position deviation of the trajectory of the axle center from that of the truck front axle center. Similarly, the steering angle of the trailer rear axle wheels is calculated by using the lateral position deviation of the trajectory of the axle center from that of the truck front axle. To perform closed-loop dynamic simulations and evaluate the vehicle performance measure, a driver model is introduced and it 'derives' the AHV model based on well-defined testing specifications. The proposed preview control scheme in the continuous time domain is developed by using the LQR (linear quadratic regular) technique. The closed-loop simulation results indicate that the performance of the AHV with the LPDP controller is improved by decreasing rearward amplification ratio from the baseline value of 1.28 to 0.98 and reducing transient off-tracking by 95.03%. The proposed LPDP control algorithm provides an alternative method for the design optimization of AHVs with ATS systems.