期刊文献+
共找到365篇文章
< 1 2 19 >
每页显示 20 50 100
A Gamma Analysis Approach to Determine Optimal Parameters for Monte Carlo Simulation of 6MV Varian Clinac iX Photon Beam
1
作者 Roger Cai Xiang Soh Lloyd Kuan Rui Tan +4 位作者 Mark Sen Liang Goh Sitti Yani Freddy Haryanto Wen Siang Lew James Cheow Lei Lee 《Journal of Health Science》 2017年第1期36-43,共8页
Monte Carlo (MC) method is the gold standard dose calculation algorithm. Determination of the electron beam parameters for MC simulation is often estimated using trial and error methods. However, this can be tedious... Monte Carlo (MC) method is the gold standard dose calculation algorithm. Determination of the electron beam parameters for MC simulation is often estimated using trial and error methods. However, this can be tedious and time-consuming. This paper aims to validate MC simulated data using 1D gamma analysis for 6MV photon beam to obtain the optimal parameters. BEAMnrc codes were used to generate phase space files for conventional field sizes 10 × 10 cm^2, 6 × 6 cm^2, 4 × 4 cm^2 and small field sizes 2 ×2 cm^2, 1 ×1 cm^2, 0.5 ×0.5 cm^2. For conventional field sizes, simulations were benchmarked against Golden Beam Data (GBD). Simulations for small fields were benchmarked against measurements obtained using EDGE Detector and PTW Diode SRS detector in a Sun Nuclear 3D scanner. Dose profiles in water were calculated using DOSXYZnrc codes. Initial reference parameters were approximated using average percentage dose differences of different mean electron energy and electron beam radial distribution (Full Width at Half Maximum, FWHM). Subsequently, the optimal parameters were validated by 1D gamma analysis using varying gamma criteria from γ3%%/0.3mm to γ2.0%/2.0mm for depth dose and lateral dose profiles. Comparisons were performed along the central region at depth dose 1.6 cm . Optimal parameters were found to be unique for small field sizes. As field size decreases, smaller FWHM were required to match measured data. By using 95% passing rate, a generic set of optimal electron beam parameters in a MC model for all field sizes could be accurately determined. Our findings provide MC users a set of optimal parameters with sufficient accuracy for MC simulation work. 展开更多
关键词 Monte Carlo ID gamma analysis optimal parameters small fields.
在线阅读 下载PDF
Effect of calibration data series length on performance and optimal parameters of hydrological model 被引量:3
2
作者 Chuan-zhe LI Hao WANG +3 位作者 Jia LIU Deng-hua YAN Fu-liang YU Lu ZHANG 《Water Science and Engineering》 EI CAS 2010年第4期378-393,共16页
In order to assess the effects of calibration data series length on the performance and optimal parameter values of a hydrological model in ungauged or data-limited catchments (data are non-continuous and fragmental ... In order to assess the effects of calibration data series length on the performance and optimal parameter values of a hydrological model in ungauged or data-limited catchments (data are non-continuous and fragmental in some catchments), we used non-continuous calibration periods for more independent streamflow data for SIMHYD (simple hydrology) model calibration. Nash-Sutcliffe efficiency and percentage water balance error were used as performance measures. The particle swarm optimization (PSO) method was used to calibrate the rainfall-runoff models. Different lengths of data series ranging from one year to ten years, randomly sampled, were used to study the impact of calibration data series length. Fifty-five relatively unimpaired catchments located all over Australia with daily precipitation, potential evapotranspiration, and streamflow data were tested to obtain more general conclusions. The results show that longer calibration data series do not necessarily result in better model performance. In general, eight years of data are sufficient to obtain steady estimates of model performance and parameters for the SIMHYD model. It is also shown that most humid catchments require fewer calibration data to obtain a good performance and stable parameter values. The model performs better in humid and semi-humid catchments than in arid catchments. Our results may have useful and interesting implications for the efficiency of using limited observation data for hydrological model calibration in different climates. 展开更多
关键词 calibration data series length model performance optimal parameter hydrological model data-limited catchment
在线阅读 下载PDF
Study on the optimal test parameters for vibration compaction based on the control of physical-mechanical indicators
3
作者 Zhongrui Chen Yanxi Xiong +3 位作者 Ronghui Yan Zhibo Cheng Taifeng Li Hongfu Tan 《Railway Sciences》 2025年第3期388-409,共22页
Purpose-The indoor vibration compaction test(IVCT)was a key step in controlling the compaction quality for high-speed railway graded aggregate(HRGA),which currently had a research gap on the assessment indicators and ... Purpose-The indoor vibration compaction test(IVCT)was a key step in controlling the compaction quality for high-speed railway graded aggregate(HRGA),which currently had a research gap on the assessment indicators and compaction parameters.Design/methodology/approach-To address these issues,a novel multi-indicator IVCT method was proposed,including physical indicator dry density(ρd)and mechanical indicators dynamic stiffness(Krb)and bearing capacity coefficient(K20).Then,a series of IVCTs on HRGA under different compaction parameters were conducted with an improved vibration compactor,which could monitor the physical-mechanical indicators in real-time.Finally,the optimal vibration compaction parameters,including the moisture content(ω),the diameter-to-maximum particle size ratio(Rd),the thickness-to-maximum particle size ratio(Rh),the vibration frequency(f),the vibration mass(Mc)and the eccentric distance(re),were determined based on the evolution characteristics for the physical-mechanical indicators during compaction.Findings-All results indicated that theρd gradually increased and then stabilized,and the Krb initially increased and then decreased.Moreover,the inflection time of the Krb was present as the optimal compaction time(Tlp)during compaction.Additionally,optimal compaction was achieved whenωwas the water-holding content after mud pumping,Rd was 3.4,Rh was 3.5,f was the resonance frequency,and the ratio between the excitation force and the Mc was 1.8.Originality/value-The findings of this paper were significant for the quality control of HRGA compaction. 展开更多
关键词 High-speed railway subgrade Graded aggregates Vibratory compaction test optimal vibration compaction parameters Physical-mechanical indicator
在线阅读 下载PDF
Optimization of fracturing parameters in multi-layer and multi-period cube development infill well pad:A case study on a three-layer cube development well pad of Sichuan Basin,SW China
4
作者 YANG Haixin ZHU Haiyan +5 位作者 LIU Yaowen TANG Xuanhe WANG Dajiang XIAO Jialin ZHU Danghui ZHAO Chongsheng 《Petroleum Exploration and Development》 2025年第3期817-829,共13页
The method for optimizing the hydraulic fracturing parameters of the cube development infill well pad was proposed,aiming at the well pattern characteristic of“multi-layer and multi-period”of the infill wells in Sic... The method for optimizing the hydraulic fracturing parameters of the cube development infill well pad was proposed,aiming at the well pattern characteristic of“multi-layer and multi-period”of the infill wells in Sichuan Basin.The fracture propagation and inter-well interference model were established based on the evolution of 4D in-situ stress,and the evolution characteristics of stress and the mechanism of interference between wells were analyzed.The research shows that the increase in horizontal stress difference and the existence of natural fractures/faults are the main reasons for inter-well interference.Inter-well interference is likely to occur near the fracture zones and between the infill wells and parent wells that have been in production for a long time.When communication channels are formed between the infill wells and parent wells,it can increase the productivity of parent wells in the short term.However,it will have a delayed negative impact on the long-term sustained production of both infill wells and parent wells.The change trend of in-situ stress caused by parent well production is basically consistent with the decline trend of pore pressure.The lateral disturbance range of in-situ stress is initially the same as the fracture length and reaches 1.5 to 1.6 times that length after 2.5 years.The key to avoiding inter-well interference is to optimize the fracturing parameters.By adopting the M-shaped well pattern,the optimal well spacing for the infill wells is 300 m,the cluster spacing is 10 m,and the liquid volume per stage is 1800 m^(3). 展开更多
关键词 shale gas cube development infill wells 4D-in-situ stress inter-well interference fracturing parameters optimization
在线阅读 下载PDF
Optimization of Operating Parameters for Underground Gas Storage Based on Genetic Algorithm
5
作者 Yuming Luo Wei Zhang +7 位作者 Anqi Zhao Ling Gou Li Chen Yaling Yang Xiaoping Wang Shichang Liu Huiqing Qi Shilai Hu 《Energy Engineering》 2025年第8期3201-3221,共21页
This work proposes an optimization method for gas storage operation parameters under multi-factor coupled constraints to improve the peak-shaving capacity of gas storage reservoirs while ensuring operational safety.Pr... This work proposes an optimization method for gas storage operation parameters under multi-factor coupled constraints to improve the peak-shaving capacity of gas storage reservoirs while ensuring operational safety.Previous research primarily focused on integrating reservoir,wellbore,and surface facility constraints,often resulting in broad constraint ranges and slow model convergence.To solve this problem,the present study introduces additional constraints on maximum withdrawal rates by combining binomial deliverability equations with material balance equations for closed gas reservoirs,while considering extreme peak-shaving demands.This approach effectively narrows the constraint range.Subsequently,a collaborative optimization model with maximum gas production as the objective function is established,and the model employs a joint solution strategy combining genetic algorithms and numerical simulation techniques.Finally,this methodology was applied to optimize operational parameters for Gas Storage T.The results demonstrate:(1)The convergence of the model was achieved after 6 iterations,which significantly improved the convergence speed of the model;(2)The maximum working gas volume reached 11.605×10^(8) m^(3),which increased by 13.78%compared with the traditional optimization method;(3)This method greatly improves the operation safety and the ultimate peak load balancing capability.The research provides important technical support for the intelligent decision of injection and production parameters of gas storage and improving peak load balancing ability. 展开更多
关键词 Underground gas storage operational parameter optimization extreme peak-shaving constraints genetic algorithm MODEL
在线阅读 下载PDF
Optimization of Extrusion-based Silicone Additive Manufacturing Process Parameters Based on Improved Kernel Extreme Learning Machine
6
作者 Zi-Ning Li Xiao-Qing Tian +3 位作者 Dingyifei Ma Shahid Hussain Lian Xia Jiang Han 《Chinese Journal of Polymer Science》 2025年第5期848-862,共15页
Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors an... Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors and performance defects,leading to a decline in product quality and affecting its service life.This study proposes a process parameter optimization method that considers the mechanical properties of printed specimens and production costs.To improve the quality of silicone printing samples and reduce production costs,three machine learning models,kernel extreme learning machine(KELM),support vector regression(SVR),and random forest(RF),were developed to predict these three factors.Training data were obtained through a complete factorial experiment.A new dataset is obtained using the Euclidean distance method,which assigns the elimination factor.It is trained with Bayesian optimization algorithms for parameter optimization,the new dataset is input into the improved double Gaussian extreme learning machine,and finally obtains the improved KELM model.The results showed improved prediction accuracy over SVR and RF.Furthermore,a multi-objective optimization framework was proposed by combining genetic algorithm technology with the improved KELM model.The effectiveness and reasonableness of the model algorithm were verified by comparing the optimized results with the experimental results. 展开更多
关键词 Silicone material extrusion Process parameter optimization Double Gaussian kernel extreme learning machine Euclidean distance assigned to the elimination factor Multi-objective optimization framework
原文传递
Optimal Microwave Radiation Field Parameters for Mercury Ion Microwave Frequency Standards 被引量:2
7
作者 Zhi-Hui Yang Hao Liu +5 位作者 Yue- Hong He Man Wang Yong-Quan Wan Yi-He Chen Lei She Jiao-Mei Li 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第6期21-24,共4页
We propose a method to determine the optimal power of the microwave resonance transition that simultaneously improves the signal-to-noise ratio and reduces line width based on saturation broadening theory and experime... We propose a method to determine the optimal power of the microwave resonance transition that simultaneously improves the signal-to-noise ratio and reduces line width based on saturation broadening theory and experiment. Saturation broadening spectra of the ground state hyperfine transition of trapped 199Hg+ ions are measured and analyzed. The value of the optimal microwave power is obtained by using the proposed method and is verified. Rabi oscillations decay spectra of trapped 199Hg+ ions are observed and the optimal microwave irradiation time for the maximum transition signal intensity is determined. This work will help to improve the short-term frequency stability of the mercury ion microwave frequency standard. 展开更多
关键词 of on IT optimal Microwave Radiation Field parameters for Mercury Ion Microwave Frequency Standards DBM IS for
原文传递
Optimal design of structural parameters for shield cutterhead based on fuzzy mathematics and multi-objective genetic algorithm 被引量:12
8
作者 夏毅敏 唐露 +2 位作者 暨智勇 程永亮 卞章括 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期937-945,共9页
In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters ... In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters for shield cutterhead is formulated,based on the complex engineering technical requirements. In the model, as the objective function of the model is a composite function of the strength and stiffness, the response surface method is applied to formulate the approximate function of objective function in order to reduce the solution scale of optimal problem. A multi-objective genetic algorithm is used to solve the cutterhead structure design problem and the change rule of the stress-strain with various structural parameters as well as their optimal values were researched under specific geological conditions. The results show that compared with original cutterhead structure scheme, the obtained optimal scheme of the cutterhead structure can greatly improve the strength and stiffness of the cutterhead, which can be seen from the reduction of its maximum equivalent stress by 21.2%, that of its maximum deformation by 0.75%, and that of its mass by 1.04%. 展开更多
关键词 shield tunneling machine cutterhead structural parameters fuzzy mathematics finite element optimization
在线阅读 下载PDF
Optimal Structural Parameters for a Plastic Centrifugal Pump Inducer
9
作者 Wenbin Luo Lingfeng Tang +1 位作者 Yuting Yan Yifang Shi 《Fluid Dynamics & Materials Processing》 EI 2023年第4期869-899,共31页
The aim of the study is to determine the optimal structural parameters for a plastic centrifugal pump inducer within the framework of an orthogonal experimental method.For this purpose,a numerical study of the related... The aim of the study is to determine the optimal structural parameters for a plastic centrifugal pump inducer within the framework of an orthogonal experimental method.For this purpose,a numerical study of the related flow field is performed using CFX.The shaft power and the head of the pump are taken as the evaluation indicators.Accordingly,the examined variables are the thickness(S),the blade cascade degree(t),the blade rim angle(β1),the blade hub angle(β2)and the hub length(L).The impact of each structural parameter on each evaluation index is examined and special attention is paid to the following combinations:S2 mm,t 2,β1235°,β2360°and L 140 mm(corresponding to a maximum head of 98.15 m);S 5 mm,t 1.6,β1252°,β2350°and L 140 mm(corresponding to a minimum shaft power of 63.06 KW).Moreover,using least squares and fish swarm algorithms,the pump shaft power and head are further optimized,yielding the following optimal combination:S 5 mm,t 1.9,β1252°,β2360°and L 145 mm(corresponding to the maximum head of 91.90 m,and a minimum shaft power of 64.83 KW). 展开更多
关键词 Plastic centrifugal pump INDUCER cascade degree shaft power parameter optimization
在线阅读 下载PDF
Process Parameters Optimization of Laser Cladding for HT200 with 316L Coating Based on Response Surface Method
10
作者 KONG Huaye ZHU Xijing +2 位作者 LI Zejun ZHANG Jinzhe LI Zuoxiu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1569-1579,共11页
In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters o... In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters on the morphology and structure of the cladding layer,we prepared the 316L coating on HT 200 by using Design-Expert software central composite design(CCD)based on response surface analysis.We built a regression prediction model and analyzed the ANOVA with the inspection results.With a target cladding layer width of 3.5 mm and height of 1.3 mm,the process parameters were optimized to obtain the best combination of process parameters.The microstructure,phases,and hardness variations of the cladding layer from experiments with optimal parameters were analyzed by the metallographic microscope,confocal microscope,and microhardness instrument.The experimental results indicate that laser power has a significant impact on the cladding layer width,followed by powder feed rate;scan speed has a significant impact on the cladding layer height,followed by powder feed rate.The HT200 substrate and 316L can metallurgically bond well,and the cladding layer structure consists of dendritic crystals,columnar crystals,and equiaxed crystals in sequence.The optimal process parameter combination satisfying the morphology requirements is laser power(A)of 1993 W,scan speed(B)of 8.949 mm/s,powder feed rate(C)of 1.408 r/min,with a maximum hardness of 1564.3 HV0.5,significantly higher than the hardness of the HT200 substrate. 展开更多
关键词 HT200 laser cladding 316L stainless steel response surface methodology process parameter optimization
原文传递
Heuristic-Based Optimal Load Frequency Control with Offsite Backup Controllers in Interconnected Microgrids
11
作者 Aijia Ding Tingzhang Liu 《Energy Engineering》 EI 2024年第12期3735-3759,共25页
The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order ... The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order proportional integral derivative(FOPID)controllers to enhance frequency and tie-line power stability in microgrids amid increasing renewable energy integration.To improve load frequency control,the proposed controllers are applied to a two-area interconnectedmicrogrid system incorporating diverse energy sources,such as wind turbines,photovoltaic cells,diesel generators,and various storage technologies.A novelmeta-heuristic algorithm is adopted to select the optimal parameters of the proposed controllers.The efficacy of the advanced FOPID controllers is demonstrated through comparative analyses against traditional proportional integral derivative(PID)and FOPID controllers,showcasing superior performance inmanaging systemfluctuations.The optimization algorithm is also evaluated against other artificial intelligent methods for parameter optimization,affirming the proposed solution’s efficiency.The robustness of the intelligent controllers against system uncertainties is further validated under extensive power disturbances,proving their capability to maintain grid stability.The dual-controller configuration ensures redundancy,allowing them to operate as mutual backups,enhancing system reliability.This research underlines the importance of sophisticated control strategies for future-proofing microgrid operations against the backdrop of evolving energy landscapes. 展开更多
关键词 Fractional order PID interconnected microgrids load frequency control meta-heuristic algorithm parameter optimization
在线阅读 下载PDF
Optimization Study of Active-Passive Heating System Parameters in Village Houses in the Southern Xinjiang Province
12
作者 Xiaodan Wu Jie Li +1 位作者 Yongbin Cai Sihui Huang 《Energy Engineering》 EI 2024年第7期1963-1990,共28页
Aiming at the problems of large energy consumption and serious pollution of winter heating existing in the rural buildings in Southern Xinjiang,a combined active-passive heating system was proposed,and the simulation ... Aiming at the problems of large energy consumption and serious pollution of winter heating existing in the rural buildings in Southern Xinjiang,a combined active-passive heating system was proposed,and the simulation software was used to optimize the parameters of the system,according to the parameters obtained from the optimization,a test platform was built and winter heating test was carried out.The simulation results showed that the thickness of the air layer of 75 mm,the total area of the vent holes of 0.24 m^(2),and the thickness of the insulation layer of 120 mm were the optimal construction for the passive part;solar collector area of 28 m^(2),hot water storage tank volume of 1.4 m^(3),mass flow rate of 800 kg/h on the collector side,mass flow rate of 400 kg/h on the heat exchanger side,and output power of auxiliary heat source of 5∼9 kWwere the optimal constructions for active heating system.Test results showed that during the heating period,the system could provide sufficient heat to the room under different heating modes,and the indoor temperature reached over 18°C,which met the heating demand.The economic and environmental benefits of the system were analyzed,and the economic benefits of the systemwere better than coal-fired heating,and the CO_(2) emissionswere reduced by 3,292.25 kg compared with coalfiredheating.The results of the study showed that the combinedactive-passiveheating systemcouldeffectively solve the heating problems existing in rural buildings in Southern Xinjiang,and it also laid the theoretical foundation for the popularization of the combined heating systems. 展开更多
关键词 Trombe wall biomass boilers active-passive combined heating systems parameter optimization villages and towns
在线阅读 下载PDF
Research on Parameters Optimization of Rectangular Pole Teeth for Magnetic Fluid Seals
13
作者 Lu Wang Zhili Zhang +3 位作者 Decai Li Zhiqi Liang Nannan Di Liu Li 《Chinese Journal of Mechanical Engineering》 CSCD 2024年第6期365-381,共17页
To optimize the magnetic fluid seal design,the single-factor method is usually used to study the e ect of the rectangular pole teeth structure parameters on the sealing capacity of the magnetic fluid seal by current r... To optimize the magnetic fluid seal design,the single-factor method is usually used to study the e ect of the rectangular pole teeth structure parameters on the sealing capacity of the magnetic fluid seal by current research,and the design formula is obtained.However,the supporting data is too few to make the results universalizable.In this paper,to obtain a wider range of applicable design formulas,a large number of modeling and simulation experiments are conducted using the co-simulation analysis experimental method of MATLAB and COMSOL.The influence of structure parameters of rectangular pole teeth and the coupling e ects of the structure parameters on the sealing capacity of sealing devices has been studied under di erent lengths of pole piece(L_(p))and seal gap(L_(g)).The results explain the influences of tooth height(L_(h)),tooth width(L_(t)),groove width(Ls),and their coupling e ects on the theoretical sealing capacity of magnetic fluid seals,and more widely applicable design formulas for pole teeth structure parameters are given.The design formulas can help to obtain good design parameters directly or reduce the optimization range when the magnetic fluid seals need to be optimized to meet the miniaturization and lightweightrequirements of magnetic fluid sealing devices or improve the sealing capacity under the same seal size. 展开更多
关键词 Magnetic fluid SEAL Sealing capacity Parameter optimization
在线阅读 下载PDF
High temperature deformation behavior and optimization of hot compression process parameters in TC11 titanium alloy with coarse lamellar original microstructure 被引量:5
14
作者 鲁世强 李鑫 +2 位作者 王克鲁 董显娟 傅铭旺 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期353-360,共8页
The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the tem... The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results. 展开更多
关键词 titanium alloy coarse lamellar microstructure high temperature deformation behavior processing map hot compression process parameter optimization
在线阅读 下载PDF
Investigation on the Optimizing Range of CombustionChamber Configuration Parameters of DSCS 被引量:1
15
作者 李向荣 张国栋 魏熔 《Journal of Beijing Institute of Technology》 EI CAS 1998年第2期147-153,共7页
Aim To obtain an optimizing range of the main configuration parameters of double swirls combustion system (DSCS) Methods To analyze the influence of DS combustion cham-ber configuration parameters on fuel spray and mi... Aim To obtain an optimizing range of the main configuration parameters of double swirls combustion system (DSCS) Methods To analyze the influence of DS combustion cham-ber configuration parameters on fuel spray and mixing by means of the fuel jet developmentperiphery charts obtained by the high speed photography with a modeling test device deve-loped by authors,and to examine it by the tests on a single cylinder diesel engine.Resultsand Conclusion The mixing process can be divided into four phases.The optimizing range of the ration of the inner chamber diameter to the cylinder bore,d2/D,is 0.4-0.7; and the outerchamber diameter,d1 the height of the circular ridge to the piston top face,h1,the radius of outer/inner chamber circle,R1,R2 ,the max depth of outer/inner chamber bowl,H1,H2,etc. are also important 展开更多
关键词 diesel engine double swirls combustion system configuration parameter optimizing range
在线阅读 下载PDF
Optimal Parameter and Uncertainty Estimation of a Land Surface Model: Sensitivity to Parameter Ranges and Model Complexities 被引量:2
16
作者 YoulongXIA Zong-LiangYANG +1 位作者 PaulL.STOFFA MrinalK.SEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第1期142-157,共16页
Most previous land-surface model calibration studies have defined globalranges for their parameters to search for optimal parameter sets. Little work has been conducted tostudy the impacts of realistic versus global r... Most previous land-surface model calibration studies have defined globalranges for their parameters to search for optimal parameter sets. Little work has been conducted tostudy the impacts of realistic versus global ranges as well as model complexities on the calibrationand uncertainty estimates. The primary purpose of this paper is to investigate these impacts byemploying Bayesian Stochastic Inversion (BSI) to the Chameleon Surface Model (CHASM). The CHASM wasdesigned to explore the general aspects of land-surface energy balance representation within acommon modeling framework that can be run from a simple energy balance formulation to a complexmosaic type structure. The BSI is an uncertainty estimation technique based on Bayes theorem,importance sampling, and very fast simulated annealing. The model forcing data and surface flux datawere collected at seven sites representing a wide range of climate and vegetation conditions. Foreach site, four experiments were performed with simple and complex CHASM formulations as well asrealistic and global parameter ranges. Twenty eight experiments were conducted and 50 000 parametersets were used for each run. The results show that the use of global and realistic ranges givessimilar simulations for both modes for most sites, but the global ranges tend to produce someunreasonable optimal parameter values. Comparison of simple and complex modes shows that the simplemode has more parameters with unreasonable optimal values. Use of parameter ranges and modelcomplexities have significant impacts on frequency distribution of parameters, marginal posteriorprobability density functions, and estimates of uncertainty of simulated sensible and latent heatfluxes. Comparison between model complexity and parameter ranges shows that the former has moresignificant impacts on parameter and uncertainty estimations. 展开更多
关键词 optimal parameters uncertainty estimation CHASM model bayesian stochasticinversion parameter ranges model complexities
在线阅读 下载PDF
Application of EBSD technique to ultrafine grained and nanostructured materials processed by severe plastic deformation:Sample preparation, parameters optimization and analysis 被引量:2
17
作者 陈勇军 Jarle HJELEN Hans J.ROVEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1801-1809,共9页
With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBS... With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBSD speed (up to 1100 patterns per second) contributes that the number of published articles related to EBSD has been increasing sharply year by year. This paper reviews the sample preparation, parameters optimization and analysis of EBSD technique, emphasizing on the investigation of ultrafine grained and nanostructured materials processed by severe plastic deformation (SPD). Detailed and practical parameters of the electropolishing, silica polishing and ion milling have been summarized. It is shown that ion milling is a real universal and promising polishing method for EBSD preparation of almost all materials. There exists a maximum value of indexed points as a function of step size. The optimum step size depends on the magnification and the board resolution/electronic step size. Grains/subgrains and texture, and grain boundary structure are readily obtained by EBSD. Strain and stored energy may be analyzed by EBSD. 展开更多
关键词 electron backscatter diffraction (EBSD) sample preparation parameters optimization step size severe plastic deformation (SPD)
在线阅读 下载PDF
Machine tool selection based on fuzzy evaluation and optimization of cutting parameters
18
作者 张保平 关世玺 +2 位作者 张博 王斌 田甜 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第4期384-389,共6页
The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size,... The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size, machining range, machining precision and surface roughness. By means of fuzzy comprehensive evaluation method, the membership degree of machine tool selection and the largest comprehensive evaluation index are determined. Then the reasonably automatic selection of machine tool is realized in the generative computer aided process planning (CAPP) system. Finally, the finite element model based on ABAQUS is established and the cutting process of machine tool is simulated. According to the theoretical and empirical cutting parameters and the curve of surface residual stress, the optimal cutting parameters can be determined. 展开更多
关键词 fuzzy evaluation machine selection computer aided process planning(CAPP) parameter optimization
在线阅读 下载PDF
Design and experiment of an automated honey-harvesting robot
19
作者 ZHANG Di WANG Chunying +2 位作者 YANG Mingguo SUN Zixuan LIU Ping 《智能化农业装备学报(中英文)》 2025年第2期24-34,共11页
The conventional honey production is dominated by fragmented,small-scale individual farming models.The traditional approach of honey-harvesting involving manual beehive frames extraction,beeswax layer excision and cen... The conventional honey production is dominated by fragmented,small-scale individual farming models.The traditional approach of honey-harvesting involving manual beehive frames extraction,beeswax layer excision and centrifugal honey separation,expose beekeepers to potential bee stings and frequently compromise honeycomb integrity.To address these limitations,we designed an automated honey-harvesting robot capable of autonomous frame extraction and beeswax removal.The robot mainly consists of a mobile mechanism equipped with image recognition for beehive localization,a magnetic adsorption-based beehive frame handling device(60.8 N maximum suction)coupled with a cross-slide mechanism for precise frame manipulation,and a thermal beeswax layer-melting apparatus,with optimal melting parameters(15 m/s airflow at 90℃ for 30 seconds)determined through rigorous thermal flow simulations utilizing FLUENT/Mechanical software.Field experiments demonstrated beehive frames handling success rate exceeding 85%,beeswax layer removal efficacy over 80% and damage of honeycombs below 30%.The experiment results validate the robot's operational reliability and its capacity to automate critical harvesting procedures.This study significantly reduces the labor intensity for beekeepers,effectively eliminates the risk of direct human-bee contact and improves the removal of beeswax layer,thereby catalyzing the modernization of the beekeeping industry. 展开更多
关键词 honey-harvesting AUTOMATED beeswax layer-melting fluid-structure interaction parameter optimization
在线阅读 下载PDF
A method for optimizing and controlling rocking drillstringe-assisted slide drilling
20
作者 Yabin Zhang Jian Lu +2 位作者 Binfeng Guo Xueying Wang Feifei Zhang 《Natural Gas Industry B》 2025年第1期77-87,共11页
Rocking the drillstring at the surface during slide drilling is a common method for reducing drag when drilling horizontal wells.However,the current methods for determining the parameters for rocking are insufficient,... Rocking the drillstring at the surface during slide drilling is a common method for reducing drag when drilling horizontal wells.However,the current methods for determining the parameters for rocking are insufficient,limiting the widespread use of this technology.In this study,the influence of rocking parameters on the friction-reduction effect was investigated using an axialetorsional dynamic model of the drillstring and an experimental apparatus for rocking-assisted slide drilling in a simulated horizontal well.The research shows that increasing the rocking speed is beneficial improving the friction-reduction effect,but there is a diminishing marginal effect.A method was proposed to optimize the rocking speed using the equivalent axial drag coefficienterocking speed curve.Under the influence of rocking,the downhole weight on bit(WOB)exhibits a sinusoidal-like variation,with the predominant frequency being twice the rocking frequency.The fluctuation amplitude of the WOB in the horizontal section has a linear relationship with the rocking-affected depth.Based on this,a method was proposed to estimate the rockingaffected depth using the fluctuation amplitude of the standpipe pressure difference.Application of this method in the drilling field has improved the rate of penetration and toolface stability,demonstrating the reliability and effectiveness of the methods proposed in this paper. 展开更多
关键词 Rocking drillstring Slide drilling Drag reduction Drillstring mechanics Rocking parameter optimization
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部