In order to promote the tolerance and controllability of the multi-degree-of-freedom(M-DOF) ultrasonic motor, a novel two-degree-of-freedom(2-DOF) spherical ultrasonic motor using three traveling-wave type annular sta...In order to promote the tolerance and controllability of the multi-degree-of-freedom(M-DOF) ultrasonic motor, a novel two-degree-of-freedom(2-DOF) spherical ultrasonic motor using three traveling-wave type annular stators was put forward. Firstly,the structure and working principle of this motor were introduced, especially a spiral spring as the preload applied component was designed for adaptive adjustment. Then, the friction drive model of 2-DOF spherical motor was built up from spatial geometric relation between three annular stators and the spherical rotor which was used to analyze the mechanical characteristics of the motor.The optimal control strategy for minimum norm solution of three stators' angular velocity was proposed, using Moore-Penrose generalized inverse matrix. Finally, a 2-DOF prototype was fabricated and tested, which ran stably and controllably. The maximum no-load velocity and stall torque are 92 r/min and 90 m N·m, respectively. The 2-DOF spherical ultrasonic motor has compact structure, easy assembly, good performance and stable operation.展开更多
Surveillance to detect cancer recurrence is an important part of care for cancer survivors.In this paper we discuss the design of optimal strategies for early detection of disease recurrence based on each patient'...Surveillance to detect cancer recurrence is an important part of care for cancer survivors.In this paper we discuss the design of optimal strategies for early detection of disease recurrence based on each patient's distinct biomarker trajectory and periodically updated risk estimated in the setting of a prospective cohort study.We adopt a latent class joint model which considers a longitudinal biomarker process and an event process jointly,to address heterogeneity of patients and disease,to discover distinct biomarker trajectory patterns,to classify patients into different risk groups,and to predict the risk of disease recurrence.The model is used to develop a monitoring strategy that dynamically modifies the monitoring intervals according to patients' current risk derived from periodically updated biomarker measurements and other indicators of disease spread.The optimal biomarker assessment time is derived using a utility function.We develop an algorithm to apply the proposed strategy to monitoring of new patients after initial treatment.We illustrate the models and the derivation of the optimal strategy using simulated data from monitoring prostate cancer recurrence over a 5-year period.展开更多
基金Project(51107111)supported by the National Natural Science Foundation of China
文摘In order to promote the tolerance and controllability of the multi-degree-of-freedom(M-DOF) ultrasonic motor, a novel two-degree-of-freedom(2-DOF) spherical ultrasonic motor using three traveling-wave type annular stators was put forward. Firstly,the structure and working principle of this motor were introduced, especially a spiral spring as the preload applied component was designed for adaptive adjustment. Then, the friction drive model of 2-DOF spherical motor was built up from spatial geometric relation between three annular stators and the spherical rotor which was used to analyze the mechanical characteristics of the motor.The optimal control strategy for minimum norm solution of three stators' angular velocity was proposed, using Moore-Penrose generalized inverse matrix. Finally, a 2-DOF prototype was fabricated and tested, which ran stably and controllably. The maximum no-load velocity and stall torque are 92 r/min and 90 m N·m, respectively. The 2-DOF spherical ultrasonic motor has compact structure, easy assembly, good performance and stable operation.
基金supported by National Cancer Institute(Grant No.U01CA079778)
文摘Surveillance to detect cancer recurrence is an important part of care for cancer survivors.In this paper we discuss the design of optimal strategies for early detection of disease recurrence based on each patient's distinct biomarker trajectory and periodically updated risk estimated in the setting of a prospective cohort study.We adopt a latent class joint model which considers a longitudinal biomarker process and an event process jointly,to address heterogeneity of patients and disease,to discover distinct biomarker trajectory patterns,to classify patients into different risk groups,and to predict the risk of disease recurrence.The model is used to develop a monitoring strategy that dynamically modifies the monitoring intervals according to patients' current risk derived from periodically updated biomarker measurements and other indicators of disease spread.The optimal biomarker assessment time is derived using a utility function.We develop an algorithm to apply the proposed strategy to monitoring of new patients after initial treatment.We illustrate the models and the derivation of the optimal strategy using simulated data from monitoring prostate cancer recurrence over a 5-year period.