期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Idealized Experiments for Optimizing Model Parameters Using a 4D-Variational Method in an Intermediate Coupled Model of ENSO 被引量:5
1
作者 Chuan GAO Rong-Hua ZHANG +1 位作者 Xinrong WU Jichang SUN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第4期410-422,共13页
Large biases exist in real-time ENSO prediction, which can be attributed to uncertainties in initial conditions and model parameters. Previously, a 4D variational (4D-Vat) data assimilation system was developed for ... Large biases exist in real-time ENSO prediction, which can be attributed to uncertainties in initial conditions and model parameters. Previously, a 4D variational (4D-Vat) data assimilation system was developed for an intermediate coupled model (ICM) and used to improve ENSO modeling through optimized initial conditions. In this paper, this system is further applied to optimize model parameters. In the ICM used, one important process for ENSO is related to the anomalous temperature of subsurface water entrained into the mixed layer (Te), which is empirically and explicitly related to sea level (SL) variation. The strength of the thermocline effect on SST (referred to simply as "the thermocline effect") is represented by an introduced parameter, (l'Te. A numerical procedure is developed to optimize this model parameter through the 4D-Var assimilation of SST data in a twin experiment context with an idealized setting. Experiments having their initial condition optimized only, and having their initial condition plus this additional model parameter optimized, are compared. It is shown that ENSO evolution can be more effectively recovered by including the additional optimization of this parameter in ENSO modeling. The demonstrated feasibility of optimizing model parameters and initial conditions together through the 4D-Var method provides a modeling platform for ENSO studies. Further applications of the 4D-Vat data assimilation system implemented in the ICM are also discussed. 展开更多
关键词 intermediate coupled model ENSO modeling 4D-Var data assimilation system optimization of model param- eter and initial condition
在线阅读 下载PDF
Forecasting of dissolved oxygen in the Guanting reservoir using an optimized NGBM(1,1) model 被引量:3
2
作者 Yan An Zhihong Zou Yanfei Zhao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第3期158-164,共7页
An optimized nonlinear grey Bernoulli model was proposed by using a particle swarm optimization algorithm to solve the parameter optimization problem. In addition, each item in the first-order accumulated generating s... An optimized nonlinear grey Bernoulli model was proposed by using a particle swarm optimization algorithm to solve the parameter optimization problem. In addition, each item in the first-order accumulated generating sequence was set in turn as an initial condition to determine which alternative would yield the highest forecasting accuracy. To test the forecasting performance, the optimized models with different initial conditions were then used to simulate dissolved oxygen concentrations in the Guantlng reservoir inlet and outlet (China). The empirical results show that the optimized model can remarkably improve forecasting accuracy, and the particle swarm optimization technique is a good tool to solve parameter optimization problems. What's more, the optimized model with an initial condition that performs well in in-sample simulation may not do as well as in out-of-sample forecasting. 展开更多
关键词 Water quality forecasting Dissolved oxygen Nonlinear grey Bernoulli model Particle swarm optimization Initial condition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部