Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv...Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.展开更多
In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied sy...In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied system makes it very difficult to design the optimal controller using traditional methods.To achieve optimal control,RL algorithm based on critic–actor architecture is considered for the nonlinear system.Due to the significant security risks of network transmission,the system is vulnerable to deception attacks,which can make all the system state unavailable.By using the attacked states to design coordinate transformation,the harm brought by unknown deception attacks has been overcome.The presented control strategy can ensure that all signals in the closed-loop system are semi-globally ultimately bounded.Finally,the simulation experiment is shown to prove the effectiveness of the strategy.展开更多
The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear sy...The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.展开更多
In this paper,we present an optimal neuro-control scheme for continuous-time(CT)nonlinear systems with asymmetric input constraints.Initially,we introduce a discounted cost function for the CT nonlinear systems in ord...In this paper,we present an optimal neuro-control scheme for continuous-time(CT)nonlinear systems with asymmetric input constraints.Initially,we introduce a discounted cost function for the CT nonlinear systems in order to handle the asymmetric input constraints.Then,we develop a Hamilton-Jacobi-Bellman equation(HJBE),which arises in the discounted cost optimal control problem.To obtain the optimal neurocontroller,we utilize a critic neural network(CNN)to solve the HJBE under the framework of reinforcement learning.The CNN's weight vector is tuned via the gradient descent approach.Based on the Lyapunov method,we prove that uniform ultimate boundedness of the CNN's weight vector and the closed-loop system is guaranteed.Finally,we verify the effectiveness of the present optimal neuro-control strategy through performing simulations of two examples.展开更多
This paper studies the optimal control with zero steady-state error problem for nonlinear large-scale systems affected by external persistent disturbances.The nonlinear large-scale system is transformed into N nonline...This paper studies the optimal control with zero steady-state error problem for nonlinear large-scale systems affected by external persistent disturbances.The nonlinear large-scale system is transformed into N nonlinear subsystems with interconnect terms.Based on the internal model principle,a disturbance compensator is constructed such that the ith subsystem with external persistent disturbances is transformed into an augmented subsystem without disturbances.According to the sensitivity approach,the optimal tracking control law for the ith nonlinear subsystem can be obtained.The optimal tracking control law for the nonlinear large-scale systems can be obtained.A numerical simulation shows that the method is effective.展开更多
This article presents an efficient parallel processing approach for solving the opti- mal control problem of nonlinear composite systems. In this approach, the original high-order coupled nonlinear two-point boundary ...This article presents an efficient parallel processing approach for solving the opti- mal control problem of nonlinear composite systems. In this approach, the original high-order coupled nonlinear two-point boundary value problem (TPBVP) derived from the Pontrya- gin's maximum principle is first transformed into a sequence of lower-order deeoupled linear time-invariant TPBVPs. Then, an optimal control law which consists of both feedback and forward terms is achieved by using the modal series method for the derived sequence. The feedback term specified by local states of each subsystem is determined by solving a ma- trix Riccati differential equation. The forward term for each subsystem derived from its local information is an infinite sum of adjoint vectors. The convergence analysis and parallel processing capability of the proposed approach are also provided. To achieve an accurate feedforward-feedbaek suboptimal control, we apply a fast iterative algorithm with low com- putational effort. Finally, some comparative results are included to illustrate the effectiveness of the proposed approach.展开更多
In this paper we analyze the optimal control problem for a class of afflne nonlinear systems under the assumption that the associated Lie algebra is nilpotent. The Lie brackets generated by the vector fields which def...In this paper we analyze the optimal control problem for a class of afflne nonlinear systems under the assumption that the associated Lie algebra is nilpotent. The Lie brackets generated by the vector fields which define the nonlinear system represent a remarkable mathematical instrument for the control of affine systems. We determine the optimal control which corresponds to the nilpotent operator of the first order. In particular, we obtain the control that minimizes the energy of the given nonlinear system. Applications of this control to bilinear systems with first order nilpotent operator are considered.展开更多
In this study,an adaptive neuro-observer-based optimal control(ANOPC)policy is introduced for unknown nonaffine nonlinear systems with control input constraints.Hamilton–Jacobi–Bellman(HJB)framework is employed to m...In this study,an adaptive neuro-observer-based optimal control(ANOPC)policy is introduced for unknown nonaffine nonlinear systems with control input constraints.Hamilton–Jacobi–Bellman(HJB)framework is employed to minimize a non-quadratic cost function corresponding to the constrained control input.ANOPC consists of both analytical and algebraic parts.In the analytical part,first,an observer-based neural network(NN)approximates uncertain system dynamics,and then another NN structure solves the HJB equation.In the algebraic part,the optimal control input that does not exceed the saturation bounds is generated.The weights of two NNs associated with observer and controller are simultaneously updated in an online manner.The ultimately uniformly boundedness(UUB)of all signals of the whole closed-loop system is ensured through Lyapunov’s direct method.Finally,two numerical examples are provided to confirm the effectiveness of the proposed control strategy.展开更多
A new searching algorithm named the annealing-genetic algorithm(AGA) was proposed by skillfully merging GA with SAA. It draws on merits of both GA and SAA ,and offsets their shortcomings.The difference from GA is that...A new searching algorithm named the annealing-genetic algorithm(AGA) was proposed by skillfully merging GA with SAA. It draws on merits of both GA and SAA ,and offsets their shortcomings.The difference from GA is that AGA takes objective function as adaptability function directly,so it cuts down some unnecessary time expense because of float-point calculation of function conversion.The difference from SAA is that AGA need not execute a very long Markov chain iteration at each point of temperature, so it speeds up the convergence of solution and makes no assumption on the search space,so it is simple and easy to be implemented.It can be applied to a wide class of problems.The optimizing principle and the implementing steps of AGA were expounded. The example of the parameter optimization of a typical complex electromechanical system named temper mill shows that AGA is effective and superior to the conventional GA and SAA.The control system of temper mill optimized by AGA has the optimal performance in the adjustable ranges of its parameters.展开更多
This paper proposes a system representation for unifying control design and numerical calculation in nonlinear optimal control problems with inequality constraints in terms of the symplectic structure. The symplectic ...This paper proposes a system representation for unifying control design and numerical calculation in nonlinear optimal control problems with inequality constraints in terms of the symplectic structure. The symplectic structure is derived from Hamiltonian systems that are equivalent to Hamilton-Jacobi equations. In the representation, the constraints can be described as an input-state transformation of the system. Therefore, it can be seamlessly applied to the stable manifold method that is a precise numerical solver of the Hamilton-Jacobi equations. In conventional methods, e.g., the penalty method or the barrier method, it is difficult to systematically assign the weights of penalty functions that are used for realizing the constraints. In the proposed method, we can separate the adjustment of weights with respect to objective functions from that of penalty functions. Furthermore, the proposed method can extend the region of computable solutions in a state space. The validity of the method is shown by a numerical example of the optimal control of a vehicle model with steering limitations.展开更多
A control algorithm for improving vehicle handling was proposed by applying right angle to the steering wheel,based on the nonlinear adaptive optimal control(NAOC).A nonlinear 4-DOF model was initially developed,then ...A control algorithm for improving vehicle handling was proposed by applying right angle to the steering wheel,based on the nonlinear adaptive optimal control(NAOC).A nonlinear 4-DOF model was initially developed,then it was simplified to a 2-DOF model with reasonable assumptions to design observer and optimal controllers.Then a simplified model was developed for steering system.The numerical simulations were carried out using vehicle parameters for standard maneuvers in dry and wet road conditions.Moreover,the hardware in the loop method was implemented to prove the controller ability in realistic conditions.Simulation results obviously show the effectiveness of NAOC on vehicle handling and reveal that the proposed controller can significantly improve vehicle handling during severe maneuvers.展开更多
A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a ...A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a high-gain observer is used to estimate the derivatives of the system output. The closed-loop system is proven to be semiglobally uniformly ultimately bounded. In addition, it is shown that if the approximation accuracy of the fuzzy logic system is high enough and the observer gain is chosen sufficiently large, an arbitrarily small tracking error can be achieved. Simulation results verify the effectiveness of the newly designed scheme and the theoretical discussion.展开更多
In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the...In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the solution of an algebraic Riccati equation (ARE) and makes the H∞norm of the closedloop transfer function matrix from disturbance inputs to controlled outputs less than a given constant which ensure the stability of the overall controlled system at each iteration. The given example shows that the convergence of the algorithm is satisfactory.展开更多
In the optimal control problem of nonlinear dynamical system,the Hamiltonian formulation is useful and powerful to solve an optimal control force.However,the resulting Euler-Lagrange equations are not easy to solve,wh...In the optimal control problem of nonlinear dynamical system,the Hamiltonian formulation is useful and powerful to solve an optimal control force.However,the resulting Euler-Lagrange equations are not easy to solve,when the performance index is complicated,because one may encounter a two-point boundary value problem of nonlinear differential algebraic equations.To be a numerical method,it is hard to exactly preserve all the specified conditions,which might deteriorate the accuracy of numerical solution.With this in mind,we develop a novel algorithm to find the solution of the optimal control problem of nonlinear Duffing oscillator,which can exactly satisfy all the required conditions for the minimality of the performance index.A new idea of shape functions method(SFM)is introduced,from which we can transform the optimal control problems to the initial value problems for the new variables,whose initial values are given arbitrarily,and meanwhile the terminal values are determined iteratively.Numerical examples confirm the high-performance of the iterative algorithms based on the SFM,which are convergence fast,and also provide very accurate solutions.The new algorithm is robust,even large noise is imposed on the input data.展开更多
Because of limited resource of embedded platforms, the computational complexity of advanced control algorithms raises significant challenges for the use of embedded systems in complex control field. A Scilab/Scicos ba...Because of limited resource of embedded platforms, the computational complexity of advanced control algorithms raises significant challenges for the use of embedded systems in complex control field. A Scilab/Scicos based embedded controller is developed on which various control software can be easily modeled, simulated, implemented, and evaluated to meet the ever-expanding requirements of industrial control applications. Built on the Cirrus Logic EP9315 ARM systems-on-chip board, this embedded controller is possible to develop complex embedded control systems that employ advanced control strategies in a rapid and cost-efficient fashion. Due to the free and open source nature of the software packages used, the cost of the embedded controller is minimized.展开更多
Linear quadratic regulator(LQR) and proportional-integral-derivative(PID) control methods, which are generally used for control of linear dynamical systems, are used in this paper to control the nonlinear dynamical sy...Linear quadratic regulator(LQR) and proportional-integral-derivative(PID) control methods, which are generally used for control of linear dynamical systems, are used in this paper to control the nonlinear dynamical system. LQR is one of the optimal control techniques, which takes into account the states of the dynamical system and control input to make the optimal control decisions.The nonlinear system states are fed to LQR which is designed using a linear state-space model. This is simple as well as robust. The inverted pendulum, a highly nonlinear unstable system, is used as a benchmark for implementing the control methods. Here the control objective is to control the system such that the cart reaches a desired position and the inverted pendulum stabilizes in the upright position. In this paper, the modeling and simulation for optimal control design of nonlinear inverted pendulum-cart dynamic system using PID controller and LQR have been presented for both cases of without and with disturbance input. The Matlab-Simulink models have been developed for simulation and performance analysis of the control schemes. The simulation results justify the comparative advantage of LQR control method.展开更多
This paper presents an adaptive fuzzy control scheme based on modified genetic algorithm. In the control scheme, genetic algorithm is used to optimze the nonlinear quantization functions of the controller and some key...This paper presents an adaptive fuzzy control scheme based on modified genetic algorithm. In the control scheme, genetic algorithm is used to optimze the nonlinear quantization functions of the controller and some key parameters of the adaptive control algorithm. Simulation results show that this control scheme has satisfactory performance in MIMO systems, chaotic systems and delay systems.展开更多
Autonomous underwater gliders are highly effcient,buoyancy-driven,winged autonomous underwater vehicles. Their dynamics are multivariable nonlinear systems. In addition,the gliders are underactuated and diffcult to ma...Autonomous underwater gliders are highly effcient,buoyancy-driven,winged autonomous underwater vehicles. Their dynamics are multivariable nonlinear systems. In addition,the gliders are underactuated and diffcult to maneuver,and also dependent on their operational environment. To confront these problems and to design an effective controller,the inverse system method was used to decouple the original system into two independent single variable linear subsystems. The stability of the zero dynamics was analyzed,and an additional closed-loop controller for each linear subsystem was designed by sliding mode control method to form a type of composite controller. Simulation results demonstrate that the derived nonlinear controller is able to cope with the aforementioned problems simultaneously and satisfactorily.展开更多
基金supported in part by the National Natural Science Foundation of China(62173255,62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems(ZDSYS20220330161800001)
文摘Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.
基金supported in part by the National Key R&D Program of China under Grants 2021YFE0206100in part by the National Natural Science Foundation of China under Grant 62073321+2 种基金in part by National Defense Basic Scientific Research Program JCKY2019203C029in part by the Science and Technology Development Fund,Macao SAR under Grants FDCT-22-009-MISE,0060/2021/A2 and 0015/2020/AMJin part by the financial support from the National Defense Basic Scientific Research Project(JCKY2020130C025).
文摘In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied system makes it very difficult to design the optimal controller using traditional methods.To achieve optimal control,RL algorithm based on critic–actor architecture is considered for the nonlinear system.Due to the significant security risks of network transmission,the system is vulnerable to deception attacks,which can make all the system state unavailable.By using the attacked states to design coordinate transformation,the harm brought by unknown deception attacks has been overcome.The presented control strategy can ensure that all signals in the closed-loop system are semi-globally ultimately bounded.Finally,the simulation experiment is shown to prove the effectiveness of the strategy.
基金supported by the Natural Sciences and Engineering Research Council of Canada(N00892)in part by National Natural Science Foundation of China(51405436,51375452,61573174)
基金supported by the Doctoral Foundation of Qingdao University of Science and Technology(0022330).
文摘The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.
基金supported by the National Natural Science Foundation of China(61973228,61973330)
文摘In this paper,we present an optimal neuro-control scheme for continuous-time(CT)nonlinear systems with asymmetric input constraints.Initially,we introduce a discounted cost function for the CT nonlinear systems in order to handle the asymmetric input constraints.Then,we develop a Hamilton-Jacobi-Bellman equation(HJBE),which arises in the discounted cost optimal control problem.To obtain the optimal neurocontroller,we utilize a critic neural network(CNN)to solve the HJBE under the framework of reinforcement learning.The CNN's weight vector is tuned via the gradient descent approach.Based on the Lyapunov method,we prove that uniform ultimate boundedness of the CNN's weight vector and the closed-loop system is guaranteed.Finally,we verify the effectiveness of the present optimal neuro-control strategy through performing simulations of two examples.
基金supported by the National Natural Science Foundation of China(No.60574023)the Natural Science Foundation of Shandong Province(No.Z2005G01)
文摘This paper studies the optimal control with zero steady-state error problem for nonlinear large-scale systems affected by external persistent disturbances.The nonlinear large-scale system is transformed into N nonlinear subsystems with interconnect terms.Based on the internal model principle,a disturbance compensator is constructed such that the ith subsystem with external persistent disturbances is transformed into an augmented subsystem without disturbances.According to the sensitivity approach,the optimal tracking control law for the ith nonlinear subsystem can be obtained.The optimal tracking control law for the nonlinear large-scale systems can be obtained.A numerical simulation shows that the method is effective.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2006AA04Z183), National Nat- ural Science Foundation of China (60621001, 60534010, 60572070, 60774048, 60728307), and the Program for Changjiang Scholars and Innovative Research Groups of China (60728307, 4031002)
文摘This article presents an efficient parallel processing approach for solving the opti- mal control problem of nonlinear composite systems. In this approach, the original high-order coupled nonlinear two-point boundary value problem (TPBVP) derived from the Pontrya- gin's maximum principle is first transformed into a sequence of lower-order deeoupled linear time-invariant TPBVPs. Then, an optimal control law which consists of both feedback and forward terms is achieved by using the modal series method for the derived sequence. The feedback term specified by local states of each subsystem is determined by solving a ma- trix Riccati differential equation. The forward term for each subsystem derived from its local information is an infinite sum of adjoint vectors. The convergence analysis and parallel processing capability of the proposed approach are also provided. To achieve an accurate feedforward-feedbaek suboptimal control, we apply a fast iterative algorithm with low com- putational effort. Finally, some comparative results are included to illustrate the effectiveness of the proposed approach.
文摘In this paper we analyze the optimal control problem for a class of afflne nonlinear systems under the assumption that the associated Lie algebra is nilpotent. The Lie brackets generated by the vector fields which define the nonlinear system represent a remarkable mathematical instrument for the control of affine systems. We determine the optimal control which corresponds to the nilpotent operator of the first order. In particular, we obtain the control that minimizes the energy of the given nonlinear system. Applications of this control to bilinear systems with first order nilpotent operator are considered.
文摘In this study,an adaptive neuro-observer-based optimal control(ANOPC)policy is introduced for unknown nonaffine nonlinear systems with control input constraints.Hamilton–Jacobi–Bellman(HJB)framework is employed to minimize a non-quadratic cost function corresponding to the constrained control input.ANOPC consists of both analytical and algebraic parts.In the analytical part,first,an observer-based neural network(NN)approximates uncertain system dynamics,and then another NN structure solves the HJB equation.In the algebraic part,the optimal control input that does not exceed the saturation bounds is generated.The weights of two NNs associated with observer and controller are simultaneously updated in an online manner.The ultimately uniformly boundedness(UUB)of all signals of the whole closed-loop system is ensured through Lyapunov’s direct method.Finally,two numerical examples are provided to confirm the effectiveness of the proposed control strategy.
文摘A new searching algorithm named the annealing-genetic algorithm(AGA) was proposed by skillfully merging GA with SAA. It draws on merits of both GA and SAA ,and offsets their shortcomings.The difference from GA is that AGA takes objective function as adaptability function directly,so it cuts down some unnecessary time expense because of float-point calculation of function conversion.The difference from SAA is that AGA need not execute a very long Markov chain iteration at each point of temperature, so it speeds up the convergence of solution and makes no assumption on the search space,so it is simple and easy to be implemented.It can be applied to a wide class of problems.The optimizing principle and the implementing steps of AGA were expounded. The example of the parameter optimization of a typical complex electromechanical system named temper mill shows that AGA is effective and superior to the conventional GA and SAA.The control system of temper mill optimized by AGA has the optimal performance in the adjustable ranges of its parameters.
文摘This paper proposes a system representation for unifying control design and numerical calculation in nonlinear optimal control problems with inequality constraints in terms of the symplectic structure. The symplectic structure is derived from Hamiltonian systems that are equivalent to Hamilton-Jacobi equations. In the representation, the constraints can be described as an input-state transformation of the system. Therefore, it can be seamlessly applied to the stable manifold method that is a precise numerical solver of the Hamilton-Jacobi equations. In conventional methods, e.g., the penalty method or the barrier method, it is difficult to systematically assign the weights of penalty functions that are used for realizing the constraints. In the proposed method, we can separate the adjustment of weights with respect to objective functions from that of penalty functions. Furthermore, the proposed method can extend the region of computable solutions in a state space. The validity of the method is shown by a numerical example of the optimal control of a vehicle model with steering limitations.
文摘A control algorithm for improving vehicle handling was proposed by applying right angle to the steering wheel,based on the nonlinear adaptive optimal control(NAOC).A nonlinear 4-DOF model was initially developed,then it was simplified to a 2-DOF model with reasonable assumptions to design observer and optimal controllers.Then a simplified model was developed for steering system.The numerical simulations were carried out using vehicle parameters for standard maneuvers in dry and wet road conditions.Moreover,the hardware in the loop method was implemented to prove the controller ability in realistic conditions.Simulation results obviously show the effectiveness of NAOC on vehicle handling and reveal that the proposed controller can significantly improve vehicle handling during severe maneuvers.
基金This project was supported by the National Natural Science Foundation of China (90405011).
文摘A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a high-gain observer is used to estimate the derivatives of the system output. The closed-loop system is proven to be semiglobally uniformly ultimately bounded. In addition, it is shown that if the approximation accuracy of the fuzzy logic system is high enough and the observer gain is chosen sufficiently large, an arbitrarily small tracking error can be achieved. Simulation results verify the effectiveness of the newly designed scheme and the theoretical discussion.
基金theNational+4 种基金 Natural Science Foundation of China
文摘In the paper, the problem of H∞ decentralized state feedback control for largescale systems is described. An algorithm is proposed which uses the method of a feasible direction matrix. The algorithm only requires the solution of an algebraic Riccati equation (ARE) and makes the H∞norm of the closedloop transfer function matrix from disturbance inputs to controlled outputs less than a given constant which ensure the stability of the overall controlled system at each iteration. The given example shows that the convergence of the algorithm is satisfactory.
文摘In the optimal control problem of nonlinear dynamical system,the Hamiltonian formulation is useful and powerful to solve an optimal control force.However,the resulting Euler-Lagrange equations are not easy to solve,when the performance index is complicated,because one may encounter a two-point boundary value problem of nonlinear differential algebraic equations.To be a numerical method,it is hard to exactly preserve all the specified conditions,which might deteriorate the accuracy of numerical solution.With this in mind,we develop a novel algorithm to find the solution of the optimal control problem of nonlinear Duffing oscillator,which can exactly satisfy all the required conditions for the minimality of the performance index.A new idea of shape functions method(SFM)is introduced,from which we can transform the optimal control problems to the initial value problems for the new variables,whose initial values are given arbitrarily,and meanwhile the terminal values are determined iteratively.Numerical examples confirm the high-performance of the iterative algorithms based on the SFM,which are convergence fast,and also provide very accurate solutions.The new algorithm is robust,even large noise is imposed on the input data.
基金supported in part by the National Natural Science Foundation under Grant No.61070003,No.61272020,and No.61071128Zhejiang Provincial Natural Science Foundation under Grant No.R1090052 and No.Y1101184
文摘Because of limited resource of embedded platforms, the computational complexity of advanced control algorithms raises significant challenges for the use of embedded systems in complex control field. A Scilab/Scicos based embedded controller is developed on which various control software can be easily modeled, simulated, implemented, and evaluated to meet the ever-expanding requirements of industrial control applications. Built on the Cirrus Logic EP9315 ARM systems-on-chip board, this embedded controller is possible to develop complex embedded control systems that employ advanced control strategies in a rapid and cost-efficient fashion. Due to the free and open source nature of the software packages used, the cost of the embedded controller is minimized.
文摘Linear quadratic regulator(LQR) and proportional-integral-derivative(PID) control methods, which are generally used for control of linear dynamical systems, are used in this paper to control the nonlinear dynamical system. LQR is one of the optimal control techniques, which takes into account the states of the dynamical system and control input to make the optimal control decisions.The nonlinear system states are fed to LQR which is designed using a linear state-space model. This is simple as well as robust. The inverted pendulum, a highly nonlinear unstable system, is used as a benchmark for implementing the control methods. Here the control objective is to control the system such that the cart reaches a desired position and the inverted pendulum stabilizes in the upright position. In this paper, the modeling and simulation for optimal control design of nonlinear inverted pendulum-cart dynamic system using PID controller and LQR have been presented for both cases of without and with disturbance input. The Matlab-Simulink models have been developed for simulation and performance analysis of the control schemes. The simulation results justify the comparative advantage of LQR control method.
文摘This paper presents an adaptive fuzzy control scheme based on modified genetic algorithm. In the control scheme, genetic algorithm is used to optimze the nonlinear quantization functions of the controller and some key parameters of the adaptive control algorithm. Simulation results show that this control scheme has satisfactory performance in MIMO systems, chaotic systems and delay systems.
基金the National Natural Science Foundation of China (No. 50979058)the Special Research Fund for the Doctoral Program of Higher Education (No. 20090073110012)
文摘Autonomous underwater gliders are highly effcient,buoyancy-driven,winged autonomous underwater vehicles. Their dynamics are multivariable nonlinear systems. In addition,the gliders are underactuated and diffcult to maneuver,and also dependent on their operational environment. To confront these problems and to design an effective controller,the inverse system method was used to decouple the original system into two independent single variable linear subsystems. The stability of the zero dynamics was analyzed,and an additional closed-loop controller for each linear subsystem was designed by sliding mode control method to form a type of composite controller. Simulation results demonstrate that the derived nonlinear controller is able to cope with the aforementioned problems simultaneously and satisfactorily.