期刊文献+
共找到764篇文章
< 1 2 39 >
每页显示 20 50 100
Compound Genetics Annealing Optimal Algorithm for Realization of Locus Deduction of a Plane Link 被引量:1
1
作者 林晓通 林晓辉 +1 位作者 黄卫 王宁生 《Journal of Southeast University(English Edition)》 EI CAS 2002年第4期310-314,共5页
A compound algorithm of genetic annealing is designed for optimizing the luffing mechanism locus of a plane link by means of random optimal algorithm, genetic and annealing algorithm. The computing experiment shows th... A compound algorithm of genetic annealing is designed for optimizing the luffing mechanism locus of a plane link by means of random optimal algorithm, genetic and annealing algorithm. The computing experiment shows that the algorithm has much better steady convergence performance of optimal process and can hunt out the global optimal solution by biggish probability for objective function of multi peak value. 展开更多
关键词 genetic annealing algorithm luffing mechanism optimal algorithm
在线阅读 下载PDF
OPTIMAL ALGORITHM FOR NO TOOl-RETRACTIONS CONTOUR-PARALLEL OFFSET TOOL-PATH LINKING 被引量:8
2
作者 HAO Yongtao JIANG Lili 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期21-25,共5页
A contour-parallel offset (CPO) tool-path linking algorithm is derived without toolretractions and with the largest practicability. The concept of "tool-path loop tree" (TPL-tree) providing the information on th... A contour-parallel offset (CPO) tool-path linking algorithm is derived without toolretractions and with the largest practicability. The concept of "tool-path loop tree" (TPL-tree) providing the information on the parent/child relationships among the tool-path loops (TPLs) is presented. The direction, tool-path loop, leaf/branch, layer number, and the corresponding points of the TPL-tree are introduced. By defining TPL as a vector, and by traveling throughout the tree, a CPO tool-path without tool-retractions can be derived. 展开更多
关键词 Contour-parallel offset machining Tool-path loops Tool-path loop tree optimal algorithm
在线阅读 下载PDF
The measuring of spectral emissivity of object using chaotic optimal algorithm
3
作者 杨春玲 王宇野 +1 位作者 赵东阳 赵国良 《Chinese Physics B》 SCIE EI CAS CSCD 2005年第10期2041-2045,共5页
There exist a considerable variety of factors affecting the spectral emissivity of an object. The authors have designed an improved combined neural network emissivity model, which can identify the continuous spectral ... There exist a considerable variety of factors affecting the spectral emissivity of an object. The authors have designed an improved combined neural network emissivity model, which can identify the continuous spectral emissivity and true temperature of any object only based on the measured brightness temperature data. In order to improve the accuracy of approximate calculations, the local minimum problem in the algorithm must be solved. Therefore, the authors design an optimal algorithm, i.e. a hybrid chaotic optimal algorithm, in which the chaos is used to roughly seek for the parameters involved in the model, and then a second seek for them is performed using the steepest descent. The modelling of emissivity settles the problems in assumptive models in multi-spectral theory. 展开更多
关键词 spectral emissivity radiation thermometric chaotic optimal algorithm
原文传递
Enhancing ITS Reliability and Efficiency through Optimal VANET Clustering Using Grasshopper Optimization Algorithm
4
作者 Seongsoo Cho Yeonwoo Lee Cheolhee Yoon 《Computer Modeling in Engineering & Sciences》 2025年第6期3769-3793,共25页
As vehicular networks grow increasingly complex due to high node mobility and dynamic traffic conditions,efficient clustering mechanisms are vital to ensure stable and scalable communication.Recent studies have emphas... As vehicular networks grow increasingly complex due to high node mobility and dynamic traffic conditions,efficient clustering mechanisms are vital to ensure stable and scalable communication.Recent studies have emphasized the need for adaptive clustering strategies to improve performance in Intelligent Transportation Systems(ITS).This paper presents the Grasshopper Optimization Algorithm for Vehicular Network Clustering(GOAVNET)algorithm,an innovative approach to optimal vehicular clustering in Vehicular Ad-Hoc Networks(VANETs),leveraging the Grasshopper Optimization Algorithm(GOA)to address the critical challenges of traffic congestion and communication inefficiencies in Intelligent Transportation Systems(ITS).The proposed GOA-VNET employs an iterative and interactive optimization mechanism to dynamically adjust node positions and cluster configurations,ensuring robust adaptability to varying vehicular densities and transmission ranges.Key features of GOA-VNET include the utilization of attraction zone,repulsion zone,and comfort zone parameters,which collectively enhance clustering efficiency and minimize congestion within Regions of Interest(ROI).By managing cluster configurations and node densities effectively,GOA-VNET ensures balanced load distribution and seamless data transmission,even in scenarios with high vehicular densities and varying transmission ranges.Comparative evaluations against the Whale Optimization Algorithm(WOA)and Grey Wolf Optimization(GWO)demonstrate that GOA-VNET consistently outperforms these methods by achieving superior clustering efficiency,reducing the number of clusters by up to 10%in high-density scenarios,and improving data transmission reliability.Simulation results reveal that under a 100-600 m transmission range,GOA-VNET achieves an average reduction of 8%-15%in the number of clusters and maintains a 5%-10%improvement in packet delivery ratio(PDR)compared to baseline algorithms.Additionally,the algorithm incorporates a heat transfer-inspired load-balancing mechanism,ensuring equitable distribution of nodes among cluster leaders(CLs)and maintaining a stable network environment.These results validate GOA-VNET as a reliable and scalable solution for VANETs,with significant potential to support next-generation ITS.Future research could further enhance the algorithm by integrating multi-objective optimization techniques and exploring broader applications in complex traffic scenarios. 展开更多
关键词 Grasshopper optimization algorithm VANET intelligent transportation systems traffic congestion clustering efficiency
在线阅读 下载PDF
Research on the Optimal Scheduling Model of Energy Storage Plant Based on Edge Computing and Improved Whale Optimization Algorithm
5
作者 Zhaoyu Zeng Fuyin Ni 《Energy Engineering》 2025年第3期1153-1174,共22页
Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device ... Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device energy utilization.To tackle these challenges,this study proposes an optimal scheduling model for energy storage power plants based on edge computing and the improved whale optimization algorithm(IWOA).The proposed model designs an edge computing framework,transferring a large share of data processing and storage tasks to the network edge.This architecture effectively reduces transmission costs by minimizing data travel time.In addition,the model considers demand response strategies and builds an objective function based on the minimization of the sum of electricity purchase cost and operation cost.The IWOA enhances the optimization process by utilizing adaptive weight adjustments and an optimal neighborhood perturbation strategy,preventing the algorithm from converging to suboptimal solutions.Experimental results demonstrate that the proposed scheduling model maximizes the flexibility of the energy storage plant,facilitating efficient charging and discharging.It successfully achieves peak shaving and valley filling for both electrical and heat loads,promoting the effective utilization of renewable energy sources.The edge-computing framework significantly reduces transmission delays between energy devices.Furthermore,IWOA outperforms traditional algorithms in optimizing the objective function. 展开更多
关键词 Energy storage plant edge computing optimal energy scheduling improved whale optimization algorithm
在线阅读 下载PDF
A Sine and Wormhole Energy Whale Optimization Algorithm for Optimal FACTS Placement in Uncertain Wind Integrated Scenario Based Power Systems
6
作者 Sunilkumar P.Agrawal Pradeep Jangir +4 位作者 Arpita Sundaram B.Pandya Anil Parmar Ahmad O.Hourani Bhargavi Indrajit Trivedi 《Journal of Bionic Engineering》 2025年第4期2115-2134,共20页
The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACT... The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACTS)devices which include Thyristor-Controlled Series Compensator(TCSC),Thyristor-Controlled Phase Shifter(TCPS),and Static Var Compensator(SVC).SWEWOA expands Whale Optimization Algorithm(WOA)through the integration of sine and wormhole energy features thus improving exploration and exploitation capabilities for efficient convergence in complex non-linear OPF problems.A performance evaluation of SWEWOA takes place on the IEEE-30 bus test system through static and dynamic loading scenarios where it demonstrates better results than five contemporary algorithms:Adaptive Chaotic WOA(ACWOA),WOA,Chaotic WOA(CWOA),Sine Cosine Algorithm Differential Evolution(SCADE),and Hybrid Grey Wolf Optimization(HGWO).The research shows that SWEWOA delivers superior generation cost reduction than other algorithms by reaching a minimum of 0.9%better performance.SWEWOA demonstrates superior power loss performance by achieving(P_(loss,min))at the lowest level compared to all other tested algorithms which leads to better system energy efficiency.The dynamic loading performance of SWEWOA leads to a 4.38%reduction in gross costs which proves its capability to handle different operating conditions.The algorithm achieves top performance in Friedman Rank Test(FRT)assessments through multiple performance metrics which verifies its consistent reliability and strong stability during changing power demands.The repeated simulations show that SWEWOA generates mean costs(C_(gen,min))and mean power loss values(P_(loss,min))with small deviations which indicate its capability to maintain cost-effective solutions in each simulation run.SWEWOA demonstrates great potential as an advanced optimization solution for power system operations through the results presented in this study. 展开更多
关键词 Sine and wormhole energy whale optimization algorithm(SWEWOA) optimal power flow(OPF) Wind integration FACTS devices Power system optimization
在线阅读 下载PDF
An Optimal Algorithm for Solving Collision Distance Between Convex Polygons in Plane
7
作者 鄢勇 《Journal of Computer Science & Technology》 SCIE EI CSCD 1993年第4期367-373,共7页
In this paper,we study the problem,of calculating the minimum collision distance between two planar convex polygons when one of them moves to another along a given direction.First,several novel concepts and properties... In this paper,we study the problem,of calculating the minimum collision distance between two planar convex polygons when one of them moves to another along a given direction.First,several novel concepts and properties are explored,then an optimal algorithm OPFIV with time complexity O(log(n+m))is developed and its correctness and optimization are proved rigorously. 展开更多
关键词 Planar convex polygons collision distance initial collision vertex optimal algorithm effective collision edge packing problem computational geometry
原文传递
Optimal Cooperative Spectrum Sensing Based on Butterfly Optimization Algorithm 被引量:4
8
作者 Noor Gul Saeed Ahmed +2 位作者 Atif Elahi Su Min Kim Junsu Kim 《Computers, Materials & Continua》 SCIE EI 2022年第4期369-387,共19页
Since the introduction of the Internet of Things(IoT),several researchers have been exploring its productivity to utilize and organize the spectrum assets.Cognitive radio(CR)technology is characterized as the best asp... Since the introduction of the Internet of Things(IoT),several researchers have been exploring its productivity to utilize and organize the spectrum assets.Cognitive radio(CR)technology is characterized as the best aspirant for wireless communications to augment IoT competencies.In the CR networks,secondary users(SUs)opportunistically get access to the primary users(PUs)spectrum through spectrum sensing.The multipath issues in the wireless channel can fluster the sensing ability of the individual SUs.Therefore,several cooperative SUs are engaged in cooperative spectrum sensing(CSS)to ensure reliable sensing results.In CSS,security is still a major concern for the researchers to safeguard the fusion center(FC)against abnormal sensing reports initiated by the malicious users(MUs).In this paper,butterfly optimization algorithm(BOA)-based soft decision method is proposed to find an optimized weighting coefficient vector correlated to the SUs sensing notifications.The coefficient vector is utilized in the soft decision rule at the FC before making any global decision.The effectiveness of the proposed scheme is compared for a variety of parameters with existing schemes through simulation results.The results confirmed the supremacy of the proposed BOA scheme in both the normal SUs’environment and when lower and higher SNRs information is carried by the different categories of MUs. 展开更多
关键词 Internet of Things cognitive radio network butterfly optimization algorithm particle swarm optimization malicious users genetic algorithm
在线阅读 下载PDF
Optimal Control Virtual Inertia of Optical Storage Microgrid Based on Improved Sailfish Algorithm 被引量:2
9
作者 LIAO Hongfei ZENG Guohui +3 位作者 HUANG Bo MA Chi CHEN Gong ZHAO Jinbin 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2022年第3期218-230,共13页
The optical storage microgrid system composed of power electronic converters is a small inertia system.Load switching and power supply intermittent will affect the stability of the direct current(DC)bus voltage.Aiming... The optical storage microgrid system composed of power electronic converters is a small inertia system.Load switching and power supply intermittent will affect the stability of the direct current(DC)bus voltage.Aiming at this problem,a virtual inertia optimal control strategy applied to optical storage microgrid is proposed.Firstly,a small signal model of the system is established to theoretically analyze the influence of virtual inertia and damping coefficient on DC bus voltage and to obtain the constraint range of virtual inertia and damping coefficient;Secondly,aiming at the defect that the Sailfish optimization algorithm is easy to premature maturity,a Sailfish optimization algorithm based on the leak-proof net and the cross-mutation propagation mechanism is proposed;Finally,the virtual inertia and damping coefficient of the system are optimized by the improved Sailfish algorithm to obtain the best control parameters.The simulation results in Matlab/Simulink show that the virtual inertia control optimized by the improved Sailfish algorithm improves the system inertia as well as the dynamic response and robustness of the DC bus voltage. 展开更多
关键词 optical storage microgrid virtual inertia damping co‐efficient improved Sailfish optimization algorithm optimal control
原文传递
Optimal Operation of Distributed Generations Considering Demand Response in a Microgrid Using GWO Algorithm 被引量:2
10
作者 Hassan Shokouhandeh Mehrdad Ahmadi Kamarposhti +2 位作者 William Holderbaum Ilhami Colak Phatiphat Thounthong 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期809-822,共14页
The widespread penetration of distributed energy sources and the use of load response programs,especially in a microgrid,have caused many power system issues,such as control and operation of these networks,to be affec... The widespread penetration of distributed energy sources and the use of load response programs,especially in a microgrid,have caused many power system issues,such as control and operation of these networks,to be affected.The control and operation of many small-distributed generation units with different performance characteristics create another challenge for the safe and efficient operation of the microgrid.In this paper,the optimum operation of distributed generation resources and heat and power storage in a microgrid,was performed based on real-time pricing through the proposed gray wolf optimization(GWO)algorithm to reduce the energy supply cost with the microgrid.Distributed generation resources such as solar panels,diesel generators with battery storage,and boiler thermal resources with thermal storage were used in the studied microgrid.Also,a combined heat and power(CHP)unit was used to produce thermal and electrical energy simultaneously.In the simulations,in addition to the gray wolf algorithm,some optimization algorithms have also been used.Then the results of 20 runs for each algorithm confirmed the high accuracy of the proposed GWO algorithm.The results of the simulations indicated that the CHP energy resources must be managed to have a minimum cost of energy supply in the microgrid,considering the demand response program. 展开更多
关键词 MICROGRID demand response program cost reduction gray wolf optimization algorithm
在线阅读 下载PDF
An optimal scheduling algorithm based on task duplication 被引量:2
11
作者 RuanYoulin LiuCan ZhuGuangxi LuXiaofeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期445-450,共6页
When the communication time is relatively shorter than the computation time for every task, the task duplication based scheduling (TDS) algorithm proposed by Darbha and Agrawal generates an optimal schedule. Park and ... When the communication time is relatively shorter than the computation time for every task, the task duplication based scheduling (TDS) algorithm proposed by Darbha and Agrawal generates an optimal schedule. Park and Choe also proposed an extended TDS algorithm whose optimality condition is less restricted than that of TDS algorithm, but the condition is very complex and is difficult to satisfy when the number of tasks is large. An efficient algorithm is proposed whose optimality condition is less restricted and simpler than both of the algorithms, and the schedule length is also shorter than both of the algorithms. The time complexity of the proposed algorithm is O(v2), where v represents the number of tasks. 展开更多
关键词 optimal scheduling algorithm task duplication optimality condition.
在线阅读 下载PDF
A Novel Nonlinear Scaling Method for Optimal Motion Cueing Algorithm in Flight Simulator 被引量:2
12
作者 ZHU Daoyang DUAN Shaoli +1 位作者 SHANG Jinqiu GUO Ping 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2020年第5期452-460,共9页
Motion cueing algorithm plays a key role in simulator motion reproduction and improves the realism of movement sensation by combining with the human vestibular system.It is well established that scaling&limiting s... Motion cueing algorithm plays a key role in simulator motion reproduction and improves the realism of movement sensation by combining with the human vestibular system.It is well established that scaling&limiting should be used to decrease the amplitude of the acceleration and angular velocity signals for making full use of limited workspace of motion platform.A novel nonlinear scaling method based on a third-order polynomial and back propagation(BP)neural networks for the motion cueing algorithm is proposed in this paper.The third-order polynomial method is applied to the low amplitude segment of the input signal to minimize the trigger delay of the sensation acceleration;in the high amplitude segment,the BP neural network is used to adaptively adjust the scaling factor of the input signal,to avoid washout displacement and angular displacement beyond the boundary of the workspace.The simulation experiment is verified in the longitudinal/pitch direction for flight simulator,and the result implies that the proposed method not only can overcome the problem of constant scaling parameter and improve motion platform workspace utilization,but also reduce the false cues during the motion simulation process. 展开更多
关键词 optimal motion cueing algorithm nonlinear scaling human vestibular system dynamic fidelity
原文传递
New optimal algorithm of data association for multi-passive-sensor location system 被引量:2
13
作者 ZHOU Li HE YOU ZHANG WeiHua 《Science in China(Series F)》 2007年第4期600-608,共9页
In dense target and false detection scenario of four time difference of arrival (TDOA) for multi-passive-sensor location system, the global optimal data association algorithm has to be adopted. In view of the heavy ... In dense target and false detection scenario of four time difference of arrival (TDOA) for multi-passive-sensor location system, the global optimal data association algorithm has to be adopted. In view of the heavy calculation burden of the traditional optimal assignment algorithm, this paper proposes a new global optimal assignment algorithm and a 2-stage association algorithm based on a statistic test. Compared with the traditional optimal algorithm, the new optimal algorithm avoids the complicated operations for finding the target position before we calculate association cost; hence, much of the procedure time is saved. In the 2-stage association algorithm, a large number of false location points are eliminated from candidate associations in advance. Therefore, the operation is further decreased, and the correct data association probability is improved in varying degrees. Both the complexity analyses and simulation results can verify the effectiveness of the new algorithms. 展开更多
关键词 optimal assignment algorithm data association 2-stage association algorithm multi-passive-sensor location system distance difference of arrival (DDOA)
原文传递
A Multi-Objective Optimal Evolutionary Algorithm Based on Tree-Ranking 被引量:1
14
作者 Shi Chuan, Kang Li-shan, Li Yan, Yan Zhen-yuState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei,China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期207-211,共5页
Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has so... Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcoming s, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time. 展开更多
关键词 multi-objective optimal problem multi-objective optimal evolutionary algorithm Pareto dominance tree structure dynamic space-compressed mutative operator
在线阅读 下载PDF
Improved multi-objective artificial bee colony algorithm for optimal power flow problem 被引量:1
15
作者 马连博 胡琨元 +1 位作者 朱云龙 陈瀚宁 《Journal of Central South University》 SCIE EI CAS 2014年第11期4220-4227,共8页
The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting obj... The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting objectives of OPF, instead of transforming multi-objective functions into a single objective function. The main idea of HMOABC is to extend original ABC algorithm to multi-objective and cooperative mode by combining the Pareto dominance and divide-and-conquer approach. HMOABC is then used in the 30-bus IEEE test system for solving the OPF problem considering the cost, loss, and emission impacts. The simulation results show that the HMOABC is superior to other algorithms in terms of optimization accuracy and computation robustness. 展开更多
关键词 cooperative artificial colony algorithm optimal power flow multi-objective optimization
在线阅读 下载PDF
THE EFFECTIVENESS OF GENETIC ALGORITHM IN CAPTURING CONDITIONAL NONLINEAR OPTIMAL PERTURBATION WITH PARAMETERIZATION “ON-OFF” SWITCHES INCLUDED BY A MODEL 被引量:2
16
作者 方昌銮 郑琴 《Journal of Tropical Meteorology》 SCIE 2009年第1期13-19,共7页
In the typhoon adaptive observation based on conditional nonlinear optimal perturbation (CNOP), the ‘on-off’ switch caused by moist physical parameterization in prediction models prevents the conventional adjoint me... In the typhoon adaptive observation based on conditional nonlinear optimal perturbation (CNOP), the ‘on-off’ switch caused by moist physical parameterization in prediction models prevents the conventional adjoint method from providing correct gradient during the optimization process. To address this problem, the capture of CNOP, when the "on-off" switches are included in models, is treated as non-smooth optimization in this study, and the genetic algorithm (GA) is introduced. After detailed algorithm procedures are formulated using an idealized model with parameterization "on-off" switches in the forcing term, the impacts of "on-off" switches on the capture of CNOP are analyzed, and three numerical experiments are conducted to check the effectiveness of GA in capturing CNOP and to analyze the impacts of different initial populations on the optimization result. The result shows that GA is competent for the capture of CNOP in the context of the idealized model with parameterization ‘on-off’ switches in this study. Finally, the advantages and disadvantages of GA in capturing CNOP are analyzed in detail. 展开更多
关键词 dynamic meteorology typhoon adaptive observation genetic algorithm conditional nonlinear optimal perturbation switches moist physical parameterization
在线阅读 下载PDF
An Optimal Node Localization in WSN Based on Siege Whale Optimization Algorithm
17
作者 Thi-Kien Dao Trong-The Nguyen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2201-2237,共37页
Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand... Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand allocates the acquired location information to unknown devices. The metaheuristic approach is one of themost advantageous ways to deal with this challenging issue and overcome the disadvantages of the traditionalmethods that often suffer from computational time problems and small network deployment scale. This studyproposes an enhanced whale optimization algorithm that is an advanced metaheuristic algorithm based on thesiege mechanism (SWOA) for node localization inWSN. The objective function is modeled while communicatingon localized nodes, considering variables like delay, path loss, energy, and received signal strength. The localizationapproach also assigns the discovered location data to unidentified devices with the modeled objective functionby applying the SWOA algorithm. The experimental analysis is carried out to demonstrate the efficiency of thedesigned localization scheme in terms of various metrics, e.g., localization errors rate, converges rate, and executedtime. Compared experimental-result shows that theSWOA offers the applicability of the developed model forWSNto perform the localization scheme with excellent quality. Significantly, the error and convergence values achievedby the SWOA are less location error, faster in convergence and executed time than the others compared to at least areduced 1.5% to 4.7% error rate, and quicker by at least 4%and 2% in convergence and executed time, respectivelyfor the experimental scenarios. 展开更多
关键词 Node localization whale optimization algorithm wireless sensor networks siege whale optimization algorithm OPTIMIZATION
在线阅读 下载PDF
Rider Optimization Algorithm Based Optimal Cloud Server Selection in E-Learning
18
作者 R.Soundhara Raja Pandian C.Christopher Columbus 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1749-1762,共14页
Currently,e-learning is one of the most prevalent educational methods because of its need in today’s world.Virtual classrooms and web-based learning are becoming the new method of teaching remotely.The students exper... Currently,e-learning is one of the most prevalent educational methods because of its need in today’s world.Virtual classrooms and web-based learning are becoming the new method of teaching remotely.The students experience a lack of access to resources commonly the educational material.In remote loca-tions,educational institutions face significant challenges in accessing various web-based materials due to bandwidth and network infrastructure limitations.The objective of this study is to demonstrate an optimization and queueing tech-nique for allocating optimal servers and slots for users to access cloud-based e-learning applications.The proposed method provides the optimization and queue-ing algorithm for multi-server and multi-city constraints and considers where to locate the best servers.For optimal server selection,the Rider Optimization Algo-rithm(ROA)is utilized.A performance analysis based on time,memory and delay was carried out for the proposed methodology in comparison with the exist-ing techniques.The proposed Rider Optimization Algorithm is compared to Par-ticle Swarm Optimization(PSO),Genetic Algorithm(GA)and Firefly Algorithm(FFA),the proposed method is more suitable and effective because the other three algorithms drop in local optima and are only suitable for small numbers of user requests.Thus the proposed method outweighs the conventional techniques by its enhanced performance over them. 展开更多
关键词 Optimization QUEUING slot selection server selection rider optimization algorithm
在线阅读 下载PDF
Optimal Energy Consumption Optimization in a Smart House by Considering Electric Vehicles and Demand Response via a Hybrid Gravitational Search and Particle Swarm Optimization Algorithm
19
作者 Rongxin Zhang Chengying Yang Xuetao Li 《Energy Engineering》 EI 2022年第6期2489-2511,共23页
Buildings are the main energy consumers across the world,especially in urban communities.Building smartization,or the smartification of housing,therefore,is a major step towards energy grid smartization too.By control... Buildings are the main energy consumers across the world,especially in urban communities.Building smartization,or the smartification of housing,therefore,is a major step towards energy grid smartization too.By controlling the energy consumption of lighting,heating,and cooling systems,energy consumption can be optimized.All or some part of the energy consumed in future smart buildings must be supplied by renewable energy sources(RES),which mitigates environmental impacts and reduces peak demand for electrical energy.In this paper,a new optimization algorithm is applied to solve the optimal energy consumption problem by considering the electric vehicles and demand response in smart homes.In this way,large power stations that work with fossil fuels will no longer be developed.The current study modeled and evaluated the performance of a smart house in the presence of electric vehicles(EVs)with bidirectional power exchangeability with the power grid,an energy storage system(ESS),and solar panels.Additionally,the solar RES and ESS for predicting solar-generated power prediction uncertainty have been considered in this work.Different case studies,including the sales of electrical energy resulting from PV panels’generated power to the power grid,time-variable loads such as washing machines,and different demand response(DR)strategies based on energy price variations were taken into account to assess the economic and technical effects of EVs,BESS,and solar panels.The proposed model was simulated in MATLAB.A hybrid particle swarm optimization(PSO)and gravitational search(GS)algorithm were utilized for optimization.Scenario generation and reduction were performed via LHS and backward methods,respectively.Obtained results demonstrate that the proposed model minimizes the energy supply cost by considering the stochastic time of use(STOU)loads,EV,ESS,and PV system.Based on the results,the proposed model markedly reduced the electricity costs of the smart house. 展开更多
关键词 Energy management smart house particle swarm optimization algorithm gravitational search algorithm demand response electric vehicle
在线阅读 下载PDF
Optimal Search Mechanism Analysis of Light Ray Optimization Algorithm
20
作者 Jihong SHEN Jialian LI Bin WEI 《Journal of Mathematical Research with Applications》 CSCD 2012年第5期530-542,共13页
Based on Fermat's principle and the automatic optimization mechanism in the propagation process of light, an optimal searching algorithm named light ray optimization is presented, where the laws of refraction and ref... Based on Fermat's principle and the automatic optimization mechanism in the propagation process of light, an optimal searching algorithm named light ray optimization is presented, where the laws of refraction and reflection of light rays are integrated into searching process of optimization. In this algorithm, coordinate space is assumed to be the space that is full of media with different refractivities, then the space is divided by grids, and finally the searching path is assumed to be the propagation path of light rays. With the law of refraction, the search direction is deflected to the direction that makes the value of objective function decrease. With the law of reflection, the search direction is changed, which makes the search continue when it cannot keep going with refraction. Only the function values of objective problems are used and there is no artificial rule in light ray optimization, so it is simple and easy to realize. Theoretical analysis and the results of numerical experiments show that the algorithm is feasible and effective. 展开更多
关键词 Fermat's principle intelligent optimization algorithm light ray optimization optimal search mechanism.
原文传递
上一页 1 2 39 下一页 到第
使用帮助 返回顶部