In the field of short-range optical interconnects,the development of low-power-consumption,ultrawideband on-chip optical waveguide amplifiers is of critical importance.Central to this advancement is the creation of ho...In the field of short-range optical interconnects,the development of low-power-consumption,ultrawideband on-chip optical waveguide amplifiers is of critical importance.Central to this advancement is the creation of host materials that require low pump power and provide ultrabroadband emission capabilities.We introduce a tri-doped lanthanum aluminate glass(composition:5Er_(2)O_(3)-5Yb_(2)O_(3)-0.2Tm_(2)O_(3)-43.8La_(2)O_(3)-46Al_(2)O_(3)),which exhibits exceptional near-infrared(NIR)luminescence intensity,significantly outperforming other bands by 3 orders of magnitude.This glass can achieve an ultrawideband NIR gain spanning 478 nm,from 1510 to 1988 nm.Notably,the glass achieves positive optical gain with a low population inversion threshold(P>0.2),highlighting its efficiency and low-power consumption.The high glass transition temperature(Tg∼842°C)and large temperature difference(ΔT∼120°C)between Tg and the onset of crystallization(Tx)indicate excellent thermal stability,which is crucial for producing high-quality amorphous films for on-chip amplifiers.This research examines the unique energy levels and spectral properties of the Er^(3+)-Yb^(3+)-Tm^(3+) tri-doped glass,assessing its potential for use in ultrawideband on-chip optical waveguide amplifiers.This work lays the groundwork for low-power,ultrabroadband on-chip waveguide amplifiers,offering new avenues for short-range optical interconnect systems.展开更多
Optical waveguide amplifiers are essential devices in integrated optical systems,with their gain bandwidths directly influencing the operating wavelengths of optical circuits.Previous Er^(3+)-doped polymer optical wav...Optical waveguide amplifiers are essential devices in integrated optical systems,with their gain bandwidths directly influencing the operating wavelengths of optical circuits.Previous Er^(3+)-doped polymer optical waveguide amplifiers have been limited to amplifying signals within the C-band.To achieve broadband polymer optical waveguide amplification,we propose the use of nanocrystals with low crystal field symmetry to extend the working bandwidth.Our approach utilizes LiYF_(4):Yb,Er nanoparticles embedded in poly(methyl methacrylate)as the gain medium,enabling signal amplification from most of the S-band to the whole(C+L)band.The low crystal field symmetry of the LiYF_(4)host significantly splits the^(4)I_(13/2)and^(4)I_(15/2)levels of Er^(3+)ions owing to the crystal field effect,facilitating broadband down-conversion luminescence under 980-nm excitation.Furthermore,a fluorescence kinetic analysis confirms that the broadband luminescence of Er^(3+)arises from significant energy-level splitting caused by the crystal field effect.Under 980-nm excitation,the amplifiers exhibited relative gains of approximately 12.6 dB at 1535 nm,7.4 dB at 1480 nm,and 3.7 dB at 1610 nm.The Er^(3+)-doped broadband polymer optical waveguide amplifier was successfully prepared.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.62005098)the Fundamental Research Funds for the Central University(Grant No.11623415)the Guangzhou Science and Technology Planning Project(Grant No.202201010320).
文摘In the field of short-range optical interconnects,the development of low-power-consumption,ultrawideband on-chip optical waveguide amplifiers is of critical importance.Central to this advancement is the creation of host materials that require low pump power and provide ultrabroadband emission capabilities.We introduce a tri-doped lanthanum aluminate glass(composition:5Er_(2)O_(3)-5Yb_(2)O_(3)-0.2Tm_(2)O_(3)-43.8La_(2)O_(3)-46Al_(2)O_(3)),which exhibits exceptional near-infrared(NIR)luminescence intensity,significantly outperforming other bands by 3 orders of magnitude.This glass can achieve an ultrawideband NIR gain spanning 478 nm,from 1510 to 1988 nm.Notably,the glass achieves positive optical gain with a low population inversion threshold(P>0.2),highlighting its efficiency and low-power consumption.The high glass transition temperature(Tg∼842°C)and large temperature difference(ΔT∼120°C)between Tg and the onset of crystallization(Tx)indicate excellent thermal stability,which is crucial for producing high-quality amorphous films for on-chip amplifiers.This research examines the unique energy levels and spectral properties of the Er^(3+)-Yb^(3+)-Tm^(3+) tri-doped glass,assessing its potential for use in ultrawideband on-chip optical waveguide amplifiers.This work lays the groundwork for low-power,ultrabroadband on-chip waveguide amplifiers,offering new avenues for short-range optical interconnect systems.
基金supported by the National Key Research and Development Program of China(2021YFB2800502)the National Natural Science Foundation of China(U22A2085 and 12174150)。
文摘Optical waveguide amplifiers are essential devices in integrated optical systems,with their gain bandwidths directly influencing the operating wavelengths of optical circuits.Previous Er^(3+)-doped polymer optical waveguide amplifiers have been limited to amplifying signals within the C-band.To achieve broadband polymer optical waveguide amplification,we propose the use of nanocrystals with low crystal field symmetry to extend the working bandwidth.Our approach utilizes LiYF_(4):Yb,Er nanoparticles embedded in poly(methyl methacrylate)as the gain medium,enabling signal amplification from most of the S-band to the whole(C+L)band.The low crystal field symmetry of the LiYF_(4)host significantly splits the^(4)I_(13/2)and^(4)I_(15/2)levels of Er^(3+)ions owing to the crystal field effect,facilitating broadband down-conversion luminescence under 980-nm excitation.Furthermore,a fluorescence kinetic analysis confirms that the broadband luminescence of Er^(3+)arises from significant energy-level splitting caused by the crystal field effect.Under 980-nm excitation,the amplifiers exhibited relative gains of approximately 12.6 dB at 1535 nm,7.4 dB at 1480 nm,and 3.7 dB at 1610 nm.The Er^(3+)-doped broadband polymer optical waveguide amplifier was successfully prepared.