Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architec...Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architecture makes the PSD perform more functions by modifying its architecture.As the PSD is mainly formed of an array of photodiodes.The primary concept involves employing transistors to alternate between the operating modes of the photodiodes(photoconductive and photovoltaic).Additionally,alternating among output pins can be done based on the required function.This paper presents the mathematical modeling and simulation of a reconfigurable-multifunctional optical sensor which can perform energy harvesting and data acquisition,as well as positioning,which is not available in the traditional PSDs.Simulation using the MATLAB software tool was achieved to demonstrate the modeling.The simulation results confirmed the validity of the mathematical modeling and proved that the modified sensor architecture,as depicted by the equations,accurately describes its behavior.The proposed sensor is expected to extend the battery's lifecycle,reduce its physical size,and increase the integration and functionality of the system.The presented sensor might be used in free space optical(FSO)communication like cube satellites or even in underwater wireless optical communication(UWOC).展开更多
We propose a novel high-performance digital optical sensor based on the Mach-Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the se...We propose a novel high-performance digital optical sensor based on the Mach-Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the sensitivity of the sensor can be orders of magnitude higher than that of aconventional sensor, and high quality factor is not critical in it. Moreover, by optimizing the length of the feedback waveguide to be equal to the perimeter of the ring, the measurement range of the proposed sensor is twice as much as that of the conventional sensor in the weak coupling case.展开更多
A novel Cu(I) complex with the formula of [Cu(DPEphos)(Dicnq)]BF4(CuDD) was synthesized and characterized by X-ray single crystal diffraction method,in which DPEphos and Dicnq denote bis[2-(diphenylphosphino)phenyl]et...A novel Cu(I) complex with the formula of [Cu(DPEphos)(Dicnq)]BF4(CuDD) was synthesized and characterized by X-ray single crystal diffraction method,in which DPEphos and Dicnq denote bis[2-(diphenylphosphino)phenyl]ether and 6,7-Dicyanodipyrido[2,2-d:2 ,3 -f] quinoxaline,respectively.Organic ultraviolet optical sensor based on photovoltaic diode is fabricated by using CuDD as an electron acceptor and 4,4′,4″-tris-(2-methylphenyl phenylamino) triphenylamine(m-MTDATA) as an electron donor.The sensor is sensit...展开更多
In this study, solution processed composite films of nickel phthalocyanine(NiPc) and cobalt phthalocyanine(CoPc)are deposited by drop casting and under centrifugal force. The films are deposited on surface-type in...In this study, solution processed composite films of nickel phthalocyanine(NiPc) and cobalt phthalocyanine(CoPc)are deposited by drop casting and under centrifugal force. The films are deposited on surface-type inter-digitated silver electrodes on ceramic alumina substrates. The effects of illumination on the impedance and capacitance of the NiPc–CoPc composite samples are investigated. The samples deposited under centrifugal force show better conductivity than the samples deposited by drop casting technique. In terms of impedance and capacitance sensitivities the samples fabricated under centrifugal force are more sensitive than the drop casting samples. The values of impedance sensitivity(Sz)are equal to(-1.83) MΩ·cm^2/mW and(-5.365) MΩ·cm^2/mW for the samples fabricated using drop casting and under centrifugal force, respectively. Similarly, the values of capacitance sensitivity(Sc) are equal to 0.083 pF·cm^2/mW and 0.185 pF·cm~2/mW for the samples fabricated by drop casting and under centrifugal force. The films deposited using the different procedures could potentially be viable for different operational modes(i.e., conductive or capacitive) of the optical sensors. Both experimental and simulated results are discussed.展开更多
The fan-beam optical sensor is made up of many semiconductor lasers and detectors fixed around the wall alternately at a cross section of pneumatically conveying pipe. When the sensor works, a scanning light source em...The fan-beam optical sensor is made up of many semiconductor lasers and detectors fixed around the wall alternately at a cross section of pneumatically conveying pipe. When the sensor works, a scanning light source emits a 50° lamellar fan-beam through the gas-solid two phase flow, and the projection data resulting extinction effect of solid particles are detected at the same time. With the projection data, the flow rate mass can be calculated, and then the flow image can be reconstructed. In this paper, the design of the sensor including spatial arrangement of the structural parts, basic principle and measurement sensitivity distribution are introduced. The mathematical measurement model of solid mass flow rate is presented together with the testing results.展开更多
In-optical-sensor computing architectures based on neuro-inspired optical sensor arrays have become key milestones for in-sensor artificial intelligence(AI)technology,enabling intelligent vision sensing and extensive ...In-optical-sensor computing architectures based on neuro-inspired optical sensor arrays have become key milestones for in-sensor artificial intelligence(AI)technology,enabling intelligent vision sensing and extensive data processing.These architectures must demonstrate potential advantages in terms of mass production and complementary metal oxide semiconductor compatibility.Here,we introduce a visible-light-driven neuromorphic vision system that integrates front-end retinomorphic photosensors with a back-end artificial neural network(ANN),employing a single neuro-inspired indium-g allium-zinc-oxide photo transistor(NIP)featuring an aluminum sensitization layer(ASL).By methodically adjusting the ASL coverage on IGZO phototransistors,a fast-switching response-type and a synaptic response-type of IGZO photo transistors are successfully developed.Notably,the fabricated NIP shows a remarkable retina-like photoinduced synaptic plasticity under wavelengths up to 635 nm,with over256-states,weight update nonlinearity below 0.1,and a dynamic range of 64.01.Owing to this technology,a 6×6 neuro-inspired optical image sensor array with the NIP can perform highly integrated sensing,memory,and preprocessing functions,including contrast enhancement,and handwritten digit image recognition.The demonstrated prototype highlights the potential for efficient hardware implementations in in-sensor AI technologies.展开更多
This paper investigates the use of artificial neural networks(ANNs)as a viable digital twin or alternative to the typical whispering gallery mode(WGM)optical sensors in engineering systems,especially in dynamic enviro...This paper investigates the use of artificial neural networks(ANNs)as a viable digital twin or alternative to the typical whispering gallery mode(WGM)optical sensors in engineering systems,especially in dynamic environments like robotics.Because of its fragility and limited endurance,the WGM sensor which is based on micro-optical resonators is inappropriate in these kinds of situations.In order to address these issues,the paper suggests an ANN that is specifically designed for the system and makes use of the WGM sensor’s high-quality factor(Q-factor).By extending the applicability and endurance to dynamic contexts and reducing fragility problems,the ANN seeks to give high-resolution measurement.In order to minimize post-processing requirements and maintain system robustness,the study goal is for the ANN to function as a representative predictor of the WGM sensor output.The GUCnoid 1.0 humanoid robot is used in the paper as an example to show how the WGM optical sensors may improve humanoid robot performance for a variety of applications.The results of the experiments demonstrate that the sensitivity,precision,and resolution of ANN outputs and actual WGM shifts are equivalent.As a consequence,current obstacles to the widespread use of high-precision sensing in the robotics industry are removed,and the potential of ANNs as virtual substitutes or the digital twin for genuine WGM sensors in robotics systems is validated.So,this paper can be very beneficial not only to the sensing technologies that are used in robotics,which are subjected to the dynamic environments,but also to the industrial automation and human-machine interface.展开更多
Centrifugal microfluidic platforms are highly regarded for their potential in multiplexing and automation,as well as their wide range of applications,especially in separating blood plasma and manipulating two-phase fl...Centrifugal microfluidic platforms are highly regarded for their potential in multiplexing and automation,as well as their wide range of applications,especially in separating blood plasma and manipulating two-phase flows.However,the need to use stroboscopes or high-speed cameras for monitoring these tasks hinders the extensive use of these platforms in research and commercial settings.In this study,we introduce an innovative and cost-effective strategy for using an array of light-dependent resistors(LDRs)as optical sensors in microfluidic devices,particularly centrifugal platforms.While LDRs are attractive for their potential use as photodetectors,their bulky size frequently restricts their ability to provide high-resolution detection in microfluidic systems.Here,we use specific waveguides to direct light beams from narrow apertures onto the surface of LDRs.We integrated these LDRs into electrified Lab-on-a-Disc(eLOD)devices,with wireless connectivity to smartphones and laptops.This enables many applications,such as droplet/particle counting and velocity measurement,concentration analysis,fluidic interface detection in multiphase flows,real-time monitoring of sample volume on centrifugal platforms,and detection of blood plasma separation as an alternative to costly stroboscope devices,microscopes,and high-speed imaging.We used numerical simulations to evaluate various fluids and scenarios,which include rotation speeds of up to 50 rad/s and a range of droplet sizes.For the testbed,we used the developed eLOD device to analyze red blood cell(RBC)deformability and improve the automated detection of sickle cell anemia by monitoring differences in RBC deformability during centrifugation using the sensors’signals.In addition to sickle cell anemia,this device has the potential to facilitate low-cost automated detection of other medical conditions characterized by altered RBC deformability,such as thalassemia,malaria,and diabetes.展开更多
In the food production sector,quickly identifying potential hazards is crucial due to the resilience of many pathogens,which could lead to wasted production results and,more severely,epidemic outbreaks.E.coli monitori...In the food production sector,quickly identifying potential hazards is crucial due to the resilience of many pathogens,which could lead to wasted production results and,more severely,epidemic outbreaks.E.coli monitoring is essential;however,traditional quality control methods in fish farming are often slow and intrusive,thus promoting an increase in fish stress and mortality rates.This paper presents an alternative method by utilizing a prototype inspired by polarized optical microscopy(POM),constructed with a Raspberry Pi microprocessor to assess pixel patterns and calculate analyte levels.展开更多
Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality c...Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality characteristics of SPOF limit their integration with traditional fiber optic sensors.This article introduces for the first time a flexible fiber optic vibration sensor based on laser interference technology,which can be applied to vibration measurement under high stretch conditions.This sensor utilizes elastic optical fibers made of polydimethylsiloxane(PDMS)as sensing elements,combined with phase generating carrier technology,to achieve vibration measurement at 50−260 Hz within the stretch range of 0−42%.展开更多
Battery safety has emerged as a critical challenge for achieving carbon neutrality,driven by the increasing frequency of thermal runaway incidents in electric vehicles(EVs)and stationary energy storage systems(ESSs).C...Battery safety has emerged as a critical challenge for achieving carbon neutrality,driven by the increasing frequency of thermal runaway incidents in electric vehicles(EVs)and stationary energy storage systems(ESSs).Conventional battery monitoring technologies struggle to track multiple physicochemical parameters in real time,hindering early hazard detection.Embedded optical fiber sensors have gained prominence as a transformative solution for next-generation smart battery sensing,owing to their micrometer size,multiplexing capability,and electromagnetic immunity.However,comprehensive reviews focusing on their advancements in operando multi-parameter monitoring remain scarce,despite their critical importance for ensuring battery safety.To address this gap,this review first introduces a classification and the fundamental principles of advanced battery-oriented optical fiber sensors.Subsequently,it summarizes recent developments in single-parameter battery monitoring using optical fiber sensors.Building on this foundation,this review presents the first comprehensive analysis of multifunctional optical fiber sensing platforms capable of simultaneously tracking temperature,strain,pressure,refractive index,and monitoring battery aging.Targeted strategies are proposed to facilitate the practical development of this technology,including optimization of sensor integration techniques,minimizing sensor invasiveness,resolving the cross-sensitivity of fiber Bragg grating(FBG)through structural innovation,enhancing techno-economics,and combining with artificial intelligence(AI).By aligning academic research with industry requirements,this review provides a methodological roadmap for developing robust optical sensing systems to ensure battery safety in decarbonization-driven applications.展开更多
The measurement of spherical rotor orientation is crucial to the close-loop control of spherical motors. This paper presents a novel method for the measuring of three-degree-of-freedom (DOF) rotor orientation of spher...The measurement of spherical rotor orientation is crucial to the close-loop control of spherical motors. This paper presents a novel method for the measuring of three-degree-of-freedom (DOF) rotor orientation of spherical motors using optical sensors. The spatial orientation of spherical rotor is output in the form of ZXZ Euler angles. Firstly, the structure of the measuring system composed of optical sensors and the patterns on the rotor surface are presented, and the operational principle of recognizing intersection points between the optical ring detectors and the latitude/longitude on the rotor surface is illustrated. The analytical model of input-output characteristic is established for the measuring system of three-DOF rotor orientation. Afterwards, the effect of parameters of the optical ring detectors on the linearity, sensitivity, resolving power and measuring range of the measuring system is analyzed using the analytical model. Finally, the feasibility of the measurement is validated through experiments of prototype measuring system. The analysis is expected to be a basis for the design parameter optimization of the orientation measuring system of a PM spherical motor.展开更多
This paper presents the development of a bioinspired multifunctional flexible optical sensor(BioMFOS)as an ultrasensitive tool for force(intensity and location)and orientation sensing.The sensor structure is bioinspir...This paper presents the development of a bioinspired multifunctional flexible optical sensor(BioMFOS)as an ultrasensitive tool for force(intensity and location)and orientation sensing.The sensor structure is bioinspired in orb webs,which are multifunctional devices for prey capturing and vibration transmission.The multifunctional feature of the structure is achieved by using transparent resins that present both mechanical and optical properties for structural integrity and strain/deflection transmission as well as the optical signal transmission properties with core/cladding configuration of a waveguide.In this case,photocurable and polydimethylsiloxane(PDMS)resins are used for the core and cladding,respectively.The optical transmission,tensile tests,and dynamic mechanical analysis are performed in the resins and show the possibility of light transmission at the visible wavelength range in conjunction with high flexibility and a dynamic range up to 150 Hz,suitable for wearable applications.The BioMFOS has small dimensions(around 2 cm)and lightweight(0.8 g),making it suitable for wearable application and clothing integration.Characterization tests are performed in the structure by means of applying forces at different locations of the structure.The results show an ultra-high sensitivity and resolution,where forces in theμN range can be detected and the location of the applied force can also be detected with a sub-millimeter spatial resolution.Then,the BioMFOS is tested on the orientation detection in 3D plane,where a correlation coefficient higher than 0.9 is obtained when compared with a gold-standard inertial measurement unit(IMU).Furthermore,the device also shows its capabilities on the movement analysis and classification in two protocols:finger position detection(with the BioMFOS positioned on the top of the hand)and trunk orientation assessment(with the sensor integrated on the clothing).In both cases,the sensor is able of classifying the movement,especially when analyzed in conjunction with preprocessing and clustering techniques.As another wearable application,the respiratory rate is successfully estimated with the BioMFOS integrated into the clothing.Thus,the proposed multifunctional device opens new avenues for novel bioinspired photonic devices and can be used in many applications of biomedical,biomechanics,and micro/nanotechnology.展开更多
Responsive photonic crystals(RPCs) constructed by periodic two/three-dimensional(2D/3D) photonic crystals(PCs) and responsive-material hosts,are important visualized optical sensors.Their optical diffraction color can...Responsive photonic crystals(RPCs) constructed by periodic two/three-dimensional(2D/3D) photonic crystals(PCs) and responsive-material hosts,are important visualized optical sensors.Their optical diffraction color can be tuned reversibly by external stimuli,such as pH,metal ions,biomolecules,vapors and solvents,hence leading to wide applications as visualized sensors.This review introduces the recent progress of RPCs based on 2D/3D PCs for visual detection of chemical and biological analytes,including the preparation of 2D PCs,3D PCs films,3D PCs microbeads and their applications as visualized sensors.The different cases of detecting various chemical and biological analytes by naked eyes are presented.Emphasis is given to the description of their respective sensing mechanisms with the different systems for chemical and biological analytes.Compared with 3D RPCs sensors,2D RPCs sensors have shorter response time,better stabilization and higher production efficiency,however,the diffraction intensity of 2D RPCs based on monolayered 2D polystyrene(PS) microsphere array are weak.2D RPCs sensors based on 2D Au nanosphere can significantly improve the diffraction intensity compared with traditional 2D RPCs sensors based on monolayered PS microsphere array.The much higher scattering cross section of Au nanosphere leads to 2D Au nanosphere array with ultrahigh optical diffraction intensity,which are highly helpful for their practical application as visual sensors and further quantitative detection by monitoring the diffraction peak position and intensity.展开更多
In this article,highly sensitive and low confinement loss enriching micro structured photonic crystal fiber(PCF)has been suggested as an optical sensor.The proposed PCF is porous cored hexagonal(P-HPCF)where cladding ...In this article,highly sensitive and low confinement loss enriching micro structured photonic crystal fiber(PCF)has been suggested as an optical sensor.The proposed PCF is porous cored hexagonal(P-HPCF)where cladding contains five layers with circular air holes and core vicinity is formed by two layered elliptical air holes.Two fundamental propagation characteristics such as the relative sensitivity and confinement loss of the proposed P-HPCF have been numerically scrutinized by the full vectorial finite element method(FEM)simulation procedure.The optimized values are modified with different geometrical parameters like diameters of circular or elliptical air holes,pitches of the core,and cladding region over a spacious assortment of wavelength from 0.8 ktm to 1.8-m.All pretending results exhibit that the relative sensitivity is enlarged according to decrement of wavelength of the transmission band(O+E+S+C+L+U).In addition,all useable liquids reveal the maximum sensitivity of 57.00%,57.18%,and 57.27%for n=1.33,1.354,and 1.366 respectively by lower band.Moreover,effective area,nonlinear coefficient,frequency,propagation constant,total electric energy,total magnetic energy,and wave number in free space of the proposed P-HPCF have been reported recently.展开更多
Handheld optical sensors recently have been introduced to the agricultural market.These handheld sensors are able to provide operators with Normalized Difference Vegetative Index(NDVI)data when cloud cover prevents ac...Handheld optical sensors recently have been introduced to the agricultural market.These handheld sensors are able to provide operators with Normalized Difference Vegetative Index(NDVI)data when cloud cover prevents acquisition of satellite or aerial images.This research addressed the sensitivity of the GreenSeeker handheld optical sensor to changes in orientation and height above a ryegrass canopy.Planter boxes were oriented both parallel and perpendicular to the light beam from the sensor head and heights of 30.5 cm(12”),61.0 cm(24”),91.5 cm(36”),122 cm(48”)and 152 cm(60”)were tested.Results indicated that the sensor was highly sensitive(P<0.0001)to both height above canopy and orientation of the sensor relative to the target.Operators should follow manufacturer’s recommendations on operating height range of 81-122 cm and orient the sensor head in-line with the target to obtain maximum signal response.展开更多
Herein,we report on surface plasmon(SP)-sensitive semitransparent inverted polymer photovoltaic(PV)devices that are based on multilayered material systems consisting of poly(3-hexylthiophene):fullerene-derivative bulk...Herein,we report on surface plasmon(SP)-sensitive semitransparent inverted polymer photovoltaic(PV)devices that are based on multilayered material systems consisting of poly(3-hexylthiophene):fullerene-derivative bulk-heterojunction PV layers and thin gold or silver anodes.We demonstrate that these PV devices allow the simultaneous generation of both electrical power and SPs on their anodes for photoexcitation just above the optical absorption edge of the PV layers,resulting not only in attenuated total reflection,but also in attenuated photocurrent generation(APG)under the SP resonance(SPR)condition.Moreover,we also confirm that the biomolecular interaction of biotin–streptavidin on the PV devices can be precisely detected via apparent SPR angle shifts in the APG spectra,even without the need for complex attenuated total reflection configurations.We highlight our view that APG measurements made using these PV devices show great potential for the development of future generations of compact and highly sensitive SPR-based optical sensors.展开更多
Good linearity and wide dynamic range are the advantages of asymmetric Fabry-Pérot (F-P) interferometric cavity, whose realization has been long for. Based on optical thin film characteristic matrix theory, an ...Good linearity and wide dynamic range are the advantages of asymmetric Fabry-Pérot (F-P) interferometric cavity, whose realization has been long for. Based on optical thin film characteristic matrix theory, an asymmetric F-P interferometric cavity with good linearity and wide dynamic range is designed. And by choosing the material of two different thin metallic layers, the asymmetric F-P interferometric cavity is successfully fabricated. The design theory and method of this asymmetric F-P interferometric cavity have been described in detailed. In this paper an asymmetric F-P interferometric cavity used in fiber optical sensor is reported.展开更多
This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by ...This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by chemical method and their outsides are peeled to form particles of irregular distribution and they differ in size, so the slight disturbance range of stochastic wall are formed in fibers. According to the characteristics of power loss of waveguide mode caused by slight disturbance of stochastic wall and radiative mode transmission, the range of slight disturbance of stochastic wall may be served as the sensitive range of the sensor. On the basis of theory of slight disturbance of stochastic wall of planar optical waveguide, the relation between the corrosion time and the opposite power loss by experiments is investigated. In this paper, the measurement results of object of SIFORS are also presented. The results show that the optical sensor technique may be used in the damage evaluation of an aircraft.展开更多
Optical sensors provide a fast and real-time approach to detect benzene,toluene,ethylbenzene,and xylenes(BTEX)in environmental monitoring and industrial safety.However,detecting the concentration of a particular gas i...Optical sensors provide a fast and real-time approach to detect benzene,toluene,ethylbenzene,and xylenes(BTEX)in environmental monitoring and industrial safety.However,detecting the concentration of a particular gas in a mixture can be challenging.Here,we develop a machine-learning model that can precisely measure BTEX concentrations simultaneously based on an absorption spectroscopy gas sensing system.The convolutional neural network(CNN)is utilized to identify the absorbance spectra for each volatile,along with their concentrations in a mixture.A synthetic data set is generated using a series of physics-based simulations to create the predictive model.The data set consists of the overall absorbance of numerous random BTEX mixtures over time,based on various percentages of the permissible exposure limit(PEL).It is worth noting that benzene has a negligible absorbance(very low PEL,1–5 ppm)compared to other volatile gases,which makes it difficult to detect.To address this challenge,we introduce a 3-stage solution to accurately discriminate between all BTEX species,regardless of their concentration levels.As a result,the R-squared above 0.99 for toluene,ethylbenzene,and oxylene,and the R-squared above 0.96 for benzene,is achieved,indicating the model's capability to predict BTEX concentrations.展开更多
文摘Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architecture makes the PSD perform more functions by modifying its architecture.As the PSD is mainly formed of an array of photodiodes.The primary concept involves employing transistors to alternate between the operating modes of the photodiodes(photoconductive and photovoltaic).Additionally,alternating among output pins can be done based on the required function.This paper presents the mathematical modeling and simulation of a reconfigurable-multifunctional optical sensor which can perform energy harvesting and data acquisition,as well as positioning,which is not available in the traditional PSDs.Simulation using the MATLAB software tool was achieved to demonstrate the modeling.The simulation results confirmed the validity of the mathematical modeling and proved that the modified sensor architecture,as depicted by the equations,accurately describes its behavior.The proposed sensor is expected to extend the battery's lifecycle,reduce its physical size,and increase the integration and functionality of the system.The presented sensor might be used in free space optical(FSO)communication like cube satellites or even in underwater wireless optical communication(UWOC).
基金Project supported by the National Basic Research Program of China(Grant No.2010CB327601)
文摘We propose a novel high-performance digital optical sensor based on the Mach-Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the sensitivity of the sensor can be orders of magnitude higher than that of aconventional sensor, and high quality factor is not critical in it. Moreover, by optimizing the length of the feedback waveguide to be equal to the perimeter of the ring, the measurement range of the proposed sensor is twice as much as that of the conventional sensor in the weak coupling case.
基金supported by the Natural Science Foundationof Jilin Province (No.20060516)the Doctoral Foundation of JilinNormal University (No.2006006 and No.2007009)the Subject and Base Construction Foundation of Jilin Normal University (No.2006041)
文摘A novel Cu(I) complex with the formula of [Cu(DPEphos)(Dicnq)]BF4(CuDD) was synthesized and characterized by X-ray single crystal diffraction method,in which DPEphos and Dicnq denote bis[2-(diphenylphosphino)phenyl]ether and 6,7-Dicyanodipyrido[2,2-d:2 ,3 -f] quinoxaline,respectively.Organic ultraviolet optical sensor based on photovoltaic diode is fabricated by using CuDD as an electron acceptor and 4,4′,4″-tris-(2-methylphenyl phenylamino) triphenylamine(m-MTDATA) as an electron donor.The sensor is sensit...
基金supported by the Center for Advanced Materials(CAM),Qatar University,Qatar
文摘In this study, solution processed composite films of nickel phthalocyanine(NiPc) and cobalt phthalocyanine(CoPc)are deposited by drop casting and under centrifugal force. The films are deposited on surface-type inter-digitated silver electrodes on ceramic alumina substrates. The effects of illumination on the impedance and capacitance of the NiPc–CoPc composite samples are investigated. The samples deposited under centrifugal force show better conductivity than the samples deposited by drop casting technique. In terms of impedance and capacitance sensitivities the samples fabricated under centrifugal force are more sensitive than the drop casting samples. The values of impedance sensitivity(Sz)are equal to(-1.83) MΩ·cm^2/mW and(-5.365) MΩ·cm^2/mW for the samples fabricated using drop casting and under centrifugal force, respectively. Similarly, the values of capacitance sensitivity(Sc) are equal to 0.083 pF·cm^2/mW and 0.185 pF·cm~2/mW for the samples fabricated by drop casting and under centrifugal force. The films deposited using the different procedures could potentially be viable for different operational modes(i.e., conductive or capacitive) of the optical sensors. Both experimental and simulated results are discussed.
基金Project (No. 04009469) supported by the Natural Science Foundationof Guangdong, China
文摘The fan-beam optical sensor is made up of many semiconductor lasers and detectors fixed around the wall alternately at a cross section of pneumatically conveying pipe. When the sensor works, a scanning light source emits a 50° lamellar fan-beam through the gas-solid two phase flow, and the projection data resulting extinction effect of solid particles are detected at the same time. With the projection data, the flow rate mass can be calculated, and then the flow image can be reconstructed. In this paper, the design of the sensor including spatial arrangement of the structural parts, basic principle and measurement sensitivity distribution are introduced. The mathematical measurement model of solid mass flow rate is presented together with the testing results.
基金supported by the National Research Foundation of Korea(NRF)Grant funded by the Korea government(MSIT)(Grant No.RS-2023-00256917)Samsung Display。
文摘In-optical-sensor computing architectures based on neuro-inspired optical sensor arrays have become key milestones for in-sensor artificial intelligence(AI)technology,enabling intelligent vision sensing and extensive data processing.These architectures must demonstrate potential advantages in terms of mass production and complementary metal oxide semiconductor compatibility.Here,we introduce a visible-light-driven neuromorphic vision system that integrates front-end retinomorphic photosensors with a back-end artificial neural network(ANN),employing a single neuro-inspired indium-g allium-zinc-oxide photo transistor(NIP)featuring an aluminum sensitization layer(ASL).By methodically adjusting the ASL coverage on IGZO phototransistors,a fast-switching response-type and a synaptic response-type of IGZO photo transistors are successfully developed.Notably,the fabricated NIP shows a remarkable retina-like photoinduced synaptic plasticity under wavelengths up to 635 nm,with over256-states,weight update nonlinearity below 0.1,and a dynamic range of 64.01.Owing to this technology,a 6×6 neuro-inspired optical image sensor array with the NIP can perform highly integrated sensing,memory,and preprocessing functions,including contrast enhancement,and handwritten digit image recognition.The demonstrated prototype highlights the potential for efficient hardware implementations in in-sensor AI technologies.
文摘This paper investigates the use of artificial neural networks(ANNs)as a viable digital twin or alternative to the typical whispering gallery mode(WGM)optical sensors in engineering systems,especially in dynamic environments like robotics.Because of its fragility and limited endurance,the WGM sensor which is based on micro-optical resonators is inappropriate in these kinds of situations.In order to address these issues,the paper suggests an ANN that is specifically designed for the system and makes use of the WGM sensor’s high-quality factor(Q-factor).By extending the applicability and endurance to dynamic contexts and reducing fragility problems,the ANN seeks to give high-resolution measurement.In order to minimize post-processing requirements and maintain system robustness,the study goal is for the ANN to function as a representative predictor of the WGM sensor output.The GUCnoid 1.0 humanoid robot is used in the paper as an example to show how the WGM optical sensors may improve humanoid robot performance for a variety of applications.The results of the experiments demonstrate that the sensitivity,precision,and resolution of ANN outputs and actual WGM shifts are equivalent.As a consequence,current obstacles to the widespread use of high-precision sensing in the robotics industry are removed,and the potential of ANNs as virtual substitutes or the digital twin for genuine WGM sensors in robotics systems is validated.So,this paper can be very beneficial not only to the sensing technologies that are used in robotics,which are subjected to the dynamic environments,but also to the industrial automation and human-machine interface.
基金funding from CONAHCYT in the form of a scholarship as a member of the National System of Researchers(CVU:969467)the financial support of the FEMSA foundation.
文摘Centrifugal microfluidic platforms are highly regarded for their potential in multiplexing and automation,as well as their wide range of applications,especially in separating blood plasma and manipulating two-phase flows.However,the need to use stroboscopes or high-speed cameras for monitoring these tasks hinders the extensive use of these platforms in research and commercial settings.In this study,we introduce an innovative and cost-effective strategy for using an array of light-dependent resistors(LDRs)as optical sensors in microfluidic devices,particularly centrifugal platforms.While LDRs are attractive for their potential use as photodetectors,their bulky size frequently restricts their ability to provide high-resolution detection in microfluidic systems.Here,we use specific waveguides to direct light beams from narrow apertures onto the surface of LDRs.We integrated these LDRs into electrified Lab-on-a-Disc(eLOD)devices,with wireless connectivity to smartphones and laptops.This enables many applications,such as droplet/particle counting and velocity measurement,concentration analysis,fluidic interface detection in multiphase flows,real-time monitoring of sample volume on centrifugal platforms,and detection of blood plasma separation as an alternative to costly stroboscope devices,microscopes,and high-speed imaging.We used numerical simulations to evaluate various fluids and scenarios,which include rotation speeds of up to 50 rad/s and a range of droplet sizes.For the testbed,we used the developed eLOD device to analyze red blood cell(RBC)deformability and improve the automated detection of sickle cell anemia by monitoring differences in RBC deformability during centrifugation using the sensors’signals.In addition to sickle cell anemia,this device has the potential to facilitate low-cost automated detection of other medical conditions characterized by altered RBC deformability,such as thalassemia,malaria,and diabetes.
基金European Commission(CZ.10.03.01/00/22-003/0000048)Fundacao para a Ciencia e a Tecnologia(PTDC/EEI-EEE/0415/2021),CICECO(UIDB/50011/2020,UIDP/50011/2020,LA/P/0006/2020)+1 种基金VSB-Technical University of Ostrava(SP2025/039)FCT/MCTES(UI/BD/153066/2022)。
文摘In the food production sector,quickly identifying potential hazards is crucial due to the resilience of many pathogens,which could lead to wasted production results and,more severely,epidemic outbreaks.E.coli monitoring is essential;however,traditional quality control methods in fish farming are often slow and intrusive,thus promoting an increase in fish stress and mortality rates.This paper presents an alternative method by utilizing a prototype inspired by polarized optical microscopy(POM),constructed with a Raspberry Pi microprocessor to assess pixel patterns and calculate analyte levels.
文摘Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality characteristics of SPOF limit their integration with traditional fiber optic sensors.This article introduces for the first time a flexible fiber optic vibration sensor based on laser interference technology,which can be applied to vibration measurement under high stretch conditions.This sensor utilizes elastic optical fibers made of polydimethylsiloxane(PDMS)as sensing elements,combined with phase generating carrier technology,to achieve vibration measurement at 50−260 Hz within the stretch range of 0−42%.
基金the financial supports of the National Natural Science Foundation of China(No.52372200)a project supported by the State Key Laboratory of Mechanics and Control for Aerospace Structures(No.MCAS-S-0324G01)。
文摘Battery safety has emerged as a critical challenge for achieving carbon neutrality,driven by the increasing frequency of thermal runaway incidents in electric vehicles(EVs)and stationary energy storage systems(ESSs).Conventional battery monitoring technologies struggle to track multiple physicochemical parameters in real time,hindering early hazard detection.Embedded optical fiber sensors have gained prominence as a transformative solution for next-generation smart battery sensing,owing to their micrometer size,multiplexing capability,and electromagnetic immunity.However,comprehensive reviews focusing on their advancements in operando multi-parameter monitoring remain scarce,despite their critical importance for ensuring battery safety.To address this gap,this review first introduces a classification and the fundamental principles of advanced battery-oriented optical fiber sensors.Subsequently,it summarizes recent developments in single-parameter battery monitoring using optical fiber sensors.Building on this foundation,this review presents the first comprehensive analysis of multifunctional optical fiber sensing platforms capable of simultaneously tracking temperature,strain,pressure,refractive index,and monitoring battery aging.Targeted strategies are proposed to facilitate the practical development of this technology,including optimization of sensor integration techniques,minimizing sensor invasiveness,resolving the cross-sensitivity of fiber Bragg grating(FBG)through structural innovation,enhancing techno-economics,and combining with artificial intelligence(AI).By aligning academic research with industry requirements,this review provides a methodological roadmap for developing robust optical sensing systems to ensure battery safety in decarbonization-driven applications.
基金supported in part by the National Key Basic Research Program of China ("973" Project) (Grant No. 2013CB035602)the Key Program of National Natural Science Foundation of China (Grant No.51037004)the National Natural Science Foundation of China (Grant No. 51007061)
文摘The measurement of spherical rotor orientation is crucial to the close-loop control of spherical motors. This paper presents a novel method for the measuring of three-degree-of-freedom (DOF) rotor orientation of spherical motors using optical sensors. The spatial orientation of spherical rotor is output in the form of ZXZ Euler angles. Firstly, the structure of the measuring system composed of optical sensors and the patterns on the rotor surface are presented, and the operational principle of recognizing intersection points between the optical ring detectors and the latitude/longitude on the rotor surface is illustrated. The analytical model of input-output characteristic is established for the measuring system of three-DOF rotor orientation. Afterwards, the effect of parameters of the optical ring detectors on the linearity, sensitivity, resolving power and measuring range of the measuring system is analyzed using the analytical model. Finally, the feasibility of the measurement is validated through experiments of prototype measuring system. The analysis is expected to be a basis for the design parameter optimization of the orientation measuring system of a PM spherical motor.
基金FAPES(320/2020 and 84336650)CNPq(304049/2019-0 and 427054/2018-4)+2 种基金Fundação para a Ciência e a Tecnologia(FCT)through the DigiAqua project-PTDC/EEIEEE/0415/2021.C.FCT through the CEECIND/00034/2018(iFish project)developed within the scope of the project i3N,UIDB/50025/2020&UIDP/50025/2020financed by national funds through the FCT/MEC.
文摘This paper presents the development of a bioinspired multifunctional flexible optical sensor(BioMFOS)as an ultrasensitive tool for force(intensity and location)and orientation sensing.The sensor structure is bioinspired in orb webs,which are multifunctional devices for prey capturing and vibration transmission.The multifunctional feature of the structure is achieved by using transparent resins that present both mechanical and optical properties for structural integrity and strain/deflection transmission as well as the optical signal transmission properties with core/cladding configuration of a waveguide.In this case,photocurable and polydimethylsiloxane(PDMS)resins are used for the core and cladding,respectively.The optical transmission,tensile tests,and dynamic mechanical analysis are performed in the resins and show the possibility of light transmission at the visible wavelength range in conjunction with high flexibility and a dynamic range up to 150 Hz,suitable for wearable applications.The BioMFOS has small dimensions(around 2 cm)and lightweight(0.8 g),making it suitable for wearable application and clothing integration.Characterization tests are performed in the structure by means of applying forces at different locations of the structure.The results show an ultra-high sensitivity and resolution,where forces in theμN range can be detected and the location of the applied force can also be detected with a sub-millimeter spatial resolution.Then,the BioMFOS is tested on the orientation detection in 3D plane,where a correlation coefficient higher than 0.9 is obtained when compared with a gold-standard inertial measurement unit(IMU).Furthermore,the device also shows its capabilities on the movement analysis and classification in two protocols:finger position detection(with the BioMFOS positioned on the top of the hand)and trunk orientation assessment(with the sensor integrated on the clothing).In both cases,the sensor is able of classifying the movement,especially when analyzed in conjunction with preprocessing and clustering techniques.As another wearable application,the respiratory rate is successfully estimated with the BioMFOS integrated into the clothing.Thus,the proposed multifunctional device opens new avenues for novel bioinspired photonic devices and can be used in many applications of biomedical,biomechanics,and micro/nanotechnology.
基金supported by the National Natural Science Foundation of China(51371165,51571189)the Anhui Provincial Natural Science Foundation(1508085JGD07)+1 种基金the Crossdisciplinary Collaborative Teams Program in CASthe CAS/ SAFEA International Partnership Program for Creative Research Teams
文摘Responsive photonic crystals(RPCs) constructed by periodic two/three-dimensional(2D/3D) photonic crystals(PCs) and responsive-material hosts,are important visualized optical sensors.Their optical diffraction color can be tuned reversibly by external stimuli,such as pH,metal ions,biomolecules,vapors and solvents,hence leading to wide applications as visualized sensors.This review introduces the recent progress of RPCs based on 2D/3D PCs for visual detection of chemical and biological analytes,including the preparation of 2D PCs,3D PCs films,3D PCs microbeads and their applications as visualized sensors.The different cases of detecting various chemical and biological analytes by naked eyes are presented.Emphasis is given to the description of their respective sensing mechanisms with the different systems for chemical and biological analytes.Compared with 3D RPCs sensors,2D RPCs sensors have shorter response time,better stabilization and higher production efficiency,however,the diffraction intensity of 2D RPCs based on monolayered 2D polystyrene(PS) microsphere array are weak.2D RPCs sensors based on 2D Au nanosphere can significantly improve the diffraction intensity compared with traditional 2D RPCs sensors based on monolayered PS microsphere array.The much higher scattering cross section of Au nanosphere leads to 2D Au nanosphere array with ultrahigh optical diffraction intensity,which are highly helpful for their practical application as visual sensors and further quantitative detection by monitoring the diffraction peak position and intensity.
文摘In this article,highly sensitive and low confinement loss enriching micro structured photonic crystal fiber(PCF)has been suggested as an optical sensor.The proposed PCF is porous cored hexagonal(P-HPCF)where cladding contains five layers with circular air holes and core vicinity is formed by two layered elliptical air holes.Two fundamental propagation characteristics such as the relative sensitivity and confinement loss of the proposed P-HPCF have been numerically scrutinized by the full vectorial finite element method(FEM)simulation procedure.The optimized values are modified with different geometrical parameters like diameters of circular or elliptical air holes,pitches of the core,and cladding region over a spacious assortment of wavelength from 0.8 ktm to 1.8-m.All pretending results exhibit that the relative sensitivity is enlarged according to decrement of wavelength of the transmission band(O+E+S+C+L+U).In addition,all useable liquids reveal the maximum sensitivity of 57.00%,57.18%,and 57.27%for n=1.33,1.354,and 1.366 respectively by lower band.Moreover,effective area,nonlinear coefficient,frequency,propagation constant,total electric energy,total magnetic energy,and wave number in free space of the proposed P-HPCF have been reported recently.
文摘Handheld optical sensors recently have been introduced to the agricultural market.These handheld sensors are able to provide operators with Normalized Difference Vegetative Index(NDVI)data when cloud cover prevents acquisition of satellite or aerial images.This research addressed the sensitivity of the GreenSeeker handheld optical sensor to changes in orientation and height above a ryegrass canopy.Planter boxes were oriented both parallel and perpendicular to the light beam from the sensor head and heights of 30.5 cm(12”),61.0 cm(24”),91.5 cm(36”),122 cm(48”)and 152 cm(60”)were tested.Results indicated that the sensor was highly sensitive(P<0.0001)to both height above canopy and orientation of the sensor relative to the target.Operators should follow manufacturer’s recommendations on operating height range of 81-122 cm and orient the sensor head in-line with the target to obtain maximum signal response.
基金The authors thank H Takezoe for his careful reading and helpful comments on this paper.This work was supported by the Basic Science Research Program through National Research Foundations of Korea(NRF)Grant funded by the Korea Government(MSIP)(NRF-2010-0027963,2012R1A2A2A01015654 and 2014R1A2A1A10054643)by Kwangwoon University(2014)The authors also thank GC Kwon,JH Shin and J Choi for their helpful comments.
文摘Herein,we report on surface plasmon(SP)-sensitive semitransparent inverted polymer photovoltaic(PV)devices that are based on multilayered material systems consisting of poly(3-hexylthiophene):fullerene-derivative bulk-heterojunction PV layers and thin gold or silver anodes.We demonstrate that these PV devices allow the simultaneous generation of both electrical power and SPs on their anodes for photoexcitation just above the optical absorption edge of the PV layers,resulting not only in attenuated total reflection,but also in attenuated photocurrent generation(APG)under the SP resonance(SPR)condition.Moreover,we also confirm that the biomolecular interaction of biotin–streptavidin on the PV devices can be precisely detected via apparent SPR angle shifts in the APG spectra,even without the need for complex attenuated total reflection configurations.We highlight our view that APG measurements made using these PV devices show great potential for the development of future generations of compact and highly sensitive SPR-based optical sensors.
基金This work was supported by the National "863" Project of China (No. 2003AA311022)the National "973" Project of China (No. 2004CB719804)the National Natural Science Foundation of China (No. 10274108)the Natural Science Foundation of Guangdong Province of China.
文摘Good linearity and wide dynamic range are the advantages of asymmetric Fabry-Pérot (F-P) interferometric cavity, whose realization has been long for. Based on optical thin film characteristic matrix theory, an asymmetric F-P interferometric cavity with good linearity and wide dynamic range is designed. And by choosing the material of two different thin metallic layers, the asymmetric F-P interferometric cavity is successfully fabricated. The design theory and method of this asymmetric F-P interferometric cavity have been described in detailed. In this paper an asymmetric F-P interferometric cavity used in fiber optical sensor is reported.
文摘This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by chemical method and their outsides are peeled to form particles of irregular distribution and they differ in size, so the slight disturbance range of stochastic wall are formed in fibers. According to the characteristics of power loss of waveguide mode caused by slight disturbance of stochastic wall and radiative mode transmission, the range of slight disturbance of stochastic wall may be served as the sensitive range of the sensor. On the basis of theory of slight disturbance of stochastic wall of planar optical waveguide, the relation between the corrosion time and the opposite power loss by experiments is investigated. In this paper, the measurement results of object of SIFORS are also presented. The results show that the optical sensor technique may be used in the damage evaluation of an aircraft.
基金supported by the National Institute of Environmental Health Sciences(NIEHS)under award number:1R41ES034936-01-02。
文摘Optical sensors provide a fast and real-time approach to detect benzene,toluene,ethylbenzene,and xylenes(BTEX)in environmental monitoring and industrial safety.However,detecting the concentration of a particular gas in a mixture can be challenging.Here,we develop a machine-learning model that can precisely measure BTEX concentrations simultaneously based on an absorption spectroscopy gas sensing system.The convolutional neural network(CNN)is utilized to identify the absorbance spectra for each volatile,along with their concentrations in a mixture.A synthetic data set is generated using a series of physics-based simulations to create the predictive model.The data set consists of the overall absorbance of numerous random BTEX mixtures over time,based on various percentages of the permissible exposure limit(PEL).It is worth noting that benzene has a negligible absorbance(very low PEL,1–5 ppm)compared to other volatile gases,which makes it difficult to detect.To address this challenge,we introduce a 3-stage solution to accurately discriminate between all BTEX species,regardless of their concentration levels.As a result,the R-squared above 0.99 for toluene,ethylbenzene,and oxylene,and the R-squared above 0.96 for benzene,is achieved,indicating the model's capability to predict BTEX concentrations.