Overt and harmful diabetes mellitus(DM)has detrimental effects on individuals and,by extension,the community.Among the microvascular DM complications is diabetic retinopathy(DR).DR may cause irreversible vision deteri...Overt and harmful diabetes mellitus(DM)has detrimental effects on individuals and,by extension,the community.Among the microvascular DM complications is diabetic retinopathy(DR).DR may cause irreversible vision deterioration in cases of poor blood glucose regulation.Changes in vascular permeability are key trigger points for diabetic macular edema(DME),a condition characterized by the accumulation of fluid in the macula.The development of vascular endothelial growth factor(VEGF)pathway inhibitors has provided a pathogenesis-based treatment approach for DME.Optical coherence tomography(OCT)provides highresolution imaging of the anatomy,including the aging of DME and its structural damage,in distinct morphologic subtypes of macular edema,thereby supporting the assessment of macular edema treatment.The availability of repeated OCT monitoring provides clinical reassurance through the treatment.OCT angiography(OCTA)provides retinal blood flow maps with high spatial resolution.The ability promotes an understanding of disease pathogenesis and facilitates the implementation of new therapeutic methods.This review compares the potential of OCT and OCTA in the diagnosis and treatment of DME,as well as their respective therapeutic applications.展开更多
In the realm of secure information storage,optical encryption has emerged as a vital technique,particularly with the miniaturization of encryption devices.However,many existing systems lack the necessary reconfigurabi...In the realm of secure information storage,optical encryption has emerged as a vital technique,particularly with the miniaturization of encryption devices.However,many existing systems lack the necessary reconfigurability and dynamic functionality.This study presents a novel approach through the development of dynamic optical-to-chemical energy conversion metamaterials,which enable enhanced steganography and multilevel information storage.We introduce a micro-dynamic multiple encryption device that leverages programmable optical properties in coumarin-based metamaterials,achieved through a direct laser writing grayscale gradient strategy.This methodology allows for the dynamic regulation of photoluminescent characteristics and cross-linking networks,facilitating innovative steganographic techniques under varying light conditions.The integration of a multi-optical field control system enables real-time adjustments to the material’s properties,enhancing the device’s reconfigurability and storage capabilities.Our findings underscore the potential of these metamaterials in advancing the field of microscale optical encryption,paving the way for future applications in dynamic storage and information security.展开更多
Optical network-on-chip(ONoC) systems have emerged as a promising solution to overcome limitations of traditional electronic interconnects. Efficient ONoC architectures rely on optical routers, enabling high-speed dat...Optical network-on-chip(ONoC) systems have emerged as a promising solution to overcome limitations of traditional electronic interconnects. Efficient ONoC architectures rely on optical routers, enabling high-speed data transfer, efficient routing, and scalability. This paper presents a comprehensive survey analyzing optical router designs, specifically microring resonators(MRRs), Mach-Zehnder interferometers(MZIs), and hybrid architectures. Selected comparison criteria, chosen for their critical importance, significantly impact router functionality and performance. By emphasizing these criteria, valuable insights into the strengths and limitations of different designs are gained, facilitating informed decisions and advancements in optical networking. While other factors contribute to performance and efficiency, the chosen criteria consistently address fundamental elements, enabling meaningful evaluation. This work serves as a valuable resource for beginners, providing a solid foundation in understanding ONoC and optical routers. It also offers an in-depth survey for experts, laying the groundwork for further exploration. Additionally, the importance of considering design constraints and requirements when selecting an optimal router design is highlighted. Continued research and innovation will enable the development of efficient optical router solutions that meet the evolving needs of modern computing systems. This survey underscores the significance of ongoing advancements in the field and their potential impact on future technologies.展开更多
BACKGROUND Atypical optic neuritis,consisting of neuromyelitis optica spectrum disorders(NMOSD)or myelin oligodendrocyte glycoprotein antibody disease(MOGAD),has a very similar presentation but different prognostic im...BACKGROUND Atypical optic neuritis,consisting of neuromyelitis optica spectrum disorders(NMOSD)or myelin oligodendrocyte glycoprotein antibody disease(MOGAD),has a very similar presentation but different prognostic implications and longterm management strategies.Vascular and metabolic factors are being thought to play a role in such autoimmune neuro-inflammatory disorders,apart from the obvious immune mediated damage.With the advent of optical coherence tomography angiography(OCTA),it is easy to pick up on these subclinical macular microvascular and structural changes.AIM To study the macular microvascular and structural changes on OCTA in atypical optic neuritis.METHODS This observational cross-sectional study involved 8 NMOSD and 17 MOGAD patients,diagnosed serologically,as well as 10 healthy controls.Macular vascular density(MVD)and ganglion cell+inner plexiform layer thickness(GCIPL)were studied using OCTA.RESULTS There was a significant reduction in MVD in NMOSD and MOGAD affected as well as unaffected eyes when compared with healthy controls.NMOSD and MOGAD affected eyes had significant GCIPL thinning compared with healthy controls.NMOSD unaffected eyes did not show significant GCIPL thinning compared to healthy controls in contrast to MOGAD unaffected eyes.On comparing NMOSD with MOGAD,there was no significant difference in terms of MVD or GCIPL in the affected or unaffected eyes.CONCLUSION Although significant microvascular and structural changes are present on OCTA between atypical optic neuritis and normal patients,they could not help in differentiating between NMOSD and MOGAD cases.展开更多
Liquid crystal Pacharatnam-Berry phase optical elements(PBOEs)have found promising applications in augmented reality and virtual reality because of their slim formfactor,lightweight,and high optical efficiency.However...Liquid crystal Pacharatnam-Berry phase optical elements(PBOEs)have found promising applications in augmented reality and virtual reality because of their slim formfactor,lightweight,and high optical efficiency.However,chromatic aberration remains a serious longstanding problem for diffractive optics,hindering their broader adoption.To overcome the chromatic aberrations for red,green and blue(RGB)light sources,in this paper,we propose a counterintuitive multi-twist structure to achieve narrowband PBOEs without crosstalk,which plays a vital role to eliminate the chromatic aberration.The performance of our designed and fabricated narrowband Pacharatnam-Berry lenses(PBLs)aligns well with our simulation results.Furthermore,in a feasibility demonstration experiment using a laser projector,our proposed PBL system indeed exhibits a diminished chromatic aberration as compared to a broadband PBL.Additionally,polarization raytracing is implemented to demonstrate the versatility of the multi-twist structure for designing any RGB wavelengths with high contrast ratios.This analysis explores the feasibility of using RGB laser lines and quantum dot light-emitting diodes.Overall,our approach enables high optical efficiency,low fabrication complexity,and high degree of design freedom to accommodate any liquid crystal material and RGB light sources,holding immense potential for widespread applications of achromatic PBOEs.展开更多
In this study,we developed a single-beam optical trap-based surface-enhanced Raman scattering(SERS)optofluidic molecular fingerprint spectroscopy detection system.This system utilizes a single-beam optical trap to con...In this study,we developed a single-beam optical trap-based surface-enhanced Raman scattering(SERS)optofluidic molecular fingerprint spectroscopy detection system.This system utilizes a single-beam optical trap to concentrate free silver nanoparticles(AgNPs)within an optofluidic chip,significantly enhancing SERS performance.We investigated the optical field distribution characteristics within the tapered fiber using COMSOL simulation software and established a MATLAB simulation model to validate the single-beam optical trap's effectiveness in capturing AgNPs,demonstrating the theoretical feasibility of our approach.To verify the particle capture efficacy of the system,we experimentally controlled the optical trap's on-off state to manage the capture and release of particles precisely.The experimental results indicated that the Raman signal intensity in the capture state was significantly higher than in the non-capture state,confirming that the single-beam optical trap effectively enhances the SERS detection capability of the optofluidic detection system.Furthermore,we employed Raman mapping techniques to investigate the impact of the capture area on the SERS effect,revealing that the spectral intensity of molecular fingerprints in the laser-trapping region is significantly improved.We successfully detected the Raman spectrum of crystal violet at a concentration of 10^(−9)mol/L and pesticide thiram at a concentration of 10^(−5)mol/L,further demonstrating the ability of the single-beam optical trap in enhancing the molecular fingerprint spectrum identification capability of the SERS optofluidic chips.The optical trapping SERS optofluidic detection system developed in this study,as a key component of an integrated optoelectronic sensing system,holds the potential for integration with portable high-power lasers and high-performance Raman spectrometers.This integration is expected to advance highly integrated technologies and significantly enhance the overall performance and portability of optoelectronic sensing systems.展开更多
Multi-band optical networks are a potential technology for increasing network capacity.However,the strong interference and non-uniformity between wavelengths in multi-band optical networks have become a bottleneck res...Multi-band optical networks are a potential technology for increasing network capacity.However,the strong interference and non-uniformity between wavelengths in multi-band optical networks have become a bottleneck restricting the transmission capacity of multi-band optical networks.To overcome these challenges,it is particularly important to implement optical power optimization targeting wavelength differences.Therefore,based on the generalized Gaussian noise model,we first formulate an optimization model for the problems of routing,modulation format,wavelength,and power allocation in C+L+S multi-band optical networks.Our objective function is to maximize the average link capacity of the network while ensuring that the Optical Signal-to-Noise(OSNR)threshold of the service request is not exceeded.Next,we propose a NonLinear Interferenceaware(NLI-aware)routing,modulation format,wavelength,and power allocation algorithm.Finally,we conduct simulations under different test conditions.The simulation results indicate that our algorithm can effectively reduce the blocking probability by 23.5%and improve the average link capacity by 3.78%in C+L+S multi-band optical networks.展开更多
The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled p...The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled phased array antenna system is a necessary trend for the future development of the phased array,and it is also a major focus and difficulty in the current research of integrated microwave photonics.This paper firstly introduces the basic principle and development history of optical true time delay phased array antenna system based on microwave photonics,and briefly introduces the main implementation methods and integration platform of optical true time delay.Then,the application and development prospect of optical true time delay technology in beam control of phased array antenna system are mainly presented.Finally,according to the current research progress,the possible research directions of integrated optically controlled phased array antenna systems in the future are proposed.展开更多
High-finesse optical reference cavities are essential tools for fundamental research.In response to China’s historical reliance on importing high-finesse optical reference cavities,we successfully developed a cavity ...High-finesse optical reference cavities are essential tools for fundamental research.In response to China’s historical reliance on importing high-finesse optical reference cavities,we successfully developed a cavity using ultralow expansion glass(ULE)materials and processed it entirely in China.Using the method of measuring the cavity linewidth,a finesse of approximately 480000 was obtained in our experiments.We adopted a relatively simple and effective approach to test the optical reference cavity,which involved measuring the resonant points using an ultrastable laser.Remarkably,an expansion coefficient of the Chinese ULE optical reference cavity reached up to the order of 10^(-9)/K within the temperature range of 27℃to 40℃,with the zero expansion point occurring at approximately 34oC.These findings demonstrate China’s independent capability to develop high-finesse optical reference cavities,which is a significant advancement in precision optics.展开更多
AIM:To investigate the value of optical coherence tomography angiography(OCTA)indicators in the diagnosis of diabetic retinopathy(DR),and to provide patients with diabetic nephropathy(DN)with more sensitive OCTA scree...AIM:To investigate the value of optical coherence tomography angiography(OCTA)indicators in the diagnosis of diabetic retinopathy(DR),and to provide patients with diabetic nephropathy(DN)with more sensitive OCTA screening indicators to detect concurrent DR at an early stage.METHODS:A total of 200 patients who treated in the ophthalmology department of the Seventh Affiliated Hospital,Sun Yat-sen University from 2022 to 2023 were included,including 95 first-diagnosed DR patients and 105 patients without DR,and all patients underwent OCTA examination and a collection of demographics and renal function parameters.After a quality check,automated measurements of the foveal avascular zone area,vessel density(VD),and perfusion density(PD)of both 3 mm×3 mm and 6 mm×6 mm windows were obtained.RESULTS:Using random forest and multivariate Logistic regression methods,we developed a diagnostic model for DR based on 12 variables(age,FBG,SBP,DBP,HbA1c,ALT,ALP,urea/Scr,DM duration,HUA,DN,and CMT).Adding specific OCTA parameters enhanced the efficacy of the existing diagnostic model for DR(outer vessel density in 6 mm×6 mm window,AUC=0.837 vs 0.819,P=0.03).In the study of DN patients,the parameters in the 6 mm×6 mm window improved the diagnostic efficacy of DR(inner VD;outer VD;full VD;outer PD;full PD).CONCLUSION:The outer VD in the 6 mm×6 mm window can enhance the efficacy of the traditional DR diagnostic model.Meanwhile,compared with the 3 mm×3 mm window,the microvascular parameters in the 6 mm×6 mm window focusing on DN patients can be more sensitive to diagnosing the occurrence of DR.展开更多
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran...Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.展开更多
Optogenetic has been widely applied in various pathogenesis investigations of neuropathic diseases since its accurate and targeted regulation of neuronal activity.However,due to the mismatch between the soft tissues a...Optogenetic has been widely applied in various pathogenesis investigations of neuropathic diseases since its accurate and targeted regulation of neuronal activity.However,due to the mismatch between the soft tissues and the optical waveguide,the long-term neural regulation within soft tissue(such as brain and spinal cord)by implantable optical fibers is a large challenge.Herein,we designed a modulus selfadaptive hydrogel optical fiber(MSHOF)with tunable mechanical properties(Young’modulus was tunable in the range of 0.32-10.56MPa)and low light attenuation(0.12-0.21 dB/cm,472nm laser light),which adapts to light transmission under soft tissues.These advantages of MSHOF can ensure the effectiveness of optogenetic stimulation meanwhile safeguarding the safety of the brain/materials interaction interface.In addition,this work provides more design possibilities of MSHOF for photogenetic stimuli and has significant application prospects in photomedical therapy.展开更多
An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyram...An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.展开更多
Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality c...Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality characteristics of SPOF limit their integration with traditional fiber optic sensors.This article introduces for the first time a flexible fiber optic vibration sensor based on laser interference technology,which can be applied to vibration measurement under high stretch conditions.This sensor utilizes elastic optical fibers made of polydimethylsiloxane(PDMS)as sensing elements,combined with phase generating carrier technology,to achieve vibration measurement at 50−260 Hz within the stretch range of 0−42%.展开更多
BACKGROUND Early detection of esophageal squamous neoplasms(ESN)is essential for improving patient prognosis.Optical diagnosis of ESN remains challenging.Probebased confocal laser endomicroscopy(pCLE)enables accurate ...BACKGROUND Early detection of esophageal squamous neoplasms(ESN)is essential for improving patient prognosis.Optical diagnosis of ESN remains challenging.Probebased confocal laser endomicroscopy(pCLE)enables accurate in vivo histological observation and optical biopsy of ESN.However,interpretation of pCLE images requires histopathological expertise and extensive training.Artificial intelligence(AI)has been widely applied in digestive endoscopy;however,AI for pCLE diagnosis of ESN has not been reported.AIM To develop a pCLE computer-aided diagnostic system for ESN and assess its diagnostic performance and assistant efficiency for nonexpert endoscopists.METHODS The intelligent confocal laser endomicroscopy(iCLE)system consists of image recognition(based on inception-ResNet V2),video diagnosis,and quality judgment modules.This system was developed using pCLE images and videos and evaluated through image and prospective video recognition tests.Patients between June 2020 and January 2023 were prospectively enrolled.Expert and nonexpert endoscopists and the iCLE independently performed diagnoses for pCLE videos,with histopathology as the gold standard.Thereafter,the non-expert endoscopists performed a second assessment with iCLE assistance.RESULTS A total of 25056 images from 2803 patients were selected for iCLE training and validation.Another 2442 images from 226 patients were used for testing.iCLE achieved a high accuracy of 98.3%,sensitivity of 95.3%and specificity of 98.8%for diagnosing ESN images.A total of 2581 patients underwent upper gastrointestinal pCLE examination and were prospectively screened;54 patients with suspected ESN were enrolled.Overall,187 videos from 67 lesions were assessed by iCLE,three nonexpert and three expert endoscopists.iCLE achieved a high accuracy,sensitivity and specificity of 90.9%,92.0%,and 90.2%,respectively.Compared to experts,iCLE showed significantly higher sensitivity(92.0%vs 80.4%;P<0.001)and negative predictive value(94.4%vs 87.7%;P=0.003).With iCLE assistance,nonexpert endoscopists showed significant improvements in accuracy(from 83.6%to 88.6%)and sensitivity(from 76.0%to 89.8%).CONCLUSION iCLE system demonstrated high diagnostic performance for ESN.It can assist nonexpert endoscopists in improving the diagnostic efficiency of pCLE for ESN and has the potential for reducing unnecessary biopsies.展开更多
AIM:To explore the morphological and functional parameters to evaluate the effectiveness of intravitreal injections of ranibizumab(IVR)in treating macular edema(ME)secondary to retinal vein occlusion(RVO).METHODS:This...AIM:To explore the morphological and functional parameters to evaluate the effectiveness of intravitreal injections of ranibizumab(IVR)in treating macular edema(ME)secondary to retinal vein occlusion(RVO).METHODS:This retrospective study involved 65 RVO patients(65 eyes)who received IVR and were followedup for more than 3mo.ME was categorized into cystoid macular edema(CME),diffuse retinal thickening(DRT),and serous retinal detachment(SRD)according to optical coherence tomography(OCT)images.The comparison of best corrected visual acuity(BCVA;logMAR)and central macular thickness(CMT)among different follow-up points and those among 3 groups were performed by Kruskal-Wallis test.The correlation between BCVA and baseline parameters during treatment was analyzed using Spearman correlation analysis.RESULTS:BCVA tended to improve in all groups,with marked improvement in CME and DRT groups.CMT showed the greatest reduction after 1wk,and remained stable over the following 3mo.DRT patients had the worst BCVA and the highest CMT at baseline,but the differences became smaller after IVR treatment.CMT in SRD group was significantly better than in CME and DRT groups 3mo after IVR.Most patients of CME and SRD groups transitioned to a normal pattern at 3mo follow-up.DRT patients were most likely to transform into the other morphological groups,while SRD patients showed minimal transitions.BCVA at baseline was identified as the most important prognostic indicator in all 3 groups.Additionally,DRT patients with a longer clinical course,higher CMT and central retinal vein occlusion(CRVO)tend to exhibit worse BCVA after treatment.In addition,CRVO patients are more likely to have worse BCVA at 2 and 3mo follow-up compared with branch retinal vein occlusion(BRVO)patients in CME group.SRD patients with higher baseline CMT were prone to experiencing worse BCVA after treatment.CONCLUSION:The effectiveness of IVR is strongly correlated with baseline BCVA in all 3 groups.Baseline parameters including clinical course,CMT,and RVO position are also useful in predicting the BCVA at different time points after treatment.展开更多
Optical field manipulation,an emerging frontier in photonics,demonstrates significant potential in biomedical microscopy,quantum state engineering,and micro-nano fabrication.To address the critical limitations of curr...Optical field manipulation,an emerging frontier in photonics,demonstrates significant potential in biomedical microscopy,quantum state engineering,and micro-nano fabrication.To address the critical limitations of current optical modulation technologies in achieving full-parameter precision control,we proposed a novel approach for dynamic azimuthal optical field modulation based on dual-spiral arrays.By designing spatially interleaved spiral structures with different initial radii while maintaining identical periodic parameters,we achieved continuous optical modulation spanning the full 0-2πrange in azimuthal field distribution.Through rigorous numerical simulations,we systematically established a quantitative correlation between the structural parameters and azimuthal optical field patterns,revealing,for the first time,a quasi-linear relationship between the radius difference and the resultant optical distribution.This theoretical framework advances our fundamental understanding of structured optical field manipulation as well as provides a new paradigm for programmable photonic device design,with distinct technical advantages in super-resolution imaging and optical tweezer systems.展开更多
In this paper,a double-effect DNN-based Digital Back-Propagation(DBP)scheme is proposed and studied to achieve the Integrated Communication and Sensing(ICS)ability,which can not only realize nonlinear damage mitigatio...In this paper,a double-effect DNN-based Digital Back-Propagation(DBP)scheme is proposed and studied to achieve the Integrated Communication and Sensing(ICS)ability,which can not only realize nonlinear damage mitigation but also monitor the optical power and dispersion profile over multi-span links.The link status information can be extracted by the characteristics of the learned optical fiber parameters without any other measuring instruments.The efficiency and feasibility of this method have been investigated in different fiber link conditions,including various launch power,transmission distance,and the location and the amount of the abnormal losses.A good monitoring performance can be obtained while the launch optical power is 2 dBm which does not affect the normal operation of the optical communication system and the step size of DBP is 20 km which can provide a better distance resolution.This scheme successfully detects the location of single or multiple optical attenuators in long-distance multi-span fiber links,including different abnormal losses of 2 dB,4 dB,and 6 dB in 360 km and serval combinations of abnormal losses of(1 dB,5 dB),(3 dB,3 dB),(5 dB,1 dB)in 360 km and 760 km.Meanwhile,the transfer relationship of the estimated coefficient values with different step sizes is further investigated to reduce the complexity of the fiber nonlinear damage compensation.These results provide an attractive approach for precisely sensing the optical fiber link status information and making correct strategies timely to ensure optical communication system operations.展开更多
Herein,we report the synthesis and third-order nonlinear optical(NLO)properties of a novel cage-based 2D metal-organic framework constructed from Ti_(4)L_(6)(L4-=embonate)cage combined with Mg^(2+)and tris[4-(1H-imida...Herein,we report the synthesis and third-order nonlinear optical(NLO)properties of a novel cage-based 2D metal-organic framework constructed from Ti_(4)L_(6)(L4-=embonate)cage combined with Mg^(2+)and tris[4-(1H-imidazol-1-yl)phenyl]amine(tipa)ligand,whose molecular formula is(Me_(2)CH_(2))_(2)[Mg_(3)(Ti_(4)L_(6))(tipa)(H_(2)O)_(12)](PTC‑378).The Ti_(4)L_(6)tetrahedral cages serve as robust building units,while the Mg^(2+)ions and tipa ligands provide structural stability and tunable optical properties.The resulting PTC‑378 film exhibited intriguing third-order NLO property,which was systematically investigated using Z-scan techniques.Our results demonstrate that the synergistic interaction between Ti_(4)L_(6)cages andπ-conjugated ligands significantly enhances the NLO performance of the materials.CCDC:2453909.展开更多
To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these me...To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.展开更多
文摘Overt and harmful diabetes mellitus(DM)has detrimental effects on individuals and,by extension,the community.Among the microvascular DM complications is diabetic retinopathy(DR).DR may cause irreversible vision deterioration in cases of poor blood glucose regulation.Changes in vascular permeability are key trigger points for diabetic macular edema(DME),a condition characterized by the accumulation of fluid in the macula.The development of vascular endothelial growth factor(VEGF)pathway inhibitors has provided a pathogenesis-based treatment approach for DME.Optical coherence tomography(OCT)provides highresolution imaging of the anatomy,including the aging of DME and its structural damage,in distinct morphologic subtypes of macular edema,thereby supporting the assessment of macular edema treatment.The availability of repeated OCT monitoring provides clinical reassurance through the treatment.OCT angiography(OCTA)provides retinal blood flow maps with high spatial resolution.The ability promotes an understanding of disease pathogenesis and facilitates the implementation of new therapeutic methods.This review compares the potential of OCT and OCTA in the diagnosis and treatment of DME,as well as their respective therapeutic applications.
基金the National Key R&D Program of China(Project No.2022YFB4700100)National Natural Science Foundation of China(Grant Nos.61973298)+2 种基金Hong Kong Research Grants Council(GRF Project Number 11216120)the CAS-RGC Joint Laboratory Funding Scheme(Project Number JLFS/E-104/18)the Innovation Promotion Research Association of the Chinese Academy of Sciences(NO.2022199)。
文摘In the realm of secure information storage,optical encryption has emerged as a vital technique,particularly with the miniaturization of encryption devices.However,many existing systems lack the necessary reconfigurability and dynamic functionality.This study presents a novel approach through the development of dynamic optical-to-chemical energy conversion metamaterials,which enable enhanced steganography and multilevel information storage.We introduce a micro-dynamic multiple encryption device that leverages programmable optical properties in coumarin-based metamaterials,achieved through a direct laser writing grayscale gradient strategy.This methodology allows for the dynamic regulation of photoluminescent characteristics and cross-linking networks,facilitating innovative steganographic techniques under varying light conditions.The integration of a multi-optical field control system enables real-time adjustments to the material’s properties,enhancing the device’s reconfigurability and storage capabilities.Our findings underscore the potential of these metamaterials in advancing the field of microscale optical encryption,paving the way for future applications in dynamic storage and information security.
文摘Optical network-on-chip(ONoC) systems have emerged as a promising solution to overcome limitations of traditional electronic interconnects. Efficient ONoC architectures rely on optical routers, enabling high-speed data transfer, efficient routing, and scalability. This paper presents a comprehensive survey analyzing optical router designs, specifically microring resonators(MRRs), Mach-Zehnder interferometers(MZIs), and hybrid architectures. Selected comparison criteria, chosen for their critical importance, significantly impact router functionality and performance. By emphasizing these criteria, valuable insights into the strengths and limitations of different designs are gained, facilitating informed decisions and advancements in optical networking. While other factors contribute to performance and efficiency, the chosen criteria consistently address fundamental elements, enabling meaningful evaluation. This work serves as a valuable resource for beginners, providing a solid foundation in understanding ONoC and optical routers. It also offers an in-depth survey for experts, laying the groundwork for further exploration. Additionally, the importance of considering design constraints and requirements when selecting an optimal router design is highlighted. Continued research and innovation will enable the development of efficient optical router solutions that meet the evolving needs of modern computing systems. This survey underscores the significance of ongoing advancements in the field and their potential impact on future technologies.
文摘BACKGROUND Atypical optic neuritis,consisting of neuromyelitis optica spectrum disorders(NMOSD)or myelin oligodendrocyte glycoprotein antibody disease(MOGAD),has a very similar presentation but different prognostic implications and longterm management strategies.Vascular and metabolic factors are being thought to play a role in such autoimmune neuro-inflammatory disorders,apart from the obvious immune mediated damage.With the advent of optical coherence tomography angiography(OCTA),it is easy to pick up on these subclinical macular microvascular and structural changes.AIM To study the macular microvascular and structural changes on OCTA in atypical optic neuritis.METHODS This observational cross-sectional study involved 8 NMOSD and 17 MOGAD patients,diagnosed serologically,as well as 10 healthy controls.Macular vascular density(MVD)and ganglion cell+inner plexiform layer thickness(GCIPL)were studied using OCTA.RESULTS There was a significant reduction in MVD in NMOSD and MOGAD affected as well as unaffected eyes when compared with healthy controls.NMOSD and MOGAD affected eyes had significant GCIPL thinning compared with healthy controls.NMOSD unaffected eyes did not show significant GCIPL thinning compared to healthy controls in contrast to MOGAD unaffected eyes.On comparing NMOSD with MOGAD,there was no significant difference in terms of MVD or GCIPL in the affected or unaffected eyes.CONCLUSION Although significant microvascular and structural changes are present on OCTA between atypical optic neuritis and normal patients,they could not help in differentiating between NMOSD and MOGAD cases.
基金supports from the National Key Research and Development Program of China(2023YFB2806803)the National Natural Science Foundation of China(62075127).
文摘Liquid crystal Pacharatnam-Berry phase optical elements(PBOEs)have found promising applications in augmented reality and virtual reality because of their slim formfactor,lightweight,and high optical efficiency.However,chromatic aberration remains a serious longstanding problem for diffractive optics,hindering their broader adoption.To overcome the chromatic aberrations for red,green and blue(RGB)light sources,in this paper,we propose a counterintuitive multi-twist structure to achieve narrowband PBOEs without crosstalk,which plays a vital role to eliminate the chromatic aberration.The performance of our designed and fabricated narrowband Pacharatnam-Berry lenses(PBLs)aligns well with our simulation results.Furthermore,in a feasibility demonstration experiment using a laser projector,our proposed PBL system indeed exhibits a diminished chromatic aberration as compared to a broadband PBL.Additionally,polarization raytracing is implemented to demonstrate the versatility of the multi-twist structure for designing any RGB wavelengths with high contrast ratios.This analysis explores the feasibility of using RGB laser lines and quantum dot light-emitting diodes.Overall,our approach enables high optical efficiency,low fabrication complexity,and high degree of design freedom to accommodate any liquid crystal material and RGB light sources,holding immense potential for widespread applications of achromatic PBOEs.
基金financial supports from National Natural Science Foundation of China(62175023).
文摘In this study,we developed a single-beam optical trap-based surface-enhanced Raman scattering(SERS)optofluidic molecular fingerprint spectroscopy detection system.This system utilizes a single-beam optical trap to concentrate free silver nanoparticles(AgNPs)within an optofluidic chip,significantly enhancing SERS performance.We investigated the optical field distribution characteristics within the tapered fiber using COMSOL simulation software and established a MATLAB simulation model to validate the single-beam optical trap's effectiveness in capturing AgNPs,demonstrating the theoretical feasibility of our approach.To verify the particle capture efficacy of the system,we experimentally controlled the optical trap's on-off state to manage the capture and release of particles precisely.The experimental results indicated that the Raman signal intensity in the capture state was significantly higher than in the non-capture state,confirming that the single-beam optical trap effectively enhances the SERS detection capability of the optofluidic detection system.Furthermore,we employed Raman mapping techniques to investigate the impact of the capture area on the SERS effect,revealing that the spectral intensity of molecular fingerprints in the laser-trapping region is significantly improved.We successfully detected the Raman spectrum of crystal violet at a concentration of 10^(−9)mol/L and pesticide thiram at a concentration of 10^(−5)mol/L,further demonstrating the ability of the single-beam optical trap in enhancing the molecular fingerprint spectrum identification capability of the SERS optofluidic chips.The optical trapping SERS optofluidic detection system developed in this study,as a key component of an integrated optoelectronic sensing system,holds the potential for integration with portable high-power lasers and high-performance Raman spectrometers.This integration is expected to advance highly integrated technologies and significantly enhance the overall performance and portability of optoelectronic sensing systems.
基金supported in part by the National Natural Science Foundation of China under Grants U21B2005,62201105,62331017,U24B20134,62222103,and 62025105in part by the Chongqing Municipal Education Commission under Grants KJQN202400621,KJQN202100643,and KJZDK202400608+1 种基金in part by the China Postdoctoral Science Foundation under Grant 2021M700563in part by the Chongqing Postdoctoral Funding Project under Grant 2021XM3052。
文摘Multi-band optical networks are a potential technology for increasing network capacity.However,the strong interference and non-uniformity between wavelengths in multi-band optical networks have become a bottleneck restricting the transmission capacity of multi-band optical networks.To overcome these challenges,it is particularly important to implement optical power optimization targeting wavelength differences.Therefore,based on the generalized Gaussian noise model,we first formulate an optimization model for the problems of routing,modulation format,wavelength,and power allocation in C+L+S multi-band optical networks.Our objective function is to maximize the average link capacity of the network while ensuring that the Optical Signal-to-Noise(OSNR)threshold of the service request is not exceeded.Next,we propose a NonLinear Interferenceaware(NLI-aware)routing,modulation format,wavelength,and power allocation algorithm.Finally,we conduct simulations under different test conditions.The simulation results indicate that our algorithm can effectively reduce the blocking probability by 23.5%and improve the average link capacity by 3.78%in C+L+S multi-band optical networks.
基金supported by Fund of State Key Laboratory of IPOC(BUPT)(No.IPOC2021ZT16),China.
文摘The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled phased array antenna system is a necessary trend for the future development of the phased array,and it is also a major focus and difficulty in the current research of integrated microwave photonics.This paper firstly introduces the basic principle and development history of optical true time delay phased array antenna system based on microwave photonics,and briefly introduces the main implementation methods and integration platform of optical true time delay.Then,the application and development prospect of optical true time delay technology in beam control of phased array antenna system are mainly presented.Finally,according to the current research progress,the possible research directions of integrated optically controlled phased array antenna systems in the future are proposed.
基金supported by the National Natural Science Foundation of China(Grant Nos.12103059 and 12033007)the National Major Science and Technology Infrastructure Project of China(Grant No.2017-000052-73-01-002401)+3 种基金Xi’an Science and Technology Bureau(Grant No.E019XK1S04)Sanqin Talents’Special Support Program(Grant No.09R0557A00)the Youth Innovation Promotion Association of the Chinese Academy of Science(Grant No.1188000XGJ)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0300900)。
文摘High-finesse optical reference cavities are essential tools for fundamental research.In response to China’s historical reliance on importing high-finesse optical reference cavities,we successfully developed a cavity using ultralow expansion glass(ULE)materials and processed it entirely in China.Using the method of measuring the cavity linewidth,a finesse of approximately 480000 was obtained in our experiments.We adopted a relatively simple and effective approach to test the optical reference cavity,which involved measuring the resonant points using an ultrastable laser.Remarkably,an expansion coefficient of the Chinese ULE optical reference cavity reached up to the order of 10^(-9)/K within the temperature range of 27℃to 40℃,with the zero expansion point occurring at approximately 34oC.These findings demonstrate China’s independent capability to develop high-finesse optical reference cavities,which is a significant advancement in precision optics.
文摘AIM:To investigate the value of optical coherence tomography angiography(OCTA)indicators in the diagnosis of diabetic retinopathy(DR),and to provide patients with diabetic nephropathy(DN)with more sensitive OCTA screening indicators to detect concurrent DR at an early stage.METHODS:A total of 200 patients who treated in the ophthalmology department of the Seventh Affiliated Hospital,Sun Yat-sen University from 2022 to 2023 were included,including 95 first-diagnosed DR patients and 105 patients without DR,and all patients underwent OCTA examination and a collection of demographics and renal function parameters.After a quality check,automated measurements of the foveal avascular zone area,vessel density(VD),and perfusion density(PD)of both 3 mm×3 mm and 6 mm×6 mm windows were obtained.RESULTS:Using random forest and multivariate Logistic regression methods,we developed a diagnostic model for DR based on 12 variables(age,FBG,SBP,DBP,HbA1c,ALT,ALP,urea/Scr,DM duration,HUA,DN,and CMT).Adding specific OCTA parameters enhanced the efficacy of the existing diagnostic model for DR(outer vessel density in 6 mm×6 mm window,AUC=0.837 vs 0.819,P=0.03).In the study of DN patients,the parameters in the 6 mm×6 mm window improved the diagnostic efficacy of DR(inner VD;outer VD;full VD;outer PD;full PD).CONCLUSION:The outer VD in the 6 mm×6 mm window can enhance the efficacy of the traditional DR diagnostic model.Meanwhile,compared with the 3 mm×3 mm window,the microvascular parameters in the 6 mm×6 mm window focusing on DN patients can be more sensitive to diagnosing the occurrence of DR.
基金research was funded by Science and Technology Project of State Grid Corporation of China under grant number 5200-202319382A-2-3-XG.
文摘Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.
基金supported by the National Key Research and Development Program of China(Nos.2021YFA1201302 and 2021YFA1201300)the National Natural Science Foundation of China(Nos.52303033,52173029)+1 种基金Shanghai Sailing Program(No.23YF1400400)the Natural Science Foundation of Shanghai(No.21ZR1400500).
文摘Optogenetic has been widely applied in various pathogenesis investigations of neuropathic diseases since its accurate and targeted regulation of neuronal activity.However,due to the mismatch between the soft tissues and the optical waveguide,the long-term neural regulation within soft tissue(such as brain and spinal cord)by implantable optical fibers is a large challenge.Herein,we designed a modulus selfadaptive hydrogel optical fiber(MSHOF)with tunable mechanical properties(Young’modulus was tunable in the range of 0.32-10.56MPa)and low light attenuation(0.12-0.21 dB/cm,472nm laser light),which adapts to light transmission under soft tissues.These advantages of MSHOF can ensure the effectiveness of optogenetic stimulation meanwhile safeguarding the safety of the brain/materials interaction interface.In addition,this work provides more design possibilities of MSHOF for photogenetic stimuli and has significant application prospects in photomedical therapy.
基金supported by the National Natural Science Foundation of China(No.62241109)the Tianjin Science and Technology Commissioner Project(No.20YDTPJC01110)。
文摘An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.
文摘Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality characteristics of SPOF limit their integration with traditional fiber optic sensors.This article introduces for the first time a flexible fiber optic vibration sensor based on laser interference technology,which can be applied to vibration measurement under high stretch conditions.This sensor utilizes elastic optical fibers made of polydimethylsiloxane(PDMS)as sensing elements,combined with phase generating carrier technology,to achieve vibration measurement at 50−260 Hz within the stretch range of 0−42%.
基金Supported by the National Key Research and Development Program of China,No.2023YFC2413800the Taishan Scholars Program of Shandong Province,No.tsqn202306344the National Natural Science Foundation of China,No.82270580 and No.82070552.
文摘BACKGROUND Early detection of esophageal squamous neoplasms(ESN)is essential for improving patient prognosis.Optical diagnosis of ESN remains challenging.Probebased confocal laser endomicroscopy(pCLE)enables accurate in vivo histological observation and optical biopsy of ESN.However,interpretation of pCLE images requires histopathological expertise and extensive training.Artificial intelligence(AI)has been widely applied in digestive endoscopy;however,AI for pCLE diagnosis of ESN has not been reported.AIM To develop a pCLE computer-aided diagnostic system for ESN and assess its diagnostic performance and assistant efficiency for nonexpert endoscopists.METHODS The intelligent confocal laser endomicroscopy(iCLE)system consists of image recognition(based on inception-ResNet V2),video diagnosis,and quality judgment modules.This system was developed using pCLE images and videos and evaluated through image and prospective video recognition tests.Patients between June 2020 and January 2023 were prospectively enrolled.Expert and nonexpert endoscopists and the iCLE independently performed diagnoses for pCLE videos,with histopathology as the gold standard.Thereafter,the non-expert endoscopists performed a second assessment with iCLE assistance.RESULTS A total of 25056 images from 2803 patients were selected for iCLE training and validation.Another 2442 images from 226 patients were used for testing.iCLE achieved a high accuracy of 98.3%,sensitivity of 95.3%and specificity of 98.8%for diagnosing ESN images.A total of 2581 patients underwent upper gastrointestinal pCLE examination and were prospectively screened;54 patients with suspected ESN were enrolled.Overall,187 videos from 67 lesions were assessed by iCLE,three nonexpert and three expert endoscopists.iCLE achieved a high accuracy,sensitivity and specificity of 90.9%,92.0%,and 90.2%,respectively.Compared to experts,iCLE showed significantly higher sensitivity(92.0%vs 80.4%;P<0.001)and negative predictive value(94.4%vs 87.7%;P=0.003).With iCLE assistance,nonexpert endoscopists showed significant improvements in accuracy(from 83.6%to 88.6%)and sensitivity(from 76.0%to 89.8%).CONCLUSION iCLE system demonstrated high diagnostic performance for ESN.It can assist nonexpert endoscopists in improving the diagnostic efficiency of pCLE for ESN and has the potential for reducing unnecessary biopsies.
基金Supported by the Suzhou Medical Innovation Application Research Project(SZM2023027).
文摘AIM:To explore the morphological and functional parameters to evaluate the effectiveness of intravitreal injections of ranibizumab(IVR)in treating macular edema(ME)secondary to retinal vein occlusion(RVO).METHODS:This retrospective study involved 65 RVO patients(65 eyes)who received IVR and were followedup for more than 3mo.ME was categorized into cystoid macular edema(CME),diffuse retinal thickening(DRT),and serous retinal detachment(SRD)according to optical coherence tomography(OCT)images.The comparison of best corrected visual acuity(BCVA;logMAR)and central macular thickness(CMT)among different follow-up points and those among 3 groups were performed by Kruskal-Wallis test.The correlation between BCVA and baseline parameters during treatment was analyzed using Spearman correlation analysis.RESULTS:BCVA tended to improve in all groups,with marked improvement in CME and DRT groups.CMT showed the greatest reduction after 1wk,and remained stable over the following 3mo.DRT patients had the worst BCVA and the highest CMT at baseline,but the differences became smaller after IVR treatment.CMT in SRD group was significantly better than in CME and DRT groups 3mo after IVR.Most patients of CME and SRD groups transitioned to a normal pattern at 3mo follow-up.DRT patients were most likely to transform into the other morphological groups,while SRD patients showed minimal transitions.BCVA at baseline was identified as the most important prognostic indicator in all 3 groups.Additionally,DRT patients with a longer clinical course,higher CMT and central retinal vein occlusion(CRVO)tend to exhibit worse BCVA after treatment.In addition,CRVO patients are more likely to have worse BCVA at 2 and 3mo follow-up compared with branch retinal vein occlusion(BRVO)patients in CME group.SRD patients with higher baseline CMT were prone to experiencing worse BCVA after treatment.CONCLUSION:The effectiveness of IVR is strongly correlated with baseline BCVA in all 3 groups.Baseline parameters including clinical course,CMT,and RVO position are also useful in predicting the BCVA at different time points after treatment.
文摘Optical field manipulation,an emerging frontier in photonics,demonstrates significant potential in biomedical microscopy,quantum state engineering,and micro-nano fabrication.To address the critical limitations of current optical modulation technologies in achieving full-parameter precision control,we proposed a novel approach for dynamic azimuthal optical field modulation based on dual-spiral arrays.By designing spatially interleaved spiral structures with different initial radii while maintaining identical periodic parameters,we achieved continuous optical modulation spanning the full 0-2πrange in azimuthal field distribution.Through rigorous numerical simulations,we systematically established a quantitative correlation between the structural parameters and azimuthal optical field patterns,revealing,for the first time,a quasi-linear relationship between the radius difference and the resultant optical distribution.This theoretical framework advances our fundamental understanding of structured optical field manipulation as well as provides a new paradigm for programmable photonic device design,with distinct technical advantages in super-resolution imaging and optical tweezer systems.
基金supported by the National Key Research and Development Program of China (2019YFB1803905)the National Natural Science Foundation of China (No.62171022)+2 种基金Beijing Natural Science Foundation (4222009)Guangdong Basic and Applied Basic Research Foundation (2021B1515120057)the Scientific and Technological Innovation Foundation of Shunde Graduate School,USTB (No.BK19AF005)。
文摘In this paper,a double-effect DNN-based Digital Back-Propagation(DBP)scheme is proposed and studied to achieve the Integrated Communication and Sensing(ICS)ability,which can not only realize nonlinear damage mitigation but also monitor the optical power and dispersion profile over multi-span links.The link status information can be extracted by the characteristics of the learned optical fiber parameters without any other measuring instruments.The efficiency and feasibility of this method have been investigated in different fiber link conditions,including various launch power,transmission distance,and the location and the amount of the abnormal losses.A good monitoring performance can be obtained while the launch optical power is 2 dBm which does not affect the normal operation of the optical communication system and the step size of DBP is 20 km which can provide a better distance resolution.This scheme successfully detects the location of single or multiple optical attenuators in long-distance multi-span fiber links,including different abnormal losses of 2 dB,4 dB,and 6 dB in 360 km and serval combinations of abnormal losses of(1 dB,5 dB),(3 dB,3 dB),(5 dB,1 dB)in 360 km and 760 km.Meanwhile,the transfer relationship of the estimated coefficient values with different step sizes is further investigated to reduce the complexity of the fiber nonlinear damage compensation.These results provide an attractive approach for precisely sensing the optical fiber link status information and making correct strategies timely to ensure optical communication system operations.
文摘Herein,we report the synthesis and third-order nonlinear optical(NLO)properties of a novel cage-based 2D metal-organic framework constructed from Ti_(4)L_(6)(L4-=embonate)cage combined with Mg^(2+)and tris[4-(1H-imidazol-1-yl)phenyl]amine(tipa)ligand,whose molecular formula is(Me_(2)CH_(2))_(2)[Mg_(3)(Ti_(4)L_(6))(tipa)(H_(2)O)_(12)](PTC‑378).The Ti_(4)L_(6)tetrahedral cages serve as robust building units,while the Mg^(2+)ions and tipa ligands provide structural stability and tunable optical properties.The resulting PTC‑378 film exhibited intriguing third-order NLO property,which was systematically investigated using Z-scan techniques.Our results demonstrate that the synergistic interaction between Ti_(4)L_(6)cages andπ-conjugated ligands significantly enhances the NLO performance of the materials.CCDC:2453909.
基金supported by University of Macao,China,Nos.MYRG2022-00054-FHS and MYRG-GRG2023-00038-FHS-UMDF(to ZY)the Macao Science and Technology Development Fund,China,Nos.FDCT0048/2021/AGJ and FDCT0020/2019/AMJ and FDCT 0011/2018/A1(to ZY)Natural Science Foundation of Guangdong Province of China,No.EF017/FHS-YZ/2021/GDSTC(to ZY)。
文摘To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.