Graphite carbon nitride(g-C_(3)N_(4))attracts wide-ranging research interest due to its extraordinary physicochemical properties and promising applications ranging from heterogeneous catalysis to fuel cells.In this wo...Graphite carbon nitride(g-C_(3)N_(4))attracts wide-ranging research interest due to its extraordinary physicochemical properties and promising applications ranging from heterogeneous catalysis to fuel cells.In this work,we design different g-C_(3)N_(4)-based quantum dots(g CNQDs),carry out a systematic study of optical properties,and elucidate the shape selectivity,composite nanostructure,and outfield effect.In particular,composites of g CNQDs and metal nanochains present excellent optical response,making it applicable to bioimaging,nano-plasma devices,and metalloenzyme in infrared light related fields.Besides,QDs which original bridging nitrogen atoms are replaced by amino(–NH_(2)),hydroxyl(–OH),and methyl(–CH_(3))functional groups respectively,have excellent spectral selectivity in the deep ultraviolet region.More interestingly,in the study of the laser interaction with materials,the g CNQDs exhibit extremely high stability and light corrosion resistance.Phase transition from insulation to metal is observed under the critical condition of about 5 e V intensity or 337 nm wavelength.All provided theoretical support for designs and applications in g-C_(3)N_(4)quantum devices.展开更多
Nonlinear optical (NLO) properties of anatase TiO2 with nanostructures of nanopaxticle (NP), nanowire (NW) and annealed nanowire (NWA) are studied by open-aperture and closed-aperture Z-scan techniques with a ...Nonlinear optical (NLO) properties of anatase TiO2 with nanostructures of nanopaxticle (NP), nanowire (NW) and annealed nanowire (NWA) are studied by open-aperture and closed-aperture Z-scan techniques with a fem- tosecond pulsed laser at wavelengths of 532 nm and 780 nm simultaneously. At 532 nm, when increasing excitation intensity, NLO absorption of TiO2 NPs transforms from saturable absorption to reverse-saturable absorption. However, NWs and NWAs exhibit the opposite change. At 780nm, all samples show reverse-saturable absorption, but have different sensitivities to excitation intensity. Due to the larger surface-to-volume ratio of NPs and less defects of NWAs by annealing, nonlinear optical absorption coet^icients follow the order NPs≥ NWs≥ NWAs. The results also show that these shape and annealing effects axe dominant at low excitation intensity, but do not exhibit at the high excitation intensity. The NLO refractive index of NPs shows a positive linear relationship with the excitation intensity, whereas NW and NWAs exhibit a negative linear relationship. The results could provide some foundational guidance to applications of anatase TiO2 in optoelectronic devices or other aspects.展开更多
Optical responses in dilute composites are controlled through the local dielectric resonance of metallic clusters. We consider two located metallic clusters close to each other with admittances ε1 and ε2. Through va...Optical responses in dilute composites are controlled through the local dielectric resonance of metallic clusters. We consider two located metallic clusters close to each other with admittances ε1 and ε2. Through varying the difference admittance ratio η[= (ε2 - ε0)/(ε1 - ε0)], we find that their optical responses are determined by the local resonance. There is a blueshift of absorption peaks with the increase of η- Simultaneously, it is known that the absorption peaks will be redshifted by enlarging the cluster size. By adjusting the nano-metallic cluster geometry, size and admittances, we can control the positions and intensities of absorption peaks effectively. We have also deduced the effective linear optical responses of three-component composites εe=ε0 (1+∑^n n=1[(γn1+ηγn2)/(ε0(s-sn))]) and the sum rule of cross sections:∑^n n=1(γn1+ηγn2)=Nh1+Nh2,, where Nh1and Nh2 are the numbers of εl and ε2 bonds along the electric field, respectively. These results may be beneficial to the study of surface plasmon resonances on a nanometre scale.展开更多
The crystal structUre of the title ligand and its copper (Ⅱ) complex was determined bysingle crystal X-ray diffraction. The electrochendcal properties and the third-order nonlinearoptical response of the ligand and i...The crystal structUre of the title ligand and its copper (Ⅱ) complex was determined bysingle crystal X-ray diffraction. The electrochendcal properties and the third-order nonlinearoptical response of the ligand and its copper (Ⅱ) complex were also studied.展开更多
We synthesize hollow-structured Ag@Au nanoparticles with single porous shell and Ag@Au/Ag@Au double shells by using the galvanic replacement reaction and investigate their linear and nonlinear optical properties. Our ...We synthesize hollow-structured Ag@Au nanoparticles with single porous shell and Ag@Au/Ag@Au double shells by using the galvanic replacement reaction and investigate their linear and nonlinear optical properties. Our results show that the surface plasmon resonance wavelength of the hollow porous nanoparticles could be easily tuned in a wide range in the visible and near infrared region by controlling the volume of HAuCl4. The nonlinear optical refraction of the double-shelled Ag@Au/Ag@Au nanoparticles is prominently enhanced by the plasmon resonance. Our findings may find applications in biosensors and nonlinear optical nanodevices.展开更多
The third-order nonlinear optical properties of water-soluble Cu Se nanocrystals are studied in the near infrared range of 700-980 nm using a femtosecond pulsed laser by the Z-scan technique. It is observed that the n...The third-order nonlinear optical properties of water-soluble Cu Se nanocrystals are studied in the near infrared range of 700-980 nm using a femtosecond pulsed laser by the Z-scan technique. It is observed that the nonlinear optical response of Cu Se nanocrystals is sensitively dependent on the excitation wavelength and exhibits the enhanced nonlinearity compared with other selenides such as ZnSe and CdSe. The W-shaped Z-scan trace, a mixture of the reversed saturated absorption and saturated absorption, is observed near the plasmon resonance band of Cu Se nanocrystals, which is attributed to the state-filling of free carriers generated by copper vacancies (self-doping effect) of Cu Se nanocrystals as well as the hot carrier thermal effect upon intense femtosecond laser excitation. The large nonlinear optical response and tunable plasmonic band make Cu Se nanocrystals promising materials for applications in ultra-fast all-optical switching devices as well as nonlinear nanosensors.展开更多
Developing approaches for precise engineering of the optical response of plasmonic nanocavities at the postfabrication stage is important for achieving enhanced and tunable light-matter interactions.In this work,we de...Developing approaches for precise engineering of the optical response of plasmonic nanocavities at the postfabrication stage is important for achieving enhanced and tunable light-matter interactions.In this work,we demonstrate selective enhancement/suppression of specific plasmonic modes by embedding nanocube-on-mirror plasmonic nanocavities into a poly(methyl methacrylate)(PMMA)layer with a controllable thickness.With the increase of the PMMA thickness from 0 to approximately 100 nm,the dominating out-of-plane plasmonic modes are significantly suppressed in the scattering spectra,while the in-plane plasmonic modes are greatly enhanced with a factor reaching 102±20.This enhancement is related to the variation of momentum matching between the plasmonic modes and the radiative fields,affecting both mode excitation and emission properties.In addition,the spectral positions of the in-plane and out-of-plane plasmonic modes shift up to 52±5 and 81±2 nm,respectively.These properties are important for matching and enhancing plasmonic and molecular resonances in a variety of applications.展开更多
Bi-doped glass fibers with controllable optical response are essential for next-generation broadband amplifiers and tunable lasers.However,achieving broad wavelength tunability and stable near-infrared(NIR)emission re...Bi-doped glass fibers with controllable optical response are essential for next-generation broadband amplifiers and tunable lasers.However,achieving broad wavelength tunability and stable near-infrared(NIR)emission remains challenging due to limited structural modification of conventional silica glasses and variability of Bi active centers(BACs).Here,we propose a cation hybridization strategy to overcome these issues,demonstrating an enhanced ultra-broadband,multi-band NIR optical response in Bi-doped photonic glasses.Alkaline earth metal ions,such as Mg^(2+)and Ba^(2+),were employed as the hybrid cations to“repair”(Mg^(2+))and“tailor”(Ba^(2+))the flexible glass network of germanate glasses,enabling precise customization of the local environment to stabilize different BACs.Impressively,this enables a tunable optical response,ranging from one main peak emission at 1142 nm to a stable multi-band emission spanning 920,1142,1265,and 1516 nm,with an emission bandwidth of 526 nm,which is distinct from conventional rare-earth ions doped glasses.Furthermore,Bi-doped hybrid germanate glass fibers were fabricated and a positive on-off gain in multiple communication bands(O+E+S+C bands)was successfully achieved.The results offer new insights into the Bi NIR luminescence behavior and introduce a promising strategy for developing advanced photonic glass materials.展开更多
Plasmonic nanostructures,particularly those composed of noble metals such as gold and silver,have garnered extensive attention due to their exceptional physical and chemical properties,which are highly advantageous fo...Plasmonic nanostructures,particularly those composed of noble metals such as gold and silver,have garnered extensive attention due to their exceptional physical and chemical properties,which are highly advantageous for optical sensing applications.The unique characteristics of DNA enable the precise spatial arrangement and functionalization of nanoparticles,allowing for the tailoring of optical characteristics within plasmonic systems.This review encompasses the development of DNA nanotechnology and its application in constructing plasmonic nanostructures featuring diverse geometric configurations.It emphasizes the tailored optical responses of these structures,including surface-enhanced Raman scattering(SERS),fluorescence enhancement,and chirality.The review concludes with a discussion of the opportunities and challenges facing DNA-based plasmonic nanostructures.展开更多
Gapless linear energy dispersion of graphene endows it with unique nonlinear optical properties, including broadband nonlinear absorption and giant nonlinear refractive index. Herein, we experimentally observed that f...Gapless linear energy dispersion of graphene endows it with unique nonlinear optical properties, including broadband nonlinear absorption and giant nonlinear refractive index. Herein, we experimentally observed that fewlayers graphene has obvious nonlinear absorption and large nonlinear refraction, as investigated by the Z-scan technique in the mid-infrared(mid-IR) regime. Our study may not only, for the first time to our knowledge, verify the giant nonlinear refractive index of graphene(~10-7cm2∕W) at the mid-IR, which is 7 orders of magnitude larger than other conventional bulk materials, but also provide some new insights for graphene-based mid-IR photonics,potentially leading to the emergence of several new conceptual mid-IR optoelectronics devices.展开更多
The realization of tunable nonlinear optical(NLO)responses in a single nano-/micro-structure is extremely important.However,in lack of effective ways to integrate multiple performances,it still faces severe limitation...The realization of tunable nonlinear optical(NLO)responses in a single nano-/micro-structure is extremely important.However,in lack of effective ways to integrate multiple performances,it still faces severe limitations during applications.Herein,we demonstrate a wavelength-dependent NLO micro-structure based on host-vip metal-organic framework(MOF)materials through encapsulating linear dye molecules into periodic one-dimensional(1D)channels.The confinement to non-centrosymmetric polar dye molecules enhances the second-/third-order NLO responses of the hybrid crystals,causing obvious two-photon luminescence(TPL),second harmonic generation(SHG)and third harmonic generation(THG)responses in the as-prepared composites.The highly ordered structures of MOFs impart spatial regulation on the linear dye molecules to realize orientation alignment,resulting in the polarized anisotropy emission.NIR-to-NIR(NIR,near-infrared region)two-photon pumped lasing is realized with the natural whispering gallery mode resonance cavities of MOFs under the excitation of a 1200-nm fs laser.Furthermore,tunable NLO properties such as TPL,SHG and THG are achieved through switching the incident excitation wavelength from 800 to 1500 nm.Such hybrid materials with tunable NLO responses may open a new avenue toward designing multifunctional NLO devices in the future.展开更多
Two-dimensional(2D) periodical Au and indium tin oxide(ITO) nanocomposite arrays have been fabricated based on a self-assembled nanosphere lithography technique. A button-shaped Au nanoparticle was formed on each holl...Two-dimensional(2D) periodical Au and indium tin oxide(ITO) nanocomposite arrays have been fabricated based on a self-assembled nanosphere lithography technique. A button-shaped Au nanoparticle was formed on each hollow hemisphere-shaped ITO shell. Importantly, the underlying formation mechanism during the thermal treatment has been thoroughly explored by comparing structures resulting from different deposition conditions in detail. Compared to the Au nanoparticle arrays without ITO shells, the Au/ITO nanocomposite arrays showed a stronger localized surface plasmon resonance effect and higher absorption in the near-infrared(NIR) region, benefiting from the free-electron interaction enhancement between Au and ITO. The nonlinear optical properties were investigated using a modified femtosecond intensity-scan system, and the results demonstrated Au/ITO nanocomposite arrays with a remarkable two-photon absorption saturation effect for femtosecond pulses at 1030 nm. The versatile NIR optical responses indicate the great potential of the elaborately prepared 2D periodical Au/ITO nanocomposite arrays in many applications such as solar cells, photocatalysis,and novel nano optoelectronic devices.展开更多
High-performance bi-functional materials are in urgent demand for the next-generation integrated optical devices.In this work,we successfully synthesized the first tricyanomelaminate with bi-functional optical respons...High-performance bi-functional materials are in urgent demand for the next-generation integrated optical devices.In this work,we successfully synthesized the first tricyanomelaminate with bi-functional optical responses,namely Cs_(3)C_(6)N_(9)•H_(2)O(I),from its analogue Na_(3)C_(6)N_(9)•3H_(2)O by a facile ion exchange method.In contrast to Na_(3)C_(6)N_(9)•3H_(2)O,I realizes an optimal arrangement of𝜋π-conjugated(C_(6)N_(9))3−anion groups in its crystal structure.As a result,the second-order nonlinear optical(NLO)response is greatly enhanced from nearly zero of Na_(3)C_(6)N_(9)•3H_(2)O to∼9.8×KH_(2)PO_(4)of I.Furthermore,I exhibits a giant linear optical anisotropic response(i.e.birefringence)of 0.52 at the wavelength of 550 nm.Both responses are almost the largest among the inorganic compounds ofπ-conjugated rings,which indicates that I has great potential as a bi-functional optical crystal.Structural and theoretical analyses reveal the microscopic origin of excellent optical properties.This work would attract a lot of interest to the persistently neglected potential of tricyanomelaminates as linear optical and NLO crystals.展开更多
A Weyl node is characterized by its chirality and tilt.We develop a theory of how nth-order nonlinear optical conductivity behaves under transformations of anisotropic tensor and tilt, which clarifies how chirality-de...A Weyl node is characterized by its chirality and tilt.We develop a theory of how nth-order nonlinear optical conductivity behaves under transformations of anisotropic tensor and tilt, which clarifies how chirality-dependent and-independent parts of optical conductivity transform under the reversal of tilt and chirality.Built on this theory, we propose ferromagnetic Mn Bi2Te4as a magnetoelectrically regulated, terahertz optical device, by magnetoelectrically switching the chiralitydependent and-independent DC photocurrents.These results are useful for creating nonlinear optical devices based on the topological Weyl semimetals.展开更多
Dear Editor,Multiple evanescent white dot syndrome (MEWDS) was first described in 1984 as a rare, acute, unilateral,multifocal retinochoroidal disorder, typically affecting young myopic women. Previous studies with ...Dear Editor,Multiple evanescent white dot syndrome (MEWDS) was first described in 1984 as a rare, acute, unilateral,multifocal retinochoroidal disorder, typically affecting young myopic women. Previous studies with fluorescein angiography (FA) and electrophysiology suggested that MEWDS to be a disease in the retinal pigment epithelium (RPE) or outer retina, while recent studies with spectral- domain optical coherence tomography (SD-OCT) suggested it may be an outer retinal disease due to observation of hyperreflective material in outer retina and subtle disruptionsof the ellipsoid zone without RPE disruption.展开更多
The quantum metric manifested as the Riemannian metric in the parameter space of Bloch bands,characterizes the topology and geometry of quantum states.The second harmonic generation(SHG),as one of the fundamental nonl...The quantum metric manifested as the Riemannian metric in the parameter space of Bloch bands,characterizes the topology and geometry of quantum states.The second harmonic generation(SHG),as one of the fundamental nonlinear optical responses that links geometry of optical transitions to physical observables,despite being widely studied in various materials,its relation to quantum metric,especially in the dynamical regime,stays obscure.展开更多
Bulk materials were synthesized by the Bridgman technique using the elements Cu, Ga, Se. These samples were characterized by Energy Dispersive Spectrometry (EDS) to determine the elemental composition, as well as by X...Bulk materials were synthesized by the Bridgman technique using the elements Cu, Ga, Se. These samples were characterized by Energy Dispersive Spectrometry (EDS) to determine the elemental composition, as well as by X-ray diffraction for structure, hot point probe method for type of conductivity. Optical response (Photoconductivity) and Photoluminescence (PL) and PL-excitation (PLE) at temperatures from 4.2 to 77 K were also used to estimate the band-gap energy of Cu-Ga<sub>3</sub>Se<sub>5</sub>. They show a nearly perfect stoechiometry and present p-type conductivity. CuGa<sub>3</sub>Se<sub>5</sub> either have an Ordered Defect Chalcopyrite structure (ODC), or an Ordered Vacancy Chalcopyrite structure (OVC). The gap energy obtained by Photoconductivity and Photoluminescence (PL) for the different samples is 1.85 eV. Studying the variation of the gap as a function of the temperature shows that the transition is a D-A type. The defects that appear are probably Ga<sub>Cu</sub>.展开更多
We present a theoretical study on the effects of intense laser field(ILF)and static electric field on the linear and nonlinear optical properties of a cylindrical quantum dot with Rosen-Morse axial potential under the...We present a theoretical study on the effects of intense laser field(ILF)and static electric field on the linear and nonlinear optical properties of a cylindrical quantum dot with Rosen-Morse axial potential under the framework of effective mass and parabolic band approximations.This study also takes into account the effects of the structure parameters(η,V1,and R).The analytical expressions of the linear,third-order nonlinear and total optical absorption coefficients(TOACs)and the relative refractive index changes(RRICs)are obtained by using the compact-densitymatrix approach.The results of numerical calculations show that the resonant peak position of the TOACs and RRICs shifts towards lower energies and the magnitude of the peak increases with the effect of the static electric field and ILF.In addition,it is observed that while the resonant energies of the TOACs and RRICs of system shift towards the higher(lower)energies with the enhancement ofη,V1,they decrease with the augmentation of R.Thus,the findings of this study show that the optical properties of the structure can be adjusted by changing the magnitude of structure parameters and applied external fields.展开更多
With the frame of the time-dependent local density approximation, an efficient description of the optical response of clusters has been used to study the photo-absorption cross section of Na2 and Na4 clusters. It is s...With the frame of the time-dependent local density approximation, an efficient description of the optical response of clusters has been used to study the photo-absorption cross section of Na2 and Na4 clusters. It is shown that our calculated results are in good agreement with the experiment. In addition, our calculated spectrum for the Na4 cluster is in better agreement with experiment than the GW absorption spectrum.展开更多
In this paper, the positive influence of a uni-traveling-carrier (UTC) structure to ease the contract between the respon- sivity and working speed of the InP-based double hetero-junction phototransistor (DHPT) is ...In this paper, the positive influence of a uni-traveling-carrier (UTC) structure to ease the contract between the respon- sivity and working speed of the InP-based double hetero-junction phototransistor (DHPT) is illustrated in detail. Different results under electrical bias, optical bias or combined electrical and optical bias are analyzed for an excellent UTC-DHPT performance. The results show that when the UTC-DHPT operates at three-terminal (3T) working mode with combined electrical bias and optical bias in base, it keeps a high optical responsivity of 34.72 A/W and the highest optical transition frequency of 120 GHz. The current gain of the 3T UTC-DHPT under 1.55-μm light illuminations reaches 62 dB. This indicates that the combined base electrical bias and optical bias of 3T UTC-DHPT can make sure that the UTC-DHPT provides high optical current gain and high optical transition frequency simultaneously.展开更多
基金the National Key R&D Program of China(Grant No.2017YFA0303600)the National Natural Science Foundation of China(Grant No.11974253)Science Speciality Program of Sichuan University(Grant No.2020SCUNL210)。
文摘Graphite carbon nitride(g-C_(3)N_(4))attracts wide-ranging research interest due to its extraordinary physicochemical properties and promising applications ranging from heterogeneous catalysis to fuel cells.In this work,we design different g-C_(3)N_(4)-based quantum dots(g CNQDs),carry out a systematic study of optical properties,and elucidate the shape selectivity,composite nanostructure,and outfield effect.In particular,composites of g CNQDs and metal nanochains present excellent optical response,making it applicable to bioimaging,nano-plasma devices,and metalloenzyme in infrared light related fields.Besides,QDs which original bridging nitrogen atoms are replaced by amino(–NH_(2)),hydroxyl(–OH),and methyl(–CH_(3))functional groups respectively,have excellent spectral selectivity in the deep ultraviolet region.More interestingly,in the study of the laser interaction with materials,the g CNQDs exhibit extremely high stability and light corrosion resistance.Phase transition from insulation to metal is observed under the critical condition of about 5 e V intensity or 337 nm wavelength.All provided theoretical support for designs and applications in g-C_(3)N_(4)quantum devices.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11404410 and 11504105
文摘Nonlinear optical (NLO) properties of anatase TiO2 with nanostructures of nanopaxticle (NP), nanowire (NW) and annealed nanowire (NWA) are studied by open-aperture and closed-aperture Z-scan techniques with a fem- tosecond pulsed laser at wavelengths of 532 nm and 780 nm simultaneously. At 532 nm, when increasing excitation intensity, NLO absorption of TiO2 NPs transforms from saturable absorption to reverse-saturable absorption. However, NWs and NWAs exhibit the opposite change. At 780nm, all samples show reverse-saturable absorption, but have different sensitivities to excitation intensity. Due to the larger surface-to-volume ratio of NPs and less defects of NWAs by annealing, nonlinear optical absorption coet^icients follow the order NPs≥ NWs≥ NWAs. The results also show that these shape and annealing effects axe dominant at low excitation intensity, but do not exhibit at the high excitation intensity. The NLO refractive index of NPs shows a positive linear relationship with the excitation intensity, whereas NW and NWAs exhibit a negative linear relationship. The results could provide some foundational guidance to applications of anatase TiO2 in optoelectronic devices or other aspects.
基金Project supported by the National Natural Science Foundation of China(Grant Nos 10304001, 10334010, 10521002, 10434020, 10328407 and 90501007).
文摘Optical responses in dilute composites are controlled through the local dielectric resonance of metallic clusters. We consider two located metallic clusters close to each other with admittances ε1 and ε2. Through varying the difference admittance ratio η[= (ε2 - ε0)/(ε1 - ε0)], we find that their optical responses are determined by the local resonance. There is a blueshift of absorption peaks with the increase of η- Simultaneously, it is known that the absorption peaks will be redshifted by enlarging the cluster size. By adjusting the nano-metallic cluster geometry, size and admittances, we can control the positions and intensities of absorption peaks effectively. We have also deduced the effective linear optical responses of three-component composites εe=ε0 (1+∑^n n=1[(γn1+ηγn2)/(ε0(s-sn))]) and the sum rule of cross sections:∑^n n=1(γn1+ηγn2)=Nh1+Nh2,, where Nh1and Nh2 are the numbers of εl and ε2 bonds along the electric field, respectively. These results may be beneficial to the study of surface plasmon resonances on a nanometre scale.
文摘The crystal structUre of the title ligand and its copper (Ⅱ) complex was determined bysingle crystal X-ray diffraction. The electrochendcal properties and the third-order nonlinearoptical response of the ligand and its copper (Ⅱ) complex were also studied.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174229,11204221 and 11374236the National Basic Research Program of China under Grant No 2011CB922201
文摘We synthesize hollow-structured Ag@Au nanoparticles with single porous shell and Ag@Au/Ag@Au double shells by using the galvanic replacement reaction and investigate their linear and nonlinear optical properties. Our results show that the surface plasmon resonance wavelength of the hollow porous nanoparticles could be easily tuned in a wide range in the visible and near infrared region by controlling the volume of HAuCl4. The nonlinear optical refraction of the double-shelled Ag@Au/Ag@Au nanoparticles is prominently enhanced by the plasmon resonance. Our findings may find applications in biosensors and nonlinear optical nanodevices.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274302,11474276 and 11674240
文摘The third-order nonlinear optical properties of water-soluble Cu Se nanocrystals are studied in the near infrared range of 700-980 nm using a femtosecond pulsed laser by the Z-scan technique. It is observed that the nonlinear optical response of Cu Se nanocrystals is sensitively dependent on the excitation wavelength and exhibits the enhanced nonlinearity compared with other selenides such as ZnSe and CdSe. The W-shaped Z-scan trace, a mixture of the reversed saturated absorption and saturated absorption, is observed near the plasmon resonance band of Cu Se nanocrystals, which is attributed to the state-filling of free carriers generated by copper vacancies (self-doping effect) of Cu Se nanocrystals as well as the hot carrier thermal effect upon intense femtosecond laser excitation. The large nonlinear optical response and tunable plasmonic band make Cu Se nanocrystals promising materials for applications in ultra-fast all-optical switching devices as well as nonlinear nanosensors.
基金National Key Research and Development Program of China(2023YFB2806701)National Natural Science Foundation of China(92250305,62305293)+2 种基金Natural Science Foundation of Zhejiang Province(LR25F050001,LDT23F04015F05)Engineering and Physical Sciences Research Council(EP/W017075/1)New Cornerstone Science Foundation(NCI202216)。
文摘Developing approaches for precise engineering of the optical response of plasmonic nanocavities at the postfabrication stage is important for achieving enhanced and tunable light-matter interactions.In this work,we demonstrate selective enhancement/suppression of specific plasmonic modes by embedding nanocube-on-mirror plasmonic nanocavities into a poly(methyl methacrylate)(PMMA)layer with a controllable thickness.With the increase of the PMMA thickness from 0 to approximately 100 nm,the dominating out-of-plane plasmonic modes are significantly suppressed in the scattering spectra,while the in-plane plasmonic modes are greatly enhanced with a factor reaching 102±20.This enhancement is related to the variation of momentum matching between the plasmonic modes and the radiative fields,affecting both mode excitation and emission properties.In addition,the spectral positions of the in-plane and out-of-plane plasmonic modes shift up to 52±5 and 81±2 nm,respectively.These properties are important for matching and enhancing plasmonic and molecular resonances in a variety of applications.
基金supported by the National Natural Science Foundation of China(62405092,62122027,62075063,62205109)the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(GZC20230852)the Guangdong Basic and Applied Basic Research Foundation(2025A1515010444).
文摘Bi-doped glass fibers with controllable optical response are essential for next-generation broadband amplifiers and tunable lasers.However,achieving broad wavelength tunability and stable near-infrared(NIR)emission remains challenging due to limited structural modification of conventional silica glasses and variability of Bi active centers(BACs).Here,we propose a cation hybridization strategy to overcome these issues,demonstrating an enhanced ultra-broadband,multi-band NIR optical response in Bi-doped photonic glasses.Alkaline earth metal ions,such as Mg^(2+)and Ba^(2+),were employed as the hybrid cations to“repair”(Mg^(2+))and“tailor”(Ba^(2+))the flexible glass network of germanate glasses,enabling precise customization of the local environment to stabilize different BACs.Impressively,this enables a tunable optical response,ranging from one main peak emission at 1142 nm to a stable multi-band emission spanning 920,1142,1265,and 1516 nm,with an emission bandwidth of 526 nm,which is distinct from conventional rare-earth ions doped glasses.Furthermore,Bi-doped hybrid germanate glass fibers were fabricated and a positive on-off gain in multiple communication bands(O+E+S+C bands)was successfully achieved.The results offer new insights into the Bi NIR luminescence behavior and introduce a promising strategy for developing advanced photonic glass materials.
基金supported by the National Natural Science Foundation of China(Nos.22274081,62288102,and 62401494)the Natural Science Foundation of Jiangsu Province(No.BE2023839).
文摘Plasmonic nanostructures,particularly those composed of noble metals such as gold and silver,have garnered extensive attention due to their exceptional physical and chemical properties,which are highly advantageous for optical sensing applications.The unique characteristics of DNA enable the precise spatial arrangement and functionalization of nanoparticles,allowing for the tailoring of optical characteristics within plasmonic systems.This review encompasses the development of DNA nanotechnology and its application in constructing plasmonic nanostructures featuring diverse geometric configurations.It emphasizes the tailored optical responses of these structures,including surface-enhanced Raman scattering(SERS),fluorescence enhancement,and chirality.The review concludes with a discussion of the opportunities and challenges facing DNA-based plasmonic nanostructures.
基金supported by the National 973 Program of China (Grant No. 2012CB315701)the National Natural Science Foundation of China (Grant Nos. 61205125, 61222505, and 61475102)
文摘Gapless linear energy dispersion of graphene endows it with unique nonlinear optical properties, including broadband nonlinear absorption and giant nonlinear refractive index. Herein, we experimentally observed that fewlayers graphene has obvious nonlinear absorption and large nonlinear refraction, as investigated by the Z-scan technique in the mid-infrared(mid-IR) regime. Our study may not only, for the first time to our knowledge, verify the giant nonlinear refractive index of graphene(~10-7cm2∕W) at the mid-IR, which is 7 orders of magnitude larger than other conventional bulk materials, but also provide some new insights for graphene-based mid-IR photonics,potentially leading to the emergence of several new conceptual mid-IR optoelectronics devices.
基金the National Natural Science Foundation of China(51632008,U1609219 and 61721005)。
文摘The realization of tunable nonlinear optical(NLO)responses in a single nano-/micro-structure is extremely important.However,in lack of effective ways to integrate multiple performances,it still faces severe limitations during applications.Herein,we demonstrate a wavelength-dependent NLO micro-structure based on host-vip metal-organic framework(MOF)materials through encapsulating linear dye molecules into periodic one-dimensional(1D)channels.The confinement to non-centrosymmetric polar dye molecules enhances the second-/third-order NLO responses of the hybrid crystals,causing obvious two-photon luminescence(TPL),second harmonic generation(SHG)and third harmonic generation(THG)responses in the as-prepared composites.The highly ordered structures of MOFs impart spatial regulation on the linear dye molecules to realize orientation alignment,resulting in the polarized anisotropy emission.NIR-to-NIR(NIR,near-infrared region)two-photon pumped lasing is realized with the natural whispering gallery mode resonance cavities of MOFs under the excitation of a 1200-nm fs laser.Furthermore,tunable NLO properties such as TPL,SHG and THG are achieved through switching the incident excitation wavelength from 800 to 1500 nm.Such hybrid materials with tunable NLO responses may open a new avenue toward designing multifunctional NLO devices in the future.
基金Funding.National Natural Science Foundation of China(NSFC)(61308087,61405224,61522510,61675217)Natural Science Foundation of Shanghai(16ZR1440300)+4 种基金China Scholarship Council(CSC)Science Foundation Ireland(SFI)Chinese Academy of Sciences(CAS)(XDB16030700QYZDBSSW-JSC041)Science and Technology Commission of Shanghai Municipality(STCSM)(17XD1403900)
文摘Two-dimensional(2D) periodical Au and indium tin oxide(ITO) nanocomposite arrays have been fabricated based on a self-assembled nanosphere lithography technique. A button-shaped Au nanoparticle was formed on each hollow hemisphere-shaped ITO shell. Importantly, the underlying formation mechanism during the thermal treatment has been thoroughly explored by comparing structures resulting from different deposition conditions in detail. Compared to the Au nanoparticle arrays without ITO shells, the Au/ITO nanocomposite arrays showed a stronger localized surface plasmon resonance effect and higher absorption in the near-infrared(NIR) region, benefiting from the free-electron interaction enhancement between Au and ITO. The nonlinear optical properties were investigated using a modified femtosecond intensity-scan system, and the results demonstrated Au/ITO nanocomposite arrays with a remarkable two-photon absorption saturation effect for femtosecond pulses at 1030 nm. The versatile NIR optical responses indicate the great potential of the elaborately prepared 2D periodical Au/ITO nanocomposite arrays in many applications such as solar cells, photocatalysis,and novel nano optoelectronic devices.
基金the National Natural Science Foundation of China(22122507,21833010,61975207 and 21921001)the Youth Innovation Promotion of Chinese Academy of Sciences(Y202069)+1 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(ZDBS-LY-SLH024)Fujian Institute of Innovation(FJCXY18010201)in Chinese Academy of Sciences。
文摘High-performance bi-functional materials are in urgent demand for the next-generation integrated optical devices.In this work,we successfully synthesized the first tricyanomelaminate with bi-functional optical responses,namely Cs_(3)C_(6)N_(9)•H_(2)O(I),from its analogue Na_(3)C_(6)N_(9)•3H_(2)O by a facile ion exchange method.In contrast to Na_(3)C_(6)N_(9)•3H_(2)O,I realizes an optimal arrangement of𝜋π-conjugated(C_(6)N_(9))3−anion groups in its crystal structure.As a result,the second-order nonlinear optical(NLO)response is greatly enhanced from nearly zero of Na_(3)C_(6)N_(9)•3H_(2)O to∼9.8×KH_(2)PO_(4)of I.Furthermore,I exhibits a giant linear optical anisotropic response(i.e.birefringence)of 0.52 at the wavelength of 550 nm.Both responses are almost the largest among the inorganic compounds ofπ-conjugated rings,which indicates that I has great potential as a bi-functional optical crystal.Structural and theoretical analyses reveal the microscopic origin of excellent optical properties.This work would attract a lot of interest to the persistently neglected potential of tricyanomelaminates as linear optical and NLO crystals.
基金Project supported by the National Key R&D Program of China (Grant Nos.2018YFA, 0305601, and 2021YFA1400100)the National Natural Science Foundation of China (Grant Nos.12274003, 11725415, and 11934001)the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0302600)。
文摘A Weyl node is characterized by its chirality and tilt.We develop a theory of how nth-order nonlinear optical conductivity behaves under transformations of anisotropic tensor and tilt, which clarifies how chirality-dependent and-independent parts of optical conductivity transform under the reversal of tilt and chirality.Built on this theory, we propose ferromagnetic Mn Bi2Te4as a magnetoelectrically regulated, terahertz optical device, by magnetoelectrically switching the chiralitydependent and-independent DC photocurrents.These results are useful for creating nonlinear optical devices based on the topological Weyl semimetals.
文摘Dear Editor,Multiple evanescent white dot syndrome (MEWDS) was first described in 1984 as a rare, acute, unilateral,multifocal retinochoroidal disorder, typically affecting young myopic women. Previous studies with fluorescein angiography (FA) and electrophysiology suggested that MEWDS to be a disease in the retinal pigment epithelium (RPE) or outer retina, while recent studies with spectral- domain optical coherence tomography (SD-OCT) suggested it may be an outer retinal disease due to observation of hyperreflective material in outer retina and subtle disruptionsof the ellipsoid zone without RPE disruption.
基金supported by National Natural Science Foundation of China(Grant Nos.12025407,12474246,and 12450401)the National Key Research and Development Program of China(Grant No.2021YFA1400201)the Chinese Academy of Sciences(Grant Nos.YSBR-047 and XDB33030100)。
文摘The quantum metric manifested as the Riemannian metric in the parameter space of Bloch bands,characterizes the topology and geometry of quantum states.The second harmonic generation(SHG),as one of the fundamental nonlinear optical responses that links geometry of optical transitions to physical observables,despite being widely studied in various materials,its relation to quantum metric,especially in the dynamical regime,stays obscure.
文摘Bulk materials were synthesized by the Bridgman technique using the elements Cu, Ga, Se. These samples were characterized by Energy Dispersive Spectrometry (EDS) to determine the elemental composition, as well as by X-ray diffraction for structure, hot point probe method for type of conductivity. Optical response (Photoconductivity) and Photoluminescence (PL) and PL-excitation (PLE) at temperatures from 4.2 to 77 K were also used to estimate the band-gap energy of Cu-Ga<sub>3</sub>Se<sub>5</sub>. They show a nearly perfect stoechiometry and present p-type conductivity. CuGa<sub>3</sub>Se<sub>5</sub> either have an Ordered Defect Chalcopyrite structure (ODC), or an Ordered Vacancy Chalcopyrite structure (OVC). The gap energy obtained by Photoconductivity and Photoluminescence (PL) for the different samples is 1.85 eV. Studying the variation of the gap as a function of the temperature shows that the transition is a D-A type. The defects that appear are probably Ga<sub>Cu</sub>.
基金Universidad de Medellín for hospitality and support during their 2019–2020 sabbatical stayMexican CONACYT through research Grant A1-S-8218。
文摘We present a theoretical study on the effects of intense laser field(ILF)and static electric field on the linear and nonlinear optical properties of a cylindrical quantum dot with Rosen-Morse axial potential under the framework of effective mass and parabolic band approximations.This study also takes into account the effects of the structure parameters(η,V1,and R).The analytical expressions of the linear,third-order nonlinear and total optical absorption coefficients(TOACs)and the relative refractive index changes(RRICs)are obtained by using the compact-densitymatrix approach.The results of numerical calculations show that the resonant peak position of the TOACs and RRICs shifts towards lower energies and the magnitude of the peak increases with the effect of the static electric field and ILF.In addition,it is observed that while the resonant energies of the TOACs and RRICs of system shift towards the higher(lower)energies with the enhancement ofη,V1,they decrease with the augmentation of R.Thus,the findings of this study show that the optical properties of the structure can be adjusted by changing the magnitude of structure parameters and applied external fields.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10405025, 10575012, 10435020, and 10535010
文摘With the frame of the time-dependent local density approximation, an efficient description of the optical response of clusters has been used to study the photo-absorption cross section of Na2 and Na4 clusters. It is shown that our calculated results are in good agreement with the experiment. In addition, our calculated spectrum for the Na4 cluster is in better agreement with experiment than the GW absorption spectrum.
基金Project supported by the National Natural Science Foundation of China(Grant No.61006044)the Natural Science Foundation of Beijing,China(Grant Nos.4122014 and 4142007)the Fund from the Beijing Municipal Education Committee,China(Grant No.KM200910005001)
文摘In this paper, the positive influence of a uni-traveling-carrier (UTC) structure to ease the contract between the respon- sivity and working speed of the InP-based double hetero-junction phototransistor (DHPT) is illustrated in detail. Different results under electrical bias, optical bias or combined electrical and optical bias are analyzed for an excellent UTC-DHPT performance. The results show that when the UTC-DHPT operates at three-terminal (3T) working mode with combined electrical bias and optical bias in base, it keeps a high optical responsivity of 34.72 A/W and the highest optical transition frequency of 120 GHz. The current gain of the 3T UTC-DHPT under 1.55-μm light illuminations reaches 62 dB. This indicates that the combined base electrical bias and optical bias of 3T UTC-DHPT can make sure that the UTC-DHPT provides high optical current gain and high optical transition frequency simultaneously.