Large-scale dense wavelength division multiplexing(DWDM)multi-channel performance monitoring is one of the indispensable technologies for the flexible optical networks.The existing Labelbased monitoring scheme require...Large-scale dense wavelength division multiplexing(DWDM)multi-channel performance monitoring is one of the indispensable technologies for the flexible optical networks.The existing Labelbased monitoring scheme requires expensive optical demultiplexing components/equipment to avoid the influence of stimulated Raman scattering(SRS),which is not only costly and bulky,but also could not monitor the wavelength channels simultaneously.In this paper,a low-cost,high-accuracy monitoring scheme based on Optical Label Method is proposed for DWDM networks,where the optical channel power and node identification(ID),as the main monitoring targets that both can indicate or evaluate the channel connection status,could be efficiently monitored.In the scheme,a novel digital signal processing(DSP)method of SRS mitigation is proposed and demonstrated,and an asynchronous code-division multiple access(A-CDMA)based digital label encoding and decoding method is adopted to distinguish the node ID so that channel initial added node can be accurately verified,thereby wavelength connection status can be reliably monitored by combining the channel power and node ID information.The simulation results show that each wavelength channel power and node ID can be accurately monitored only by low bandwidth photoelectric detector(PD)under the condition of 80 wavelengths and 10 spans at C-band.展开更多
A designed visual geometry group(VGG)-based convolutional neural network(CNN)model with small computational cost and high accuracy is utilized to monitor pulse amplitude modulation-based intensity modulation and direc...A designed visual geometry group(VGG)-based convolutional neural network(CNN)model with small computational cost and high accuracy is utilized to monitor pulse amplitude modulation-based intensity modulation and direct detection channel performance using eye diagram measurements.Experimental results show that the proposed technique can achieve a high accuracy in jointly monitoring modulation format,probabilistic shaping,roll-off factor,baud rate,optical signal-to-noise ratio,and chromatic dispersion.The designed VGG-based CNN model outperforms the other four traditional machine-learning methods in different scenarios.Furthermore,the multitask learning model combined with MobileNet CNN is designed to improve the flexibility of the network.Compared with the designed VGG-based CNN,the MobileNet-based MTL does not need to train all the classes,and it can simultaneously monitor single parameter or multiple parameters without sacrificing accuracy,indicating great potential in various monitoring scenarios.展开更多
A technique using artificial neural networks trained with parameters derived from delay tap plots for optical performance monitoring in 40 Gbit/s duobinary system is demonstrated. Firstly, the optical signal is delay ...A technique using artificial neural networks trained with parameters derived from delay tap plots for optical performance monitoring in 40 Gbit/s duobinary system is demonstrated. Firstly, the optical signal is delay tap sampled to obtain two-dimensional histogram, known as delay tap plots. Secondly, the features of delay tap plots are extracted to train the feed forward, three-layer preceptor structure artificial neural networks. Finally, the outputs of trained neural network are used to monitor optical duobinary signal impairments. Simulation of optical signal noise ratio ( OSNR), chromatic dispersion (CD), and differential group delay (DGD) monitoring in 40 Gbit/s optical duo- binary system is presented. The proposed monitoring scheme can accurately identify simultaneous impairments without requiring synchronous sampling or data clock recovery. The proposed technique is simple, cost-effective and suitable for in-service distributed OPM.展开更多
Low-cost,flexible and intelligent optical performance monitoring and management is a key enabling technology for network quality guarantee,especially in the era of explosive growth of communication capacity and networ...Low-cost,flexible and intelligent optical performance monitoring and management is a key enabling technology for network quality guarantee,especially in the era of explosive growth of communication capacity and network scale.However,to the best of our knowledge,it is extremely challenging to implement real-time performance monitoring and operations,administration and maintenance(OAM) in a highly complex dynamic network.In this paper,we propose an innovative optical identification(OID) scheme that can realize both performance monitoring and some advanced OAM sub-functions.The basic concepts,applications,challenges and evolution directions of this OID tool are also discussed.展开更多
For joint modulation format identification(MFI)and optical signal-to-noise ratio(OSNR)monitoring,a simple and intelligent optical communication performance monitoring method is proposed,and the feasibility is demonstr...For joint modulation format identification(MFI)and optical signal-to-noise ratio(OSNR)monitoring,a simple and intelligent optical communication performance monitoring method is proposed,and the feasibility is demonstrated by digital coherent optical communication experiments.The experiment results show that for all modulation formats,including 28 GBaud polarization division multiplexing(PDM)QPSK/8-QAM/16-QAM/64-QAM,100%MFI accuracies are achieved even at OSNR values lower than the corresponding theoretical 20%forward error correction limit,as well as the high accuracies for OSNR monitoring.Furthermore,the proposed scheme has a reasonable monitoring level when chromatic dispersion and fiber nonlinear effects are varied.展开更多
An all-optical real-time chromatic dispersion (CD) monitoring technique is proposed and demonstrated for 40Gbit/s differential phase-shifts keying (DPSK) signal, utilizing the cross modulation effects of semicon- ...An all-optical real-time chromatic dispersion (CD) monitoring technique is proposed and demonstrated for 40Gbit/s differential phase-shifts keying (DPSK) signal, utilizing the cross modulation effects of semicon- ductor optical amplifier (SOA). The optical power of the output spectral components, which is from the probe's frequency up to the signal bandwidth, is used for CD monitoring. This technique provides a wide monitoring range with large variation scale. The impacts of the polarization mode dispersion (PMD) and the optical signal-to-noise ratio (OSNR) on the CD monitoring results are theoretically analyzed and then experimentally investigated, showing that they have slight influence on the monitoring results within a certain range. Furthermore, simulated results for quadrature phase shift keying (QPSK) signal at 80 Gbit/s are also demonstrated, indicating that this technique is suitable for advanced modulated format as well.展开更多
An in-band optical signal-to-noise ratio (OSNR) monitoring technique with high resolution and large measurement range is demonstrated based on low- bandwidth coherent receiver and a tunable laser. The measurement ra...An in-band optical signal-to-noise ratio (OSNR) monitoring technique with high resolution and large measurement range is demonstrated based on low- bandwidth coherent receiver and a tunable laser. The measurement range of OSNR is from 10 to 25 dB and the resolution can be controlled about ±1 dB.展开更多
基金supported by the National Natural Science Foundation of China(No.62001045)Fund of State Key Laboratory of IPOC(BUPT)(No.IPOC2021ZT17)。
文摘Large-scale dense wavelength division multiplexing(DWDM)multi-channel performance monitoring is one of the indispensable technologies for the flexible optical networks.The existing Labelbased monitoring scheme requires expensive optical demultiplexing components/equipment to avoid the influence of stimulated Raman scattering(SRS),which is not only costly and bulky,but also could not monitor the wavelength channels simultaneously.In this paper,a low-cost,high-accuracy monitoring scheme based on Optical Label Method is proposed for DWDM networks,where the optical channel power and node identification(ID),as the main monitoring targets that both can indicate or evaluate the channel connection status,could be efficiently monitored.In the scheme,a novel digital signal processing(DSP)method of SRS mitigation is proposed and demonstrated,and an asynchronous code-division multiple access(A-CDMA)based digital label encoding and decoding method is adopted to distinguish the node ID so that channel initial added node can be accurately verified,thereby wavelength connection status can be reliably monitored by combining the channel power and node ID information.The simulation results show that each wavelength channel power and node ID can be accurately monitored only by low bandwidth photoelectric detector(PD)under the condition of 80 wavelengths and 10 spans at C-band.
基金supported by the National Key Research and Development Program of China (Grant No.2019YFB1803700)the Key Technologies Research and Development Program of Tianjin (Grant No.20YFZCGX00440).
文摘A designed visual geometry group(VGG)-based convolutional neural network(CNN)model with small computational cost and high accuracy is utilized to monitor pulse amplitude modulation-based intensity modulation and direct detection channel performance using eye diagram measurements.Experimental results show that the proposed technique can achieve a high accuracy in jointly monitoring modulation format,probabilistic shaping,roll-off factor,baud rate,optical signal-to-noise ratio,and chromatic dispersion.The designed VGG-based CNN model outperforms the other four traditional machine-learning methods in different scenarios.Furthermore,the multitask learning model combined with MobileNet CNN is designed to improve the flexibility of the network.Compared with the designed VGG-based CNN,the MobileNet-based MTL does not need to train all the classes,and it can simultaneously monitor single parameter or multiple parameters without sacrificing accuracy,indicating great potential in various monitoring scenarios.
基金Supported by the National Natural Science Foundation of China (60978007 61027007 61177067)
文摘A technique using artificial neural networks trained with parameters derived from delay tap plots for optical performance monitoring in 40 Gbit/s duobinary system is demonstrated. Firstly, the optical signal is delay tap sampled to obtain two-dimensional histogram, known as delay tap plots. Secondly, the features of delay tap plots are extracted to train the feed forward, three-layer preceptor structure artificial neural networks. Finally, the outputs of trained neural network are used to monitor optical duobinary signal impairments. Simulation of optical signal noise ratio ( OSNR), chromatic dispersion (CD), and differential group delay (DGD) monitoring in 40 Gbit/s optical duo- binary system is presented. The proposed monitoring scheme can accurately identify simultaneous impairments without requiring synchronous sampling or data clock recovery. The proposed technique is simple, cost-effective and suitable for in-service distributed OPM.
基金supported in part by the National Key R&D Program of China under Grant No.2019YFB2205302。
文摘Low-cost,flexible and intelligent optical performance monitoring and management is a key enabling technology for network quality guarantee,especially in the era of explosive growth of communication capacity and network scale.However,to the best of our knowledge,it is extremely challenging to implement real-time performance monitoring and operations,administration and maintenance(OAM) in a highly complex dynamic network.In this paper,we propose an innovative optical identification(OID) scheme that can realize both performance monitoring and some advanced OAM sub-functions.The basic concepts,applications,challenges and evolution directions of this OID tool are also discussed.
基金This work was supported by the National Key Research and Development Program of China(No.2021YFB2206303)Key Research and Development Plan of Shandong Province(No.2023CXPT100)+1 种基金Sichuan Science Fund for Distinguished Young Scholars(No.2023NSFSC1969)National Student Research Training Program of China(No.20230613037).
文摘For joint modulation format identification(MFI)and optical signal-to-noise ratio(OSNR)monitoring,a simple and intelligent optical communication performance monitoring method is proposed,and the feasibility is demonstrated by digital coherent optical communication experiments.The experiment results show that for all modulation formats,including 28 GBaud polarization division multiplexing(PDM)QPSK/8-QAM/16-QAM/64-QAM,100%MFI accuracies are achieved even at OSNR values lower than the corresponding theoretical 20%forward error correction limit,as well as the high accuracies for OSNR monitoring.Furthermore,the proposed scheme has a reasonable monitoring level when chromatic dispersion and fiber nonlinear effects are varied.
基金Acknowledgements This work was supported by the National Basic Research Program of China (No. 2011CB301704), the National Science Fund for Distinguished Young Scholars (No. 61125501) and the National Natural Science Foundation of China (NSFC) (Grant No. 61007042).
文摘An all-optical real-time chromatic dispersion (CD) monitoring technique is proposed and demonstrated for 40Gbit/s differential phase-shifts keying (DPSK) signal, utilizing the cross modulation effects of semicon- ductor optical amplifier (SOA). The optical power of the output spectral components, which is from the probe's frequency up to the signal bandwidth, is used for CD monitoring. This technique provides a wide monitoring range with large variation scale. The impacts of the polarization mode dispersion (PMD) and the optical signal-to-noise ratio (OSNR) on the CD monitoring results are theoretically analyzed and then experimentally investigated, showing that they have slight influence on the monitoring results within a certain range. Furthermore, simulated results for quadrature phase shift keying (QPSK) signal at 80 Gbit/s are also demonstrated, indicating that this technique is suitable for advanced modulated format as well.
基金Acknowledgements The authors would like to acknowledge the support of the National Natural Science Foundation of China (NSFC) (Grant No. 61435006) and the Program for New Century Excellent Talents in University (NCET-12-0679) in China.
文摘An in-band optical signal-to-noise ratio (OSNR) monitoring technique with high resolution and large measurement range is demonstrated based on low- bandwidth coherent receiver and a tunable laser. The measurement range of OSNR is from 10 to 25 dB and the resolution can be controlled about ±1 dB.