Picosecond optical parametric generation and amplification in the near-infrared region within 1.361-1.656 μm and the mid-infrared region within 2.976-4.875 μm is constructed on the basis of bulk MgO:LiNbO 3 crystal...Picosecond optical parametric generation and amplification in the near-infrared region within 1.361-1.656 μm and the mid-infrared region within 2.976-4.875 μm is constructed on the basis of bulk MgO:LiNbO 3 crystals pumped at 1.064 μm.The maximum pulse energy reaches 1.3 mJ at 1.464 μm and 0.47 mJ at 3.894 μm,corresponding to a pumpto-idler photon conversion efficiency of 25%.By seeding the hard-to-measure mid-infrared radiation as the idler in the optical parametric amplification and measuring the amplified and frequency up-converted signal in the near-infrared or even visible region,one can measure very week mid-infrared radiation with ordinary detectors,which are insensitive to mid-infrared radiation,with a very high gain.A maximum gain factor of about 7 脳 10 7 is achieved at the mid-infrared wavelength of 3.374 μm and the corresponding energy detection limit is as low as about 390 aJ per pulse.展开更多
We experimentally demonstrate a continuous-wave(CW)injection-seeded cascaded optical parametric amplifier(OPA)for generating femtosecond pulses in the NIR-I spectral region.Utilizing a cascaded two-stage configuration...We experimentally demonstrate a continuous-wave(CW)injection-seeded cascaded optical parametric amplifier(OPA)for generating femtosecond pulses in the NIR-I spectral region.Utilizing a cascaded two-stage configuration,our system achieves an output of 347 m W of NIR radiation centered at 792 nm,combined with a pulse duration of 171 fs at a repetition rate of 50 MHz.The CW seeding intrinsically ensures superior pulse-to-pulse and long-term power stability.Our measurements indicate a relative intensity noise(RIN)of 2.2%root mean square(RMS)(integrated from 3.3 Hz to 2.5 MHz)and an RMS power stability as low as 0.63%over a duration of 90 min.Moreover,the beam quality of the output beam is neardiffraction-limited,with M^(2)factors of M_(X)^(2)=1.11 and M_(Y)^(2)=1.29.We believe that this type of laser source is capable of delivering stable femtosecond pulses within the NIR-I spectral range and can serve as an ideal solution for various applications including biophotonics,microscopy,and laser processing.展开更多
A scheme to generate entanglement in a cavity optomechanical system filled with an optical parametric amplifier is proposed. With the help of the optical parametric amplifier, the stationary macroscopic entanglement b...A scheme to generate entanglement in a cavity optomechanical system filled with an optical parametric amplifier is proposed. With the help of the optical parametric amplifier, the stationary macroscopic entanglement between the movable mirror and the cavity field can be notably enhanced, and the entanglement increases when the parametric gain increases.Moreover, for a given parametric gain, the degree of entanglement of the cavity optomechanical system increases with increasing input laser power.展开更多
We demonstrate a novel picosecond optical parametric preamplification to generate high-stability, high-energy and high-contrast seed pulses. The 5ps seed pulse is amplified from 60pJ to 300μJ with an 8.6ps/ 3mJ pump ...We demonstrate a novel picosecond optical parametric preamplification to generate high-stability, high-energy and high-contrast seed pulses. The 5ps seed pulse is amplified from 60pJ to 300μJ with an 8.6ps/ 3mJ pump laser in a signal stage of short pulse non-collinear optical parametric chirped pulse amplification. The total gain is more than 106 and the rms energy stability is under 1.35%. The contrast ratio is higher than 10s within a scale of 20ps before the main pulse. Consequently, the improvement factor of the signal contrast is approximately equal to the gain 106 outside the pump window.展开更多
We demonstrate the output characteristic of broadband parametric amplification of incoherent light pulses in a 355-nm pumped degenerate picosecond optical parametric amplification with either saturated or unsaturated ...We demonstrate the output characteristic of broadband parametric amplification of incoherent light pulses in a 355-nm pumped degenerate picosecond optical parametric amplification with either saturated or unsaturated amplification. The optical parametric amplifier is seeded by the fluorescence generated in a solution of pyridine-1 dye in ethanol. With the saturated amplification, we can obtain high energy incoherent light pulses, whose full width at half maximum bandwidth varies from 16 nm to 53 nm for the different phase matching angles near degeneracy. Moreover, the unsaturated bandwidth of the amplified pulses fits well to the calculated result at degeneracy. Selecting s-polarized fluorescence with a Glan-Taylor prism, the maximum bandwidth of the amplified fluorescence is found to be 59 nm for a purely s-polarized seed. The maximum output energy is 0.67 mJ for the optical parametric amplifier. By using an optical filter and compressor, the generated high energy incoherent light has great potential as the incoherent pump, signal or idler wave of a parametric down-conversion process, so that a wave with a high degree of coherence can be generated from an incoherent pump light.展开更多
The solution of the time-dependent periodic pumping non-degenerate optical parametric amplifier (NOPA) is derived when the pump depletion is considered both above and below thresholds. Based on this solution, the qu...The solution of the time-dependent periodic pumping non-degenerate optical parametric amplifier (NOPA) is derived when the pump depletion is considered both above and below thresholds. Based on this solution, the quantum fluctuation calculated shows that a high entanglement and a good squeezing degree of the parametric light beams are achieved near and above thresholds. We adopt two kinds of pump fields: (i) a continuously modulated pump with a sinusoidal envelope; (ii) a sequence of laser pulses with Gaussian envelopes. We analyse the time evolution of continuous variable entanglement by analytical and numerical calculations, and show that the periodic driven pumping also improves the degree of entanglement. The squeezing and Einstein-Podolsky-Rosen (EPR) entanglement by using the two pumping driven functions are investigated from below to above the threshold regions, the tendencies are nearly the same, and the Caussian driven function is superior to that of the sine driven function, when the maximum squeezing and the minimum variance of quantum fluctuation are considered. In the meantime, the generalization of frequency degenerate OPA to frequency non-degenerated OPA problem is investigated.展开更多
Based on the quantum fluctuations, we adopt the method of generalized V1 criterion to investigate multipartite entan- glement characteristics in an optical parametric amplification system with the consideration of dis...Based on the quantum fluctuations, we adopt the method of generalized V1 criterion to investigate multipartite entan- glement characteristics in an optical parametric amplification system with the consideration of dispersion. The nonlinear interaction becomes strong because of the existence of dispersion coefficient σ. Considering the influence of dispersion factor σ, with increasing the pump parameter μ, the value of minimum variance V1 decreases and the squeezing curve nearly equals 1/(1 + μ). The larger particle number N results in a smaller variance and higher entanglement.展开更多
The theory model of fiber optical parametric amplifier (FOPA) was introduced, which is based on optical nonlinear effect. And then numerical simulation was done to analyze and discuss the gain spectral characteristics...The theory model of fiber optical parametric amplifier (FOPA) was introduced, which is based on optical nonlinear effect. And then numerical simulation was done to analyze and discuss the gain spectral characteristics of one-pump and two-pump FOPA. The results show that for one-pump FOPA, when pump wavelength is near to fiber zero-dispersion wavelength(ZDW), the gain flatness is better, and with the increase of the pump power, fiber length and its nonlinear coefficient, the gain value will increase while the gain bandwidth will become narrow. For two-pump FOPA, when the pump central wavelength is near to fiber ZDW, the gain flatness is better. Moreover, by decreasing the space of two pumps wavelength, the gain flatness can be improved. Finally, some problems existing in FOPA were addressed.展开更多
In this paper, the influence of temperature on the intracavity optical parametric oscillator(IOPO) is investigated by using the stimulated temperature-dependent emission cross section of laser crystal. The rate equa...In this paper, the influence of temperature on the intracavity optical parametric oscillator(IOPO) is investigated by using the stimulated temperature-dependent emission cross section of laser crystal. The rate equations under plane wave approximation have been used for simulation of signal output pulse. Results show that the signal output pulse width is decreased by increasing the laser crystal temperature. Also, the signal output energy is increased by the increasing of the laser crystal temperature. The simulation results for IOPO based on Nd:YAG and Nd:YVO_4, show that the signal pulse energies are increased by 3.2 and 5.6 times respectively when the laser crystal temperature increased from 15℃ to 300℃. The presented model indicates that the temperature sensitivity of Nd:YVO_4-based IOPOs is more than that of Nd:YAG-based IOPOs which is expected from a physical point of view.展开更多
This paper reports that the tunable self-phase-stabilized infrared laser pulses have been generated from a two- stage optical parametric amplifier. With an 800 nm pump source, the output idler pulses are tunable from ...This paper reports that the tunable self-phase-stabilized infrared laser pulses have been generated from a two- stage optical parametric amplifier. With an 800 nm pump source, the output idler pulses are tunable from 1.3 μm to 2.3 μm, and the maximum output energy of the idler pulses is higher than I mJ at 1.6 μm by using 6 mJ pump laser. A carrier-envelope phase fluctuation of -0.15 rad (rms) for the idler pulses is measured for longer than one hour by using a home build f-to-2f interferometer.展开更多
We present a systematic experimental investigation of temporal contrast enhancement techniques for petawatt(PW)-class Ti:sapphire lasers utilizing a double chirped-pulse amplification(CPA)architecture.Particular atten...We present a systematic experimental investigation of temporal contrast enhancement techniques for petawatt(PW)-class Ti:sapphire lasers utilizing a double chirped-pulse amplification(CPA)architecture.Particular attention is given to pre-pulses induced by post-pulses originating in the first CPA stage.One conventional and two advanced pulse-cleaning strategies are quantitatively evaluated:(i)a saturable absorber(SA),(ii)a femtosecond optical parametric amplifier(OPA)employing the idler pulse in a two-stage configuration,and(iii)sum-frequency generation(SFG)combining the signal and idler pulses from the OPA.All techniques are implemented and evaluated using the J-KAREN-P laser system with an output energy of about 20 J.To the best of our knowledge,this is the first report to directly and systematically compare the contrast of pre-pulses originating from the first CPA stage under identical experimental conditions in a high-energy PW-class laser facility.The results offer crucial insights into contrast optimization for future high-field applications.展开更多
We have reported previously the ultrafast energy transfer process with a time constant of 0.8 ps from a monomeric to a dimeric subunit within a perylenetetracarboxylic diimide trimer, which was derived indirectly from...We have reported previously the ultrafast energy transfer process with a time constant of 0.8 ps from a monomeric to a dimeric subunit within a perylenetetracarboxylic diimide trimer, which was derived indirectly from a model fitting into the transient absorption experimental data. Here we present a direct ultrafast fluorescence quenching measurement by employing fs time-resolved transient fluorescence spectroscopy based on noncollinear optical parametric amplification technique. The rapid decay of the monomer's emission due to energy transfer was observed directly with a time constant of about 0.82 ps, in good agreement with the previous result.展开更多
The advent of chirped-pulse amplification (CPA) has greatly advanced the field of ultrafast and ultra-intense laser technology. CPA has become an indispensable platform for multidisciplinary research, such as physic...The advent of chirped-pulse amplification (CPA) has greatly advanced the field of ultrafast and ultra-intense laser technology. CPA has become an indispensable platform for multidisciplinary research, such as physics, chemistry, life sciences, and precision metrology. The femtosecond laser facility at the Synergic Extreme Condition User Facility (SECUF) is a comprehensive experimental platform with an advanced femtosecond laser source for ultrafast scientific research. It will provide an ultrafast scientific research system having a few-cycle pulse duration, wide spectral range, high energy, and high repetition rate for multipurpose applications.展开更多
In this letter, we investigate quasi-cyclic low-density parity-check (QC-LDPC) codes in a 40-Gb/s nonreturn-to-zero differential phase-shift keying (NRZ-DPSK) signal transmission system based on a fiber- based opt...In this letter, we investigate quasi-cyclic low-density parity-check (QC-LDPC) codes in a 40-Gb/s nonreturn-to-zero differential phase-shift keying (NRZ-DPSK) signal transmission system based on a fiber- based optical parametric amplifier (FOPA). A constructed algorithm of QC-LDPC codes according to the optimizing set of shift vMues on the circulant permutation matrix (CPM) of the basis matrix is proposed. Simulation results prove that the coding gain in the encoded system can be realized at 10.2 dB under QC- LDPC codes with a code rate of 5/6 when the bit error rate (BER) is 10-9. In addition, the error-floor level originating from the uncoded system is suppressed.展开更多
Radially polarized beams characterized by an axially symmetric polarization distribution can be sharply focused to produce strong longitudinal fields in the vicinity.Future applications of these beams will be facilita...Radially polarized beams characterized by an axially symmetric polarization distribution can be sharply focused to produce strong longitudinal fields in the vicinity.Future applications of these beams will be facilitated by the availability of higher powers and shorter durations.Currently,the ultrafast radially polarized pulse is typically generated via wavefront reconstruction from conventional linearly polarized states.Achievable pulse duration and intensity limits are strictly dependent on extra-cavity optics.Herein,a chirp-assisted near-degenerate type-II parametric process is presented as a pulse-energy-scalable method of accessing ultrafast radially polarized pulses.In a proof-of-principle experiment,the broadband gain balance between the orthogonally polarized signal components was realized via controlling the chirp of the pump pulse.Through an analogous pulseduration transfer effect,the radially polarized signal inherited the temporal and spectral characteristics of the pump pulse and maintained the radial polarization state of each frequency component of the signal.With a shorter pump pulse,the generation of few-cycle radially polarized pulses should be achievable,which may facilitate a wide range of ultrafast applications such as vacuum electron acceleration and high-harmonic generation.展开更多
A theoretical scheme is proposed to enhance the sensitivity of force sensors with quantum nondemolition measurement(QND)in an optomechanical setup assisted by four-tone optical driving and an optical parametric amplif...A theoretical scheme is proposed to enhance the sensitivity of force sensors with quantum nondemolition measurement(QND)in an optomechanical setup assisted by four-tone optical driving and an optical parametric amplifier(OPA).With the help of special drive,the system can be simplified as the typical type of QND for force sensing,so that the backaction noise can be evaded to surpass the standard quantum limit.Besides,the added noise can be suppressed owing to the modified optical susceptibility resulting from the OPA.By introducing two oscillators coupling with two charged bodies respectively,the signal can be enhanced with the nonlinearity caused by Coulomb interaction,while the noise presents an exponential decrease.Moreover,considering the homodyne detection effect,the range of system parameters and frequency bands will be broadened.The present investigation may provide a route toward simultaneously evading backaction noise,reducing the mechanical thermal noise,and enhancing the external signal,which can be an alternative design for sensitive devices.展开更多
We theoretically investigate the multistable behavior of a hybrid optomechanical system,in which a charged mechanical resonator is coupled via Coulomb interaction to an optomechanical cavity containing an optical para...We theoretically investigate the multistable behavior of a hybrid optomechanical system,in which a charged mechanical resonator is coupled via Coulomb interaction to an optomechanical cavity containing an optical parametric amplifier(OPA).It is shown that the multistable behavior of the mean intracavity photon number can be controlled flexibly by adjusting the nonlinear gain parameter of the OPA,the phase of the field pumping the OPA,the power and frequency of the field driving the cavity,and the Coulomb coupling strength between the two charged mechanical resonators.In particular,the increase of the nonlinear gain parameter can result in a transition from bistability to tristability.Moreover,the effect of the Coulomb coupling strength on the bistable behavior of the steady-state positions of the two mechanical resonators is discussed.展开更多
We report high-energy tunable 6.5-12 μm ps mid-infrared radiation generation based on OPA pumped using 1064 nm laser in LISe crystal.We simulated the relationship between the idler energy and crystal length.An optimu...We report high-energy tunable 6.5-12 μm ps mid-infrared radiation generation based on OPA pumped using 1064 nm laser in LISe crystal.We simulated the relationship between the idler energy and crystal length.An optimum LISe length of 4 mm was used to enhance the idler energy experimentally.At a pump energy of ~9.4 mJ, energy levels of ~146 and of ~27 μJ are generated at 6.5 μm and 12 μm, respectively.The highest energy of ~205 μJ is achieved at 8.1 μm at a pump energy of ~19 mJ.Finally, the angular and spectral width acceptance are measured.展开更多
Spatial quantum optics and quantum information based on the high order transverse mode are of importance for the super-resolution measurement beyond the quantum noise level. We demonstrated experimentally the transver...Spatial quantum optics and quantum information based on the high order transverse mode are of importance for the super-resolution measurement beyond the quantum noise level. We demonstrated experimentally the transverse plane TEM01 Hermite Gauss quantum squeezing. The squeezed TEM01 mode is generated in a degenerate optical parametric amplifier with the nonlinear crystal of periodically poled KTiOPO4. The level of 2.2-dB squeezing is measured using a spatial balance homodyne detection system.展开更多
We report on the generation of a squeezing vacuum at 1.55 μm using an optical parametric amplifier based on periodically poled LiNbO 3.Using three specifically designed narrow linewidth mode cleaners as the spatial m...We report on the generation of a squeezing vacuum at 1.55 μm using an optical parametric amplifier based on periodically poled LiNbO 3.Using three specifically designed narrow linewidth mode cleaners as the spatial mode and noise filter of the laser at 1.55 μm and 775 nm,the squeezed vacuum of up to 3.0 dB below the shot noise level at 1.55 μm is experimentally obtained.This system is compatible with standard telecommunication optical fibers,and will be useful for continuous variable long-distance quantum communication and distributed quantum computing.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 61078005)the National Basic ResearchProgram of China (Grant No. 2007CB613205)the China Postdoctoral Science Foundation
文摘Picosecond optical parametric generation and amplification in the near-infrared region within 1.361-1.656 μm and the mid-infrared region within 2.976-4.875 μm is constructed on the basis of bulk MgO:LiNbO 3 crystals pumped at 1.064 μm.The maximum pulse energy reaches 1.3 mJ at 1.464 μm and 0.47 mJ at 3.894 μm,corresponding to a pumpto-idler photon conversion efficiency of 25%.By seeding the hard-to-measure mid-infrared radiation as the idler in the optical parametric amplification and measuring the amplified and frequency up-converted signal in the near-infrared or even visible region,one can measure very week mid-infrared radiation with ordinary detectors,which are insensitive to mid-infrared radiation,with a very high gain.A maximum gain factor of about 7 脳 10 7 is achieved at the mid-infrared wavelength of 3.374 μm and the corresponding energy detection limit is as low as about 390 aJ per pulse.
基金supported by the National Key R&D Program of China(No.2023YFB3611000)the National Natural Science Foundation of China(Nos.62105237 and 62227821)。
文摘We experimentally demonstrate a continuous-wave(CW)injection-seeded cascaded optical parametric amplifier(OPA)for generating femtosecond pulses in the NIR-I spectral region.Utilizing a cascaded two-stage configuration,our system achieves an output of 347 m W of NIR radiation centered at 792 nm,combined with a pulse duration of 171 fs at a repetition rate of 50 MHz.The CW seeding intrinsically ensures superior pulse-to-pulse and long-term power stability.Our measurements indicate a relative intensity noise(RIN)of 2.2%root mean square(RMS)(integrated from 3.3 Hz to 2.5 MHz)and an RMS power stability as low as 0.63%over a duration of 90 min.Moreover,the beam quality of the output beam is neardiffraction-limited,with M^(2)factors of M_(X)^(2)=1.11 and M_(Y)^(2)=1.29.We believe that this type of laser source is capable of delivering stable femtosecond pulses within the NIR-I spectral range and can serve as an ideal solution for various applications including biophotonics,microscopy,and laser processing.
基金Project supported by the National Natural Science Foundation of China(Grant No.11247001)the Scientific Research Foundation of the Higher Education Institutions of Anhui Province,China(Grant No.KJ2012A083)the Doctor(Master)Fund of Anhui University of Science and Technology,China
文摘A scheme to generate entanglement in a cavity optomechanical system filled with an optical parametric amplifier is proposed. With the help of the optical parametric amplifier, the stationary macroscopic entanglement between the movable mirror and the cavity field can be notably enhanced, and the entanglement increases when the parametric gain increases.Moreover, for a given parametric gain, the degree of entanglement of the cavity optomechanical system increases with increasing input laser power.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11604350 and 61405211
文摘We demonstrate a novel picosecond optical parametric preamplification to generate high-stability, high-energy and high-contrast seed pulses. The 5ps seed pulse is amplified from 60pJ to 300μJ with an 8.6ps/ 3mJ pump laser in a signal stage of short pulse non-collinear optical parametric chirped pulse amplification. The total gain is more than 106 and the rms energy stability is under 1.35%. The contrast ratio is higher than 10s within a scale of 20ps before the main pulse. Consequently, the improvement factor of the signal contrast is approximately equal to the gain 106 outside the pump window.
基金Project supported by the National Basic Research Program of China (Grant No. 2007CB613205)the National Natural Science Foundation of China (Grant No. 61078005)
文摘We demonstrate the output characteristic of broadband parametric amplification of incoherent light pulses in a 355-nm pumped degenerate picosecond optical parametric amplification with either saturated or unsaturated amplification. The optical parametric amplifier is seeded by the fluorescence generated in a solution of pyridine-1 dye in ethanol. With the saturated amplification, we can obtain high energy incoherent light pulses, whose full width at half maximum bandwidth varies from 16 nm to 53 nm for the different phase matching angles near degeneracy. Moreover, the unsaturated bandwidth of the amplified pulses fits well to the calculated result at degeneracy. Selecting s-polarized fluorescence with a Glan-Taylor prism, the maximum bandwidth of the amplified fluorescence is found to be 59 nm for a purely s-polarized seed. The maximum output energy is 0.67 mJ for the optical parametric amplifier. By using an optical filter and compressor, the generated high energy incoherent light has great potential as the incoherent pump, signal or idler wave of a parametric down-conversion process, so that a wave with a high degree of coherence can be generated from an incoherent pump light.
基金Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No 2006011003)
文摘The solution of the time-dependent periodic pumping non-degenerate optical parametric amplifier (NOPA) is derived when the pump depletion is considered both above and below thresholds. Based on this solution, the quantum fluctuation calculated shows that a high entanglement and a good squeezing degree of the parametric light beams are achieved near and above thresholds. We adopt two kinds of pump fields: (i) a continuously modulated pump with a sinusoidal envelope; (ii) a sequence of laser pulses with Gaussian envelopes. We analyse the time evolution of continuous variable entanglement by analytical and numerical calculations, and show that the periodic driven pumping also improves the degree of entanglement. The squeezing and Einstein-Podolsky-Rosen (EPR) entanglement by using the two pumping driven functions are investigated from below to above the threshold regions, the tendencies are nearly the same, and the Caussian driven function is superior to that of the sine driven function, when the maximum squeezing and the minimum variance of quantum fluctuation are considered. In the meantime, the generalization of frequency degenerate OPA to frequency non-degenerated OPA problem is investigated.
基金Project supported by the State Key Laboratory of Quantum Optics and Quantum Optics Devices,Shanxi University,Taiyuan 030006,China(Grant No.KF201401)the National Natural Science Foundation of China(Grant No.11404084)
文摘Based on the quantum fluctuations, we adopt the method of generalized V1 criterion to investigate multipartite entan- glement characteristics in an optical parametric amplification system with the consideration of dispersion. The nonlinear interaction becomes strong because of the existence of dispersion coefficient σ. Considering the influence of dispersion factor σ, with increasing the pump parameter μ, the value of minimum variance V1 decreases and the squeezing curve nearly equals 1/(1 + μ). The larger particle number N results in a smaller variance and higher entanglement.
文摘The theory model of fiber optical parametric amplifier (FOPA) was introduced, which is based on optical nonlinear effect. And then numerical simulation was done to analyze and discuss the gain spectral characteristics of one-pump and two-pump FOPA. The results show that for one-pump FOPA, when pump wavelength is near to fiber zero-dispersion wavelength(ZDW), the gain flatness is better, and with the increase of the pump power, fiber length and its nonlinear coefficient, the gain value will increase while the gain bandwidth will become narrow. For two-pump FOPA, when the pump central wavelength is near to fiber ZDW, the gain flatness is better. Moreover, by decreasing the space of two pumps wavelength, the gain flatness can be improved. Finally, some problems existing in FOPA were addressed.
文摘In this paper, the influence of temperature on the intracavity optical parametric oscillator(IOPO) is investigated by using the stimulated temperature-dependent emission cross section of laser crystal. The rate equations under plane wave approximation have been used for simulation of signal output pulse. Results show that the signal output pulse width is decreased by increasing the laser crystal temperature. Also, the signal output energy is increased by the increasing of the laser crystal temperature. The simulation results for IOPO based on Nd:YAG and Nd:YVO_4, show that the signal pulse energies are increased by 3.2 and 5.6 times respectively when the laser crystal temperature increased from 15℃ to 300℃. The presented model indicates that the temperature sensitivity of Nd:YVO_4-based IOPOs is more than that of Nd:YAG-based IOPOs which is expected from a physical point of view.
基金Project supported from the National Basic Research Programme of China (Grant No 2006CB806001)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No KGCX-YW-417)+1 种基金Shanghai Commission of Science and Technology (Grant Nos 07JC14055, 06DE22015 and 0652nm005)Japan-Korea-China Cooperative Project on "High Energy Density Sciences for Laser Fusion Energy"
文摘This paper reports that the tunable self-phase-stabilized infrared laser pulses have been generated from a two- stage optical parametric amplifier. With an 800 nm pump source, the output idler pulses are tunable from 1.3 μm to 2.3 μm, and the maximum output energy of the idler pulses is higher than I mJ at 1.6 μm by using 6 mJ pump laser. A carrier-envelope phase fluctuation of -0.15 rad (rms) for the idler pulses is measured for longer than one hour by using a home build f-to-2f interferometer.
基金supported by the Japan Society for the Promotion of Science(Grant Nos.JP 15F15772,JP 16H03911,JP 16K05506,JP 19H00669,and JP 25H00621)the Precursory Research for Embryonic Science and Technology(Grant No.JPMJPR16P9)+1 种基金the MEXT Project(Grant No.JPMXS0450300221)the Japan Science and Technology Agency(Grant No.PRESTOJPMJPR16P9).
文摘We present a systematic experimental investigation of temporal contrast enhancement techniques for petawatt(PW)-class Ti:sapphire lasers utilizing a double chirped-pulse amplification(CPA)architecture.Particular attention is given to pre-pulses induced by post-pulses originating in the first CPA stage.One conventional and two advanced pulse-cleaning strategies are quantitatively evaluated:(i)a saturable absorber(SA),(ii)a femtosecond optical parametric amplifier(OPA)employing the idler pulse in a two-stage configuration,and(iii)sum-frequency generation(SFG)combining the signal and idler pulses from the OPA.All techniques are implemented and evaluated using the J-KAREN-P laser system with an output energy of about 20 J.To the best of our knowledge,this is the first report to directly and systematically compare the contrast of pre-pulses originating from the first CPA stage under identical experimental conditions in a high-energy PW-class laser facility.The results offer crucial insights into contrast optimization for future high-field applications.
基金This work was supported by the National Natural Science Foundation of China (No.20925313 and No.60438020), the National Basic Research Program of China (No.2009CB929404), and the Chinese Academy of Sciences Innovation Program (KJCX2-YW-W25).
文摘We have reported previously the ultrafast energy transfer process with a time constant of 0.8 ps from a monomeric to a dimeric subunit within a perylenetetracarboxylic diimide trimer, which was derived indirectly from a model fitting into the transient absorption experimental data. Here we present a direct ultrafast fluorescence quenching measurement by employing fs time-resolved transient fluorescence spectroscopy based on noncollinear optical parametric amplification technique. The rapid decay of the monomer's emission due to energy transfer was observed directly with a time constant of about 0.82 ps, in good agreement with the previous result.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61575217 and 11774410)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB16030200)
文摘The advent of chirped-pulse amplification (CPA) has greatly advanced the field of ultrafast and ultra-intense laser technology. CPA has become an indispensable platform for multidisciplinary research, such as physics, chemistry, life sciences, and precision metrology. The femtosecond laser facility at the Synergic Extreme Condition User Facility (SECUF) is a comprehensive experimental platform with an advanced femtosecond laser source for ultrafast scientific research. It will provide an ultrafast scientific research system having a few-cycle pulse duration, wide spectral range, high energy, and high repetition rate for multipurpose applications.
基金supported by the National Natural Science Foundation of China(No.41174158)the National Commonwealth Research Project of China(No.201011081-4)
文摘In this letter, we investigate quasi-cyclic low-density parity-check (QC-LDPC) codes in a 40-Gb/s nonreturn-to-zero differential phase-shift keying (NRZ-DPSK) signal transmission system based on a fiber- based optical parametric amplifier (FOPA). A constructed algorithm of QC-LDPC codes according to the optimizing set of shift vMues on the circulant permutation matrix (CPM) of the basis matrix is proposed. Simulation results prove that the coding gain in the encoded system can be realized at 10.2 dB under QC- LDPC codes with a code rate of 5/6 when the bit error rate (BER) is 10-9. In addition, the error-floor level originating from the uncoded system is suppressed.
基金supported by the National Natural Science Foundation of China(Grant No.92050203)the Natural Science Foundation of Guangdong Province(Grant No.2020A1515010541)the Science and Technology Project of Shenzhen(Grant Nos.JCYJ20200109105606426,JCYJ20190808143419622,and JCYJ20190808145016980)。
文摘Radially polarized beams characterized by an axially symmetric polarization distribution can be sharply focused to produce strong longitudinal fields in the vicinity.Future applications of these beams will be facilitated by the availability of higher powers and shorter durations.Currently,the ultrafast radially polarized pulse is typically generated via wavefront reconstruction from conventional linearly polarized states.Achievable pulse duration and intensity limits are strictly dependent on extra-cavity optics.Herein,a chirp-assisted near-degenerate type-II parametric process is presented as a pulse-energy-scalable method of accessing ultrafast radially polarized pulses.In a proof-of-principle experiment,the broadband gain balance between the orthogonally polarized signal components was realized via controlling the chirp of the pump pulse.Through an analogous pulseduration transfer effect,the radially polarized signal inherited the temporal and spectral characteristics of the pump pulse and maintained the radial polarization state of each frequency component of the signal.With a shorter pump pulse,the generation of few-cycle radially polarized pulses should be achievable,which may facilitate a wide range of ultrafast applications such as vacuum electron acceleration and high-harmonic generation.
基金supported by the National Key Research and Development Program of China Grant No.2021YFA1400700National Natural Science Foundation of China Grant No.11974125。
文摘A theoretical scheme is proposed to enhance the sensitivity of force sensors with quantum nondemolition measurement(QND)in an optomechanical setup assisted by four-tone optical driving and an optical parametric amplifier(OPA).With the help of special drive,the system can be simplified as the typical type of QND for force sensing,so that the backaction noise can be evaded to surpass the standard quantum limit.Besides,the added noise can be suppressed owing to the modified optical susceptibility resulting from the OPA.By introducing two oscillators coupling with two charged bodies respectively,the signal can be enhanced with the nonlinearity caused by Coulomb interaction,while the noise presents an exponential decrease.Moreover,considering the homodyne detection effect,the range of system parameters and frequency bands will be broadened.The present investigation may provide a route toward simultaneously evading backaction noise,reducing the mechanical thermal noise,and enhancing the external signal,which can be an alternative design for sensitive devices.
基金supported by the National Natural Science Foundation of China(Grant No.11304110)the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20130413 and BK20140450)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No.13KJB140002)
文摘We theoretically investigate the multistable behavior of a hybrid optomechanical system,in which a charged mechanical resonator is coupled via Coulomb interaction to an optomechanical cavity containing an optical parametric amplifier(OPA).It is shown that the multistable behavior of the mean intracavity photon number can be controlled flexibly by adjusting the nonlinear gain parameter of the OPA,the phase of the field pumping the OPA,the power and frequency of the field driving the cavity,and the Coulomb coupling strength between the two charged mechanical resonators.In particular,the increase of the nonlinear gain parameter can result in a transition from bistability to tristability.Moreover,the effect of the Coulomb coupling strength on the bistable behavior of the steady-state positions of the two mechanical resonators is discussed.
文摘We report high-energy tunable 6.5-12 μm ps mid-infrared radiation generation based on OPA pumped using 1064 nm laser in LISe crystal.We simulated the relationship between the idler energy and crystal length.An optimum LISe length of 4 mm was used to enhance the idler energy experimentally.At a pump energy of ~9.4 mJ, energy levels of ~146 and of ~27 μJ are generated at 6.5 μm and 12 μm, respectively.The highest energy of ~205 μJ is achieved at 8.1 μm at a pump energy of ~19 mJ.Finally, the angular and spectral width acceptance are measured.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10774096, 60708010, and 60978008)the National Basic Research Program of China (Grant No. 2010CB923102)the Specialized Research Fund for the Doctoral Program of China (Grant No. 200801080004)
文摘Spatial quantum optics and quantum information based on the high order transverse mode are of importance for the super-resolution measurement beyond the quantum noise level. We demonstrated experimentally the transverse plane TEM01 Hermite Gauss quantum squeezing. The squeezed TEM01 mode is generated in a degenerate optical parametric amplifier with the nonlinear crystal of periodically poled KTiOPO4. The level of 2.2-dB squeezing is measured using a spatial balance homodyne detection system.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60878003)the Science Foundation for Excellent Research Team of the National Natural Science Foundation of China (Grant No. 61121064)the National Basic Research Program of China (Grant No. 2010CB923101)
文摘We report on the generation of a squeezing vacuum at 1.55 μm using an optical parametric amplifier based on periodically poled LiNbO 3.Using three specifically designed narrow linewidth mode cleaners as the spatial mode and noise filter of the laser at 1.55 μm and 775 nm,the squeezed vacuum of up to 3.0 dB below the shot noise level at 1.55 μm is experimentally obtained.This system is compatible with standard telecommunication optical fibers,and will be useful for continuous variable long-distance quantum communication and distributed quantum computing.