This paper proposes an efficient strategy for resource utilization in Elastic Optical Networks (EONs) to minimize spectrum fragmentation and reduce connection blocking probability during Routing and Spectrum Allocatio...This paper proposes an efficient strategy for resource utilization in Elastic Optical Networks (EONs) to minimize spectrum fragmentation and reduce connection blocking probability during Routing and Spectrum Allocation (RSA). The proposed method, Dynamic Threshold-Based Routing and Spectrum Allocation with Fragmentation Awareness (DT-RSAF), integrates rerouting and spectrum defragmentation as needed. By leveraging Yen’s shortest path algorithm, DT-RSAF enhances resource utilization while ensuring improved service continuity. A dynamic threshold mechanism enables the algorithm to adapt to varying network conditions, while its fragmentation awareness effectively mitigates spectrum fragmentation. Simulation results on NSFNET and COST 239 topologies demonstrate that DT-RSAF significantly outperforms methods such as K-Shortest Path Routing and Spectrum Allocation (KSP-RSA), Load Balanced and Fragmentation-Aware (LBFA), and the Invasive Weed Optimization-based RSA (IWO-RSA). Under heavy traffic, DT-RSAF reduces the blocking probability by up to 15% and achieves lower Bandwidth Fragmentation Ratios (BFR), ranging from 74% to 75%, compared to 77% - 80% for KSP-RSA, 75% - 77% for LBFA, and approximately 76% for IWO-RSA. DT-RSAF also demonstrated reasonable computation times compared to KSP-RSA, LBFA, and IWO-RSA. On a small-sized network, its computation time was 8710 times faster than that of Integer Linear Programming (ILP) on the same network topology. Additionally, it achieved a similar execution time to LBFA and outperformed IWO-RSA in terms of efficiency. These results highlight DT-RSAF’s capability to maintain large contiguous frequency blocks, making it highly effective for accommodating high-bandwidth requests in EONs while maintaining reasonable execution times.展开更多
Multi-band optical networks are a potential technology for increasing network capacity.However,the strong interference and non-uniformity between wavelengths in multi-band optical networks have become a bottleneck res...Multi-band optical networks are a potential technology for increasing network capacity.However,the strong interference and non-uniformity between wavelengths in multi-band optical networks have become a bottleneck restricting the transmission capacity of multi-band optical networks.To overcome these challenges,it is particularly important to implement optical power optimization targeting wavelength differences.Therefore,based on the generalized Gaussian noise model,we first formulate an optimization model for the problems of routing,modulation format,wavelength,and power allocation in C+L+S multi-band optical networks.Our objective function is to maximize the average link capacity of the network while ensuring that the Optical Signal-to-Noise(OSNR)threshold of the service request is not exceeded.Next,we propose a NonLinear Interferenceaware(NLI-aware)routing,modulation format,wavelength,and power allocation algorithm.Finally,we conduct simulations under different test conditions.The simulation results indicate that our algorithm can effectively reduce the blocking probability by 23.5%and improve the average link capacity by 3.78%in C+L+S multi-band optical networks.展开更多
Quantum key distribution(QKD)optical networks can provide more secure communications.However,with the increase of the QKD path requests and key updates,network blocking problems will become severe.The blocking problem...Quantum key distribution(QKD)optical networks can provide more secure communications.However,with the increase of the QKD path requests and key updates,network blocking problems will become severe.The blocking problems in the network can become more severe because each fiber link has limited resources(such as wavelengths and time slots).In addition,QKD optical networks are also affected by external disturbances such as data interception and eavesdropping,resulting in inefficient network communication.In this paper,we exploit the idea of protection path to enhance the anti-interference ability of QKD optical network.By introducing the concept of security metric,we propose a routing wavelength and time slot allocation algorithm(RWTA)based on protection path,which can lessen the blocking problem of QKD optical network.According to simulation analysis,the security-metric-based RWTA algorithm(SM-RWTA)proposed in this paper can substantially improve the success rate of security key(SK)update and significantly reduce the blocking rate of the network.It can also improve the utilization rate of resources such as wavelengths and time slots.Compared with the non-security-metric-based RWTA algorithm(NSM-RWTA),our algorithm is robust and can enhance the anti-interference ability and security of QKD optical networks.展开更多
Propelled by the rise of artificial intelligence,cloud services,and data center applications,next-generation,low-power,local-oscillator-less,digital signal processing(DSP)-free,and short-reach coherent optical communi...Propelled by the rise of artificial intelligence,cloud services,and data center applications,next-generation,low-power,local-oscillator-less,digital signal processing(DSP)-free,and short-reach coherent optical communication has evolved into an increasingly prominent area of research in recent years.Here,we demonstrate DSP-free coherent optical transmission by analog signal processing in frequency synchronous optical network(FSON)architecture,which supports polarization multiplexing and higher-order modulation formats.The FSON architecture that allows the numerous laser sources of optical transceivers within a data center can be quasi-synchronized by means of a tree-distributed homology architecture.In conjunction with our proposed pilot-tone assisted Costas loop for an analog coherent receiver,we achieve a record dual-polarization 224-Gb/s 16-QAM 5-km mismatch transmission with reset-free carrier phase recovery in the optical domain.Our proposed DSP-free analog coherent detection system based on the FSON makes it a promising solution for next-generation,low-power,and high-capacity coherent data center interconnects.展开更多
The ultimate goal of artificial intelligence(AI)is to mimic the human brain to perform decision-making and control directly from high-dimensional sensory input.Diffractive optical networks(DONs)provide a promising sol...The ultimate goal of artificial intelligence(AI)is to mimic the human brain to perform decision-making and control directly from high-dimensional sensory input.Diffractive optical networks(DONs)provide a promising solution for implementing AI with high speed and low power-consumption.Most reported DONs focus on tasks that do not involve environmental interaction,such as object recognition and image classification.By contrast,the networks capable of decision-making and control have not been developed.Here,we propose using deep reinforcement learning to implement DONs that imitate human-level decisionmaking and control capability.Such networks,which take advantage of a residual architecture,allow finding optimal control policies through interaction with the environment and can be readily implemented with existing optical devices.The superior performance is verified using three types of classic games:tic-tac-toe,Super Mario Bros.,and Car Racing.Finally,we present an experimental demonstration of playing tic-tac-toe using the network based on a spatial light modulator.Our work represents a solid step forward in advancing DONs,which promises a fundamental shift from simple recognition or classification tasks to the high-level sensory capability of AI.It may find exciting applications in autonomous driving,intelligent robots,and intelligent manufacturing.展开更多
Free Space Optical (FSO) networks, also known as optical wireless networks, have emerged as viable candidates for broadband wireless communications in the near future. The range of the potential application of FSO n...Free Space Optical (FSO) networks, also known as optical wireless networks, have emerged as viable candidates for broadband wireless communications in the near future. The range of the potential application of FSO networks is extensive, from home to satellite. However, FSO networks have not been popularized because of insufficient availability and reliability. Researchers have focused on the problems in the physical layer in order to exploit the properties of wireless optical channels. However, recent technological developments with successful results make it practical to explore the advantages of the high bandwidth. Some researchers have begun to focus on the problems of network and upper layers in FSO networks. In this survey, we classify prospective global FSO networks into three subnetworks and give an account of them. We also present state-of- the-art research and discuss what kinds of challenges exist.展开更多
Software defined optical networks (SDONs) integrate software defined technology with optical communication networks and represent the promising development trend of future optical networks. The key technologies for ...Software defined optical networks (SDONs) integrate software defined technology with optical communication networks and represent the promising development trend of future optical networks. The key technologies for SDONs include software-defined optical transmission, switching, and networking. The main features include control and transport separation, hard-ware universalization, protocol standardization, controllable optical network, and flexible optical network applications. This paper introduces software defined optical networks and its innovation environment, in terms of network architecture, protocol extension solution, experiment platform and typical applications. Batch testing has been conducted to evaluate the performance of this SDON testbed. The results show that the SDON testbed has good scalability in different sizes. Meanwhile, we notice that controller output bandwidth has great influence on lightpath setup delay.展开更多
While all-optical networks become more and more popular as the basis of the next generation Internet(NGI)infrastructure,such networks raise many critical security issues.High power inter-channel crosstalk attack is on...While all-optical networks become more and more popular as the basis of the next generation Internet(NGI)infrastructure,such networks raise many critical security issues.High power inter-channel crosstalk attack is one of the security issues which have negative effect on information security in optical networks.Optical fiber in optical networks has some nonlinear characteristics,such as self phase modulation(SPM),cross phase modulation(XPM),four-wave mixing(FWM)and stimulated Raman scattering(SRS).They can be used to implement high power inter-channel crosstalk attack by malicious attackers.The mechanism of high power inter-channel crosstalk attack is analyzed.When an attack occurs,attack signal power and fiber nonlinear refractive index are the main factors which affect quality of legitimate signals.The effect of high power inter-channel crosstalk attack on quality of legitimate signals is investigated by building simulation system in VPI software.The results show that interchannel crosstalk caused by high power attack signal leads to quality deterioration of legitimate signals propagated in the same fiber.The higher the power of attack signal is,the greater the fiber nonlinear refractive index is.The closer the channel spacing away from the attack signal is,the more seriously the legitimate signals are affected by attack.We also find that when attack position and power of attack signal are constant,attack signal cannot infinitely spread,while its attack ability shows a fading trend with the extension of propagation distance.展开更多
Spatial division multiplexing enabled elastic optical networks(SDM-EONs) are the potential implementation form of future optical transport networks, because it can curve the physical limitation of achievable transmiss...Spatial division multiplexing enabled elastic optical networks(SDM-EONs) are the potential implementation form of future optical transport networks, because it can curve the physical limitation of achievable transmission capacity in single-mode fiber and single-core fiber. However, spectrum fragmentation issue becomes more serious in SDM-EONs compared with simple elastic optical networks(EONs) with single mode fiber or single core fiber. In this paper, multicore virtual concatenation(MCVC) scheme is first proposed considering inter-core crosstalk to solve the spectrum fragmentation issue in SDM-EONs. Simulation results show that the proposed MCVC scheme can achieve better performance compared with the baseline scheme, i.e., single-core virtual concatenation(SCVC) scheme, in terms of blocking probability and spectrum utilization.展开更多
Latency sensitive services have attracted much attention lately and imposedstringent requirements on the access network design. Passive optical networks (PONs) providea potential long-term solution for the underlying ...Latency sensitive services have attracted much attention lately and imposedstringent requirements on the access network design. Passive optical networks (PONs) providea potential long-term solution for the underlying transport network supporting theseservices. This paper discusses latency limitations in PON and recent progress in PONstandardization to improve latency. Experimental results of a low latency PON system arepresented as a proof of concept.展开更多
The next-generation optical network is a service oriented network,which could be delivered by utilizing the generalized multiprotocol label switching(GMPLS) based control plane to realize lots of intelligent features ...The next-generation optical network is a service oriented network,which could be delivered by utilizing the generalized multiprotocol label switching(GMPLS) based control plane to realize lots of intelligent features such as rapid provisioning,automated protection and restoration(P&R),efficient resource allocation,and support for different quality of service(QoS) requirements.In this paper,we propose a novel stateful PCE-cloud(SPC)based architecture of GMPLS optical networks for cloud services.The cloud computing technologies(e.g.virtualization and parallel computing) are applied to the construction of SPC for improving the reliability and maximizing resource utilization.The functions of SPC and GMPLS based control plane are expanded according to the features of cloud services for different QoS requirements.The architecture and detailed description of the components of SPC are provided.Different potential cooperation relationships between public stateful PCE cloud(PSPC) and region stateful PCE cloud(RSPC) are investigated.Moreover,we present the policy-enabled and constraint-based routing scheme base on the cooperation of PSPC and RSPC.Simulation results for verifying the performance of routing and control plane reliability are analyzed.展开更多
A novel routing architecture named DREAMSCAPE is presented to solve the problem of path computation in multi-layer, multi-domain and multi-constraints scenarios, which includes Group Engine (GE) and Unit Engine (UE). ...A novel routing architecture named DREAMSCAPE is presented to solve the problem of path computation in multi-layer, multi-domain and multi-constraints scenarios, which includes Group Engine (GE) and Unit Engine (UE). GE, UE and their cooperation relationship form the main feature of DREAMSCAPE, i.e. Dual Routing Engine (DRE). Based on DRE, two routing schemes are proposed, which are DRE Forward Path Computation (DRE-FPC) and Hierarchical DRE Backward Recursive PCE-based Computation (HDRE-BRPC). In order to validate various intelligent networking technologies of large-scale heterogeneous optical networks, a DRE-based transport optical networks testbed is built with 1000 GMPLS-based control nodes and 5 optical transport nodes. The two proposed routing schemes, i.e. DRE-FPC and HDRE-BRPC, are validated on the testbed, compared with traditional Hierarchical Routing (HR) scheme. Experimental results show a good performance of DREAMSCAPE.展开更多
A Mixed Line Rate(MLR)optical network is a good candidate for a core backbone network because of its ability to provide diverse line rates to effectively accommodate traffic demands with heterogeneous bandwidth requir...A Mixed Line Rate(MLR)optical network is a good candidate for a core backbone network because of its ability to provide diverse line rates to effectively accommodate traffic demands with heterogeneous bandwidth requirements.Because of the deleterious effects of physical impairments,there is a maximum transmission reach for optical signals before they have to be regenerated.Being expensive devices,regenerators are expected to be sparsely located and used in such a network,called a translucent optical network.In this paper,we consider the Grooming,Routing,and Wavelength Assignment(GRWA)problem so that the Quality of Transmission(QoT)for connections is satisfied,and the network-level performance metric of blocking probability is minimized.Cross-layer heuristics to effectively allocate the sparse regenerators in MLR networks are developed,and extensive simulation results are presented to demonstrate their effectiveness.展开更多
Mobile free space optical networks have aroused much attention due to the ability of providing high speed connectivity over long distance using the wireless laser links,while requiring relatively high available bandwi...Mobile free space optical networks have aroused much attention due to the ability of providing high speed connectivity over long distance using the wireless laser links,while requiring relatively high available bandwidth resource and less energy consumption.However,maintaining the network with laserlinks is quite challenging due to a number of issues,such as the link fragility,the difficulty in pointingand tracking of the link,which also raises the great difficulty in the control of the network.In this paper,we present the methodology for the deployment of the mobile freespace optical networks based on our proposed OpenFlow-based control architecture.In addition,a new routing scheme is proposed and demonstrated on the testbed based on this control architecture.Delivery ratio,average delivery delay and time complexity are given to verify the performance of the OpenFlow-based control architecture.展开更多
In this paper, we propose a mathe- matical model for long reach Passive Optical Networks (PON) planning. The model consid- ers the traffic demand, user requirements and physical constraints. It can support conven- t...In this paper, we propose a mathe- matical model for long reach Passive Optical Networks (PON) planning. The model consid- ers the traffic demand, user requirements and physical constraints. It can support conven- tional star-like topologies as well as cascade PON networks. Then a two-stage evolutional algorithm is described to solve this problem. The first stage was to find a proper splitter can- didate site set, composing the outer loop. The second stage aimed to get the optimal topology when the splitter locations were selected, com- posing the internal loop. In this algorithm, the Pr/ifer sequence is used to build up a one-to-one correspondence between a PON network configuration and a chromosome. Compared with the results obtained by the enumeration method, the proposed model and algorithm are shown to be effective and accu- rate.展开更多
With the development of satellite communication,in order to solve the problems of shortage of on-board resources and refinement of delay requirements to improve the communication performance of satellite optical netwo...With the development of satellite communication,in order to solve the problems of shortage of on-board resources and refinement of delay requirements to improve the communication performance of satellite optical networks,this paper proposes a bee colony optimization algorithm for routing and wavelength assignment based on directional guidance(DBCO-RWA)in satellite optical networks.In D-BCORWA,directional guidance based on relative position and link load is defined,and then the link cost function in the path search stage is established based on the directional guidance factor.Finally,feasible solutions are expanded in the global optimization stage.The wavelength utilization,communication success probability,blocking rate,communication hops and convergence characteristic are simulated.The results show that the performance of the proposed algorithm is improved compared with existing algorithms.展开更多
In this paper,a new architecture of optical networks—the optical network based on server system is considered.From the point of this new architecture,the network can be modeled as a server system with three type serv...In this paper,a new architecture of optical networks—the optical network based on server system is considered.From the point of this new architecture,the network can be modeled as a server system with three type servers—the access server,the node server and the link server.The network performances such as cost,energy consume and network capacity can be affected by the capability of these three type servers.New ILP formulations are proposed to analyze the network capacity under two types of node severs,with and without wavelength converter.Computer simulations are conducted to evaluate the effectiveness of these new formulations.The study has shown that the network can achieve the same throughput under the two types of node servers and the network throughput increases when the maximum allowed variation increases.展开更多
In practical optical networks, there is often the same number of wavelengths in a fiber. But if it is not carefully designed, there will be much difference in link load among different fibers, and unnecessary waveleng...In practical optical networks, there is often the same number of wavelengths in a fiber. But if it is not carefully designed, there will be much difference in link load among different fibers, and unnecessary wavelengths will be needed. This paper investigated this load balancing issues to minimize the wavelength requirements. Both Integer Linear Programming (ILP) and heuristic algorithms were presented to solve such a problem in WDM optical networks with or without wavelength continuity constraints.展开更多
This paper researched the traffic of optical networks in time-space complexity,proposed a novel traf-fic model for complex optical networks based on traffic grooming,designed a traffic generator GTS(gener-ator based o...This paper researched the traffic of optical networks in time-space complexity,proposed a novel traf-fic model for complex optical networks based on traffic grooming,designed a traffic generator GTS(gener-ator based on time and space)with 'centralized+distributed' idea,and then made a simulation in Clanguage.Experiments results show that GTS can produce the virtual network topology which can changedynamically with the characteristic of scaling-free network.GTS can also groom the different traffic andtrigger them under real-time or scheduling mechanisms,generating different optical connections.Thistraffic model is convenient for the simulation of optical networks considering the traffic complexity.展开更多
Due to the vulnerability of fibers in optical networks, physical- layer attacks targeting photon splitting, such as eavesdrop- ping, can potentially lead to large information and revenue loss. To enhance the existing ...Due to the vulnerability of fibers in optical networks, physical- layer attacks targeting photon splitting, such as eavesdrop- ping, can potentially lead to large information and revenue loss. To enhance the existing security approaches of optical networks, a new promising technology, quantum key distribu- tion (QKD), can securely encrypt services in optical networks, which has been a hotspot of research in recent years for its characteristic that can let clients know whether infomlation transmission has been eavesdropped or not. In this paper, we apply QKD to provide secret keys for optical networks and then introduce the architecture of QKD based optical net- work. As for the secret keys generated by QKD in optical net- works, we propose a re-transmission mechanism by analyzing the security risks in QKD-based optical networks. Numerical results indicate that the proposed re-transmission mechanism can provide strong protection degree with enhanced attack protection. Finally, we illustrated some future challenges in QKD-based optical networks.展开更多
文摘This paper proposes an efficient strategy for resource utilization in Elastic Optical Networks (EONs) to minimize spectrum fragmentation and reduce connection blocking probability during Routing and Spectrum Allocation (RSA). The proposed method, Dynamic Threshold-Based Routing and Spectrum Allocation with Fragmentation Awareness (DT-RSAF), integrates rerouting and spectrum defragmentation as needed. By leveraging Yen’s shortest path algorithm, DT-RSAF enhances resource utilization while ensuring improved service continuity. A dynamic threshold mechanism enables the algorithm to adapt to varying network conditions, while its fragmentation awareness effectively mitigates spectrum fragmentation. Simulation results on NSFNET and COST 239 topologies demonstrate that DT-RSAF significantly outperforms methods such as K-Shortest Path Routing and Spectrum Allocation (KSP-RSA), Load Balanced and Fragmentation-Aware (LBFA), and the Invasive Weed Optimization-based RSA (IWO-RSA). Under heavy traffic, DT-RSAF reduces the blocking probability by up to 15% and achieves lower Bandwidth Fragmentation Ratios (BFR), ranging from 74% to 75%, compared to 77% - 80% for KSP-RSA, 75% - 77% for LBFA, and approximately 76% for IWO-RSA. DT-RSAF also demonstrated reasonable computation times compared to KSP-RSA, LBFA, and IWO-RSA. On a small-sized network, its computation time was 8710 times faster than that of Integer Linear Programming (ILP) on the same network topology. Additionally, it achieved a similar execution time to LBFA and outperformed IWO-RSA in terms of efficiency. These results highlight DT-RSAF’s capability to maintain large contiguous frequency blocks, making it highly effective for accommodating high-bandwidth requests in EONs while maintaining reasonable execution times.
基金supported in part by the National Natural Science Foundation of China under Grants U21B2005,62201105,62331017,U24B20134,62222103,and 62025105in part by the Chongqing Municipal Education Commission under Grants KJQN202400621,KJQN202100643,and KJZDK202400608+1 种基金in part by the China Postdoctoral Science Foundation under Grant 2021M700563in part by the Chongqing Postdoctoral Funding Project under Grant 2021XM3052。
文摘Multi-band optical networks are a potential technology for increasing network capacity.However,the strong interference and non-uniformity between wavelengths in multi-band optical networks have become a bottleneck restricting the transmission capacity of multi-band optical networks.To overcome these challenges,it is particularly important to implement optical power optimization targeting wavelength differences.Therefore,based on the generalized Gaussian noise model,we first formulate an optimization model for the problems of routing,modulation format,wavelength,and power allocation in C+L+S multi-band optical networks.Our objective function is to maximize the average link capacity of the network while ensuring that the Optical Signal-to-Noise(OSNR)threshold of the service request is not exceeded.Next,we propose a NonLinear Interferenceaware(NLI-aware)routing,modulation format,wavelength,and power allocation algorithm.Finally,we conduct simulations under different test conditions.The simulation results indicate that our algorithm can effectively reduce the blocking probability by 23.5%and improve the average link capacity by 3.78%in C+L+S multi-band optical networks.
基金funded by Youth Program of Shaanxi Provincial Department of Science and Technology(Grant No.2024JC-YBQN-0630)。
文摘Quantum key distribution(QKD)optical networks can provide more secure communications.However,with the increase of the QKD path requests and key updates,network blocking problems will become severe.The blocking problems in the network can become more severe because each fiber link has limited resources(such as wavelengths and time slots).In addition,QKD optical networks are also affected by external disturbances such as data interception and eavesdropping,resulting in inefficient network communication.In this paper,we exploit the idea of protection path to enhance the anti-interference ability of QKD optical network.By introducing the concept of security metric,we propose a routing wavelength and time slot allocation algorithm(RWTA)based on protection path,which can lessen the blocking problem of QKD optical network.According to simulation analysis,the security-metric-based RWTA algorithm(SM-RWTA)proposed in this paper can substantially improve the success rate of security key(SK)update and significantly reduce the blocking rate of the network.It can also improve the utilization rate of resources such as wavelengths and time slots.Compared with the non-security-metric-based RWTA algorithm(NSM-RWTA),our algorithm is robust and can enhance the anti-interference ability and security of QKD optical networks.
基金supported by the National Natural Science Foundation of China(Grant Nos.62405250 and 62471404)the China Postdoctoral Science Foundation(Grant No.2024M762955)+1 种基金the Key Project of Westlake Institute for Optoelectronics(Grant No.2023GD003)the Optical Com-munication and Sensing Laboratory,School of Engineering,Westlake University.
文摘Propelled by the rise of artificial intelligence,cloud services,and data center applications,next-generation,low-power,local-oscillator-less,digital signal processing(DSP)-free,and short-reach coherent optical communication has evolved into an increasingly prominent area of research in recent years.Here,we demonstrate DSP-free coherent optical transmission by analog signal processing in frequency synchronous optical network(FSON)architecture,which supports polarization multiplexing and higher-order modulation formats.The FSON architecture that allows the numerous laser sources of optical transceivers within a data center can be quasi-synchronized by means of a tree-distributed homology architecture.In conjunction with our proposed pilot-tone assisted Costas loop for an analog coherent receiver,we achieve a record dual-polarization 224-Gb/s 16-QAM 5-km mismatch transmission with reset-free carrier phase recovery in the optical domain.Our proposed DSP-free analog coherent detection system based on the FSON makes it a promising solution for next-generation,low-power,and high-capacity coherent data center interconnects.
基金supported by the National Natural Science Foundation of China(Grant Nos.12064025,12264028,12364045,and 12304420)the Natural Science Foundation of Jiangxi Province(Grant Nos.20212ACB202006,20232BAB201040,and 20232BAB211025)+3 种基金the Shanghai Pujiang Program(Grant No.22PJ1402900)the Australian Research Council Discovery Project(Grant No.DP200101353)the Interdisciplinary Innovation Fund of Nanchang University(Grant No.2019-9166-27060003)the China Scholarship Council(Grant No.202008420045).
文摘The ultimate goal of artificial intelligence(AI)is to mimic the human brain to perform decision-making and control directly from high-dimensional sensory input.Diffractive optical networks(DONs)provide a promising solution for implementing AI with high speed and low power-consumption.Most reported DONs focus on tasks that do not involve environmental interaction,such as object recognition and image classification.By contrast,the networks capable of decision-making and control have not been developed.Here,we propose using deep reinforcement learning to implement DONs that imitate human-level decisionmaking and control capability.Such networks,which take advantage of a residual architecture,allow finding optimal control policies through interaction with the environment and can be readily implemented with existing optical devices.The superior performance is verified using three types of classic games:tic-tac-toe,Super Mario Bros.,and Car Racing.Finally,we present an experimental demonstration of playing tic-tac-toe using the network based on a spatial light modulator.Our work represents a solid step forward in advancing DONs,which promises a fundamental shift from simple recognition or classification tasks to the high-level sensory capability of AI.It may find exciting applications in autonomous driving,intelligent robots,and intelligent manufacturing.
基金This work is supported in part by the US National Science Foundation under Grants CNS-1320664, and by the Wireless Engineering Research and Education Center (WEREC) at Auburn University, Aubur, AL, USA.
文摘Free Space Optical (FSO) networks, also known as optical wireless networks, have emerged as viable candidates for broadband wireless communications in the near future. The range of the potential application of FSO networks is extensive, from home to satellite. However, FSO networks have not been popularized because of insufficient availability and reliability. Researchers have focused on the problems in the physical layer in order to exploit the properties of wireless optical channels. However, recent technological developments with successful results make it practical to explore the advantages of the high bandwidth. Some researchers have begun to focus on the problems of network and upper layers in FSO networks. In this survey, we classify prospective global FSO networks into three subnetworks and give an account of them. We also present state-of- the-art research and discuss what kinds of challenges exist.
基金supported by ZTE Industry-Academia-Research Cooperation Funds under Grant No.Surrey-Ref-9953
文摘Software defined optical networks (SDONs) integrate software defined technology with optical communication networks and represent the promising development trend of future optical networks. The key technologies for SDONs include software-defined optical transmission, switching, and networking. The main features include control and transport separation, hard-ware universalization, protocol standardization, controllable optical network, and flexible optical network applications. This paper introduces software defined optical networks and its innovation environment, in terms of network architecture, protocol extension solution, experiment platform and typical applications. Batch testing has been conducted to evaluate the performance of this SDON testbed. The results show that the SDON testbed has good scalability in different sizes. Meanwhile, we notice that controller output bandwidth has great influence on lightpath setup delay.
基金the National Natural Science Foundation of China(No.61179002)the National Defence Foundation of China(No.2012JY002-260)
文摘While all-optical networks become more and more popular as the basis of the next generation Internet(NGI)infrastructure,such networks raise many critical security issues.High power inter-channel crosstalk attack is one of the security issues which have negative effect on information security in optical networks.Optical fiber in optical networks has some nonlinear characteristics,such as self phase modulation(SPM),cross phase modulation(XPM),four-wave mixing(FWM)and stimulated Raman scattering(SRS).They can be used to implement high power inter-channel crosstalk attack by malicious attackers.The mechanism of high power inter-channel crosstalk attack is analyzed.When an attack occurs,attack signal power and fiber nonlinear refractive index are the main factors which affect quality of legitimate signals.The effect of high power inter-channel crosstalk attack on quality of legitimate signals is investigated by building simulation system in VPI software.The results show that interchannel crosstalk caused by high power attack signal leads to quality deterioration of legitimate signals propagated in the same fiber.The higher the power of attack signal is,the greater the fiber nonlinear refractive index is.The closer the channel spacing away from the attack signal is,the more seriously the legitimate signals are affected by attack.We also find that when attack position and power of attack signal are constant,attack signal cannot infinitely spread,while its attack ability shows a fading trend with the extension of propagation distance.
基金supported in part by NSFC project (61571058, 61601052)
文摘Spatial division multiplexing enabled elastic optical networks(SDM-EONs) are the potential implementation form of future optical transport networks, because it can curve the physical limitation of achievable transmission capacity in single-mode fiber and single-core fiber. However, spectrum fragmentation issue becomes more serious in SDM-EONs compared with simple elastic optical networks(EONs) with single mode fiber or single core fiber. In this paper, multicore virtual concatenation(MCVC) scheme is first proposed considering inter-core crosstalk to solve the spectrum fragmentation issue in SDM-EONs. Simulation results show that the proposed MCVC scheme can achieve better performance compared with the baseline scheme, i.e., single-core virtual concatenation(SCVC) scheme, in terms of blocking probability and spectrum utilization.
文摘Latency sensitive services have attracted much attention lately and imposedstringent requirements on the access network design. Passive optical networks (PONs) providea potential long-term solution for the underlying transport network supporting theseservices. This paper discusses latency limitations in PON and recent progress in PONstandardization to improve latency. Experimental results of a low latency PON system arepresented as a proof of concept.
基金supported by National Natural Science Foundation of China(No.61571061)Innovative Research Fund of Beijing University of Posts and Telecommunications (2015RC16)
文摘The next-generation optical network is a service oriented network,which could be delivered by utilizing the generalized multiprotocol label switching(GMPLS) based control plane to realize lots of intelligent features such as rapid provisioning,automated protection and restoration(P&R),efficient resource allocation,and support for different quality of service(QoS) requirements.In this paper,we propose a novel stateful PCE-cloud(SPC)based architecture of GMPLS optical networks for cloud services.The cloud computing technologies(e.g.virtualization and parallel computing) are applied to the construction of SPC for improving the reliability and maximizing resource utilization.The functions of SPC and GMPLS based control plane are expanded according to the features of cloud services for different QoS requirements.The architecture and detailed description of the components of SPC are provided.Different potential cooperation relationships between public stateful PCE cloud(PSPC) and region stateful PCE cloud(RSPC) are investigated.Moreover,we present the policy-enabled and constraint-based routing scheme base on the cooperation of PSPC and RSPC.Simulation results for verifying the performance of routing and control plane reliability are analyzed.
基金supported in part by National Key Basic Research Program of China (973 program) under Grant No.2010CB328204National High Technology Research and Development Program of China (863 program) under Grant No.2009AA01Z255+3 种基金National Natural Science Foundation of China under Grant No. 60932004RFDP Project under Grant No.20090005110013111 Project of China under Grant No.B07005China Fundamental Research Funds for the Central Universities
文摘A novel routing architecture named DREAMSCAPE is presented to solve the problem of path computation in multi-layer, multi-domain and multi-constraints scenarios, which includes Group Engine (GE) and Unit Engine (UE). GE, UE and their cooperation relationship form the main feature of DREAMSCAPE, i.e. Dual Routing Engine (DRE). Based on DRE, two routing schemes are proposed, which are DRE Forward Path Computation (DRE-FPC) and Hierarchical DRE Backward Recursive PCE-based Computation (HDRE-BRPC). In order to validate various intelligent networking technologies of large-scale heterogeneous optical networks, a DRE-based transport optical networks testbed is built with 1000 GMPLS-based control nodes and 5 optical transport nodes. The two proposed routing schemes, i.e. DRE-FPC and HDRE-BRPC, are validated on the testbed, compared with traditional Hierarchical Routing (HR) scheme. Experimental results show a good performance of DREAMSCAPE.
基金supported in part by National Science Foundation (NSF) under Grants No. CNS-0915795 and No.CNS-0916890
文摘A Mixed Line Rate(MLR)optical network is a good candidate for a core backbone network because of its ability to provide diverse line rates to effectively accommodate traffic demands with heterogeneous bandwidth requirements.Because of the deleterious effects of physical impairments,there is a maximum transmission reach for optical signals before they have to be regenerated.Being expensive devices,regenerators are expected to be sparsely located and used in such a network,called a translucent optical network.In this paper,we consider the Grooming,Routing,and Wavelength Assignment(GRWA)problem so that the Quality of Transmission(QoT)for connections is satisfied,and the network-level performance metric of blocking probability is minimized.Cross-layer heuristics to effectively allocate the sparse regenerators in MLR networks are developed,and extensive simulation results are presented to demonstrate their effectiveness.
基金supported in part by 863 program(2012AA011301)973 program (2010CB328204)+3 种基金NSFC project(61271189, 61201154)RFDP Project(20120005120019)the Fundamental Research Funds for the Central Universities(2013RC1201)Fund of State Key Laboratory of Information Photonics and Optical Communications(BUPT)
文摘Mobile free space optical networks have aroused much attention due to the ability of providing high speed connectivity over long distance using the wireless laser links,while requiring relatively high available bandwidth resource and less energy consumption.However,maintaining the network with laserlinks is quite challenging due to a number of issues,such as the link fragility,the difficulty in pointingand tracking of the link,which also raises the great difficulty in the control of the network.In this paper,we present the methodology for the deployment of the mobile freespace optical networks based on our proposed OpenFlow-based control architecture.In addition,a new routing scheme is proposed and demonstrated on the testbed based on this control architecture.Delivery ratio,average delivery delay and time complexity are given to verify the performance of the OpenFlow-based control architecture.
基金supported by National High Technology Research and Development Program of China under Grant No.2011AA01A104National 973 Program underGrant No. 2013CB329204National Natural Science Foundation of China under Grant No.61100206
文摘In this paper, we propose a mathe- matical model for long reach Passive Optical Networks (PON) planning. The model consid- ers the traffic demand, user requirements and physical constraints. It can support conven- tional star-like topologies as well as cascade PON networks. Then a two-stage evolutional algorithm is described to solve this problem. The first stage was to find a proper splitter can- didate site set, composing the outer loop. The second stage aimed to get the optimal topology when the splitter locations were selected, com- posing the internal loop. In this algorithm, the Pr/ifer sequence is used to build up a one-to-one correspondence between a PON network configuration and a chromosome. Compared with the results obtained by the enumeration method, the proposed model and algorithm are shown to be effective and accu- rate.
基金supported in part by the National Key Research and Development Program of China under Grant 2021YFB2900604in part by the National Natural Science Foundation of China(NSFC)under Grant U22B2033,61975234,61875230。
文摘With the development of satellite communication,in order to solve the problems of shortage of on-board resources and refinement of delay requirements to improve the communication performance of satellite optical networks,this paper proposes a bee colony optimization algorithm for routing and wavelength assignment based on directional guidance(DBCO-RWA)in satellite optical networks.In D-BCORWA,directional guidance based on relative position and link load is defined,and then the link cost function in the path search stage is established based on the directional guidance factor.Finally,feasible solutions are expanded in the global optimization stage.The wavelength utilization,communication success probability,blocking rate,communication hops and convergence characteristic are simulated.The results show that the performance of the proposed algorithm is improved compared with existing algorithms.
基金supported by China Post-doctoral Science Foundation funded project(20070420013)Open Fund of National Laboratory on Local Fiber-Optic Communication Networks&Advanced optical Communication Systems,(Pe-king University),PRChinaGuangxi Science Foundation(0731003)
文摘In this paper,a new architecture of optical networks—the optical network based on server system is considered.From the point of this new architecture,the network can be modeled as a server system with three type servers—the access server,the node server and the link server.The network performances such as cost,energy consume and network capacity can be affected by the capability of these three type servers.New ILP formulations are proposed to analyze the network capacity under two types of node severs,with and without wavelength converter.Computer simulations are conducted to evaluate the effectiveness of these new formulations.The study has shown that the network can achieve the same throughput under the two types of node servers and the network throughput increases when the maximum allowed variation increases.
文摘In practical optical networks, there is often the same number of wavelengths in a fiber. But if it is not carefully designed, there will be much difference in link load among different fibers, and unnecessary wavelengths will be needed. This paper investigated this load balancing issues to minimize the wavelength requirements. Both Integer Linear Programming (ILP) and heuristic algorithms were presented to solve such a problem in WDM optical networks with or without wavelength continuity constraints.
基金Supported by the High Technology Research and Development Programme of China (No. 2008AA01A328)the National Natural Science Foundation of China (No. 60772022)+2 种基金the Program for New Century Excellent Talents in University (No. NCET-05-0112)the Program for Changjiang Scholars and Innovative Research Team in University of MOE, China (No. IRT0609)111 Project (No. B07005)
文摘This paper researched the traffic of optical networks in time-space complexity,proposed a novel traf-fic model for complex optical networks based on traffic grooming,designed a traffic generator GTS(gener-ator based on time and space)with 'centralized+distributed' idea,and then made a simulation in Clanguage.Experiments results show that GTS can produce the virtual network topology which can changedynamically with the characteristic of scaling-free network.GTS can also groom the different traffic andtrigger them under real-time or scheduling mechanisms,generating different optical connections.Thistraffic model is convenient for the simulation of optical networks considering the traffic complexity.
基金supported in part by NSFC project(Grant No.61571058and 61601052)Science and Technology Project of State Grid Corporation of China:The Key Technology Research of Elastic Optical Network(Grant No.526800160006)+1 种基金China Postdoctoral Science Foundation Project(2016M600970)ZTE Industry-Academia-Research Cooperation Funds
文摘Due to the vulnerability of fibers in optical networks, physical- layer attacks targeting photon splitting, such as eavesdrop- ping, can potentially lead to large information and revenue loss. To enhance the existing security approaches of optical networks, a new promising technology, quantum key distribu- tion (QKD), can securely encrypt services in optical networks, which has been a hotspot of research in recent years for its characteristic that can let clients know whether infomlation transmission has been eavesdropped or not. In this paper, we apply QKD to provide secret keys for optical networks and then introduce the architecture of QKD based optical net- work. As for the secret keys generated by QKD in optical net- works, we propose a re-transmission mechanism by analyzing the security risks in QKD-based optical networks. Numerical results indicate that the proposed re-transmission mechanism can provide strong protection degree with enhanced attack protection. Finally, we illustrated some future challenges in QKD-based optical networks.