Exploring materials with high electrochemical activity is of keen interest for electrochemistry-controlled optical and energy storage devices.However,it remains a great challenge for transition metal oxides to meet th...Exploring materials with high electrochemical activity is of keen interest for electrochemistry-controlled optical and energy storage devices.However,it remains a great challenge for transition metal oxides to meet this feature due to their low electron conductivity and insufficient reaction sites.Here,we propose a type of transition metal phosphate(NiHPO_(4)·3H_(2)O,NHP)by a facile and scalable electrodeposition method,which can achieve the capability of efficient ion accommodation and injection/extraction for electrochromic energy storage applications.Specifically,the NHP film with an ultra-high transmittance(approach to 100%)achieves a large optical modulation(90.8%at 500 nm),high coloration efficiency(75.4 cm^(2)C^(-1)at 500 nm),and a high specific capacity of 47.8 mAh g^(-1)at 0.4 A g^(-1).Furthermore,the transformation mechanism of NHP upon electrochemical reaction is systematically elucidated using in situ and ex situ techniques.Ultimately,a large-area electrochromic smart window with 100 cm^(2)is constructed based on the NHP electrode,displaying superior electrochromic energy storage performance in regulating natural light and storing electrical charges.Our findings may open up new strategies for developing advanced electrochromic energy storage materials and smart windows.展开更多
CO2 laser rapid ablation mitigation(RAM)of fused silica has been used in high-power laser systems owing to its advantages of high efficiency,and ease of implementing batch and automated repairing.In order to study the...CO2 laser rapid ablation mitigation(RAM)of fused silica has been used in high-power laser systems owing to its advantages of high efficiency,and ease of implementing batch and automated repairing.In order to study the effect of repaired morphology of RAM on laser modulation and to improve laser damage threshold of optics,an finite element method(FEM)mathematical model of 351 nm laser irradiating fused silica optics is developed based on Maxwell electromagnetic field equations,to explore the 3D near-field light intensity distribution inside optics with repaired site on its surface.The influences of the cone angle and the size of the repaired site on incident laser modulation are studied as well.The results have shown that for the repaired site with a cone angle of 73.3°,the light intensity distribution has obvious three-dimensional characteristics.The relative light intensity on z-section has a circularly distribution,and the radius of the annular intensification zone increases with the decrease of z.While the distribution of maximum relative light intensity on y-section is parabolical with the increase of y.As the cone angle of the repaired site decreases,the effect of the repaired surface on light modulation becomes stronger,leading to a weak resistance to laser damage.Moreover,the large size repaired site would also reduce the laser damage threshold.Therefore,a repaired site with a larger cone angle and smaller size is preferred in practical CO2 laser repairing of surface damage.This work will provide theoretical guidance for the design of repaired surface topography,as well as the improvement of RAM process.展开更多
Cholesteric liquid crystals(CLCs) have recently sparked an enormous amount of interest in the development of soft matter materials due to their unique ability to self-organize into a helical supra-molecular architec...Cholesteric liquid crystals(CLCs) have recently sparked an enormous amount of interest in the development of soft matter materials due to their unique ability to self-organize into a helical supra-molecular architecture and their excellent selective reflection of light based on the Bragg relationship.Nowadays,by the virtue of building the self-organized nanostructures with pitch gradient or non-uniform pitch distribution,extensive work has already been performed to obtain CLC films with a broad reflection band.Based on authors' many years' research experience,this critical review systematically summarizes the physical and optical background of the CLCs with broadband reflection characteristics,methods to obtain broadband reflection of CLCs,as well as the application in the field of intelligent optical modulation materials.Combined with the research status and the advantages in the field,the important basic and applied scientific problems in the research direction are also introduced.展开更多
An optical modulation format generation scheme based on spectral filtering and frequency-to-time mapping is experimentally demonstrated. Many modulation formats with continuously adjustable duty radio and bit rate can...An optical modulation format generation scheme based on spectral filtering and frequency-to-time mapping is experimentally demonstrated. Many modulation formats with continuously adjustable duty radio and bit rate can be formed by changing the dispersion of dispersion element and the bandwidth of shaped spectrum in this scheme. In the experiment, non-return-to-zero(NRZ) signal with bit rate of 29.41 Gbit/s and 1/2 duty ratio return-to-zero(RZ) signal with bit rate of 13.51 Gbit/s are obtained. The maximum bit rate of modulation format signal is also analyzed.展开更多
Optical modulation is significant and ubiquitous to telecommunication technologies,smart windows,and military devices.However,due to the limited tunability of traditional doping,achieving broadband optical property ch...Optical modulation is significant and ubiquitous to telecommunication technologies,smart windows,and military devices.However,due to the limited tunability of traditional doping,achieving broadband optical property change is a tough problem.Here,we demonstrate a remarkable transformation of optical transmittance in few-layer graphene(FLG)covering the electromagnetic spectra from the visible to the terahertz wave after lithium(Li)intercalation.It results in the transmittance being higher than 90%from the wavelengths of 480 to 1040 nm,and it increases most from 86.4%to 94.1%at 600 nm,reduces from∼80%to∼68%in the wavelength range from 2.5 to 11μm,has∼20%reduction over a wavelength range from 0.4 to 1.2 THz,and reduces from 97.2%to 68.2%at the wavelength of 1.2 THz.The optical modification of lithiated FLG is attributed to the increase of Fermi energy(E_(f))due to the charge transfer from Li to graphene layers.Our results may provide a new strategy for the design of broadband optical modulation devices.展开更多
The 6G transport network will be intricately designed as an integrated carrier, seamlessly integrating computing and networking capabilities. Leveraging the network as its foundation, it aims to deliver differentiated...The 6G transport network will be intricately designed as an integrated carrier, seamlessly integrating computing and networking capabilities. Leveraging the network as its foundation, it aims to deliver differentiated computing power services through supercomputing/intelligent computing and capability resource pooling. This study proposes an advanced modulation format, alternating polarization chirped return-to-zero frequency shift keying(Apol-CRZ-FSK), specifically designed to meet the integrated computing and networking carrying requirements of future 6G. Furthermore, comprehensive comparison and analysis of the transmission performance of 100 Gbps Apol-CRZ-FSK, CRZ-FSK, and differential quadrature phase shift keying(DQPSK) are conducted under identical conditions. The research indicates the high nonlinearity resistance capability exhibited by Apol-CRZ-FSK, highlighting its superior transmission performance.展开更多
We propose an optical transmitter with reduced modulator driving voltage. This reduction is achieved through an on-off ratio improvement technique based on FWM. We confirmed the feasibility of the method in a 43-Gbit/...We propose an optical transmitter with reduced modulator driving voltage. This reduction is achieved through an on-off ratio improvement technique based on FWM. We confirmed the feasibility of the method in a 43-Gbit/s experiment.展开更多
We demonstrate a new technique of measuring differential carrier lifetime and linewidth enhancement factor in a semiconductor optical amplifier. In our method, the optical responses and fiber transfer functions of a s...We demonstrate a new technique of measuring differential carrier lifetime and linewidth enhancement factor in a semiconductor optical amplifier. In our method, the optical responses and fiber transfer functions of a self-gain modulated SOA are measured and, from these, values of carrier lifetimes and linewidth enhancement factors are determined for various SOA input optical powers.展开更多
A novel scheme of optical modulation in 40 GHz radio-over fiber (RoF) system is proposed. It generates optical QPSK/16QAM signals in a serial-parallel structure of Mach-Zehnder modulators (MZMs). The millimeter-wa...A novel scheme of optical modulation in 40 GHz radio-over fiber (RoF) system is proposed. It generates optical QPSK/16QAM signals in a serial-parallel structure of Mach-Zehnder modulators (MZMs). The millimeter-wave is obtained with optical frequency multiplication (OFM). Furthermore, modulation on optical-wave is transferred onto millimeter-wave. It can be used to increase transmission capacity of millimeter-wave RoF systems.展开更多
Two-dimensional(2D)nonlinear optical mediums with high and tunable light modulation capability can significantly stimulate the development of ultrathin,compact,and integrated optoelectronics devices and photonic eleme...Two-dimensional(2D)nonlinear optical mediums with high and tunable light modulation capability can significantly stimulate the development of ultrathin,compact,and integrated optoelectronics devices and photonic elements.2D carbides and nitrides of transition metals(MXenes)are a new class of 2D materials with excellent intrinsic and strong light-matter interaction characteristics.However,the current understanding of their photo-physical properties and strategies for improving optical performance is insufficient.To address this issue,we rationally designed and in situ synthesized a 2D Nb_(2)C/MoS_(2) heterostructure that outperforms pristine Nb2C in both linear and nonlinear optical performance.Excellent agreement between experimental and theoretical results demonstrated that the Nb_(2)C/MoS_(2) inherited the preponderance of Nb_(2)C and MoS_(2) in absorption at different wavelengths,resulting in the broadband enhanced optical absorption characteristics.In addition to linear optical modulation,we also achieved stronger near infrared nonlinear optical modulation,with a nonlinear absorption coefficient of Nb_(2)C/MoS_(2) being more than two times that of the pristine Nb_(2)C.These results were supported by the band alinement model which was determined by the X-ray photoelectron spectroscopy(XPS)experiment and first-principal theory calculation.The presented facile synthesis approach and robust light modulation strategy pave the way for broadband optoelectronic devices and optical modulators.展开更多
We focus on the optimization of SiGe material deposition, the minimization of the parasitic capacitance of the probe pads for high speed, low voltage and high contrast ratio operation. The device fabrication is based ...We focus on the optimization of SiGe material deposition, the minimization of the parasitic capacitance of the probe pads for high speed, low voltage and high contrast ratio operation. The device fabrication is based on processes for standard Si electronics and is suitable for mass-production. We present observations of quantum confinement and quantum-confined Stark effect (QCSE) electroabsorption in Ge quantum wells (QWs) with SiGe barriers grown on Si substrates. Though Ge is an indirect gap semiconductor, the resulting effects are at least as clear and strong as seen in typical III-V QW structures at similar wavelengths. We also demonstrated a modulator, with eye diagrams of up to 3.5 GHz, a small driving voltage of 2.5 V and a modulation bandwidth at about 10 GHz. Finally, carrier dynamics under ultra-fast laser excitation and high- speed photocurrent response are investigated.展开更多
We study rogue waves in an inhomogeneous nonlinear optical fiber with variable coefficients. An exact rogue wave solution that describes rogue wave excitation and modulation on a bright soliton pulse is obtained. Spec...We study rogue waves in an inhomogeneous nonlinear optical fiber with variable coefficients. An exact rogue wave solution that describes rogue wave excitation and modulation on a bright soliton pulse is obtained. Special properties of rogue waves on the bright soliton, such as the trajectory and spectrum, are analyzed in detail. In particular, our analytical results suggest a way of sustaining the peak shape of rogue waves on the soliton background by choosing an appropriate dispersion parameter.展开更多
A high humidity-resistant,dual mechanical responsive,and reversible mechanochromic wrinkling system based on a VHB 4910-polydimethylsiloxane(PDMS)substrate with a thin film consisting of 90 wt%poly(vinyl butyral)(PVB)...A high humidity-resistant,dual mechanical responsive,and reversible mechanochromic wrinkling system based on a VHB 4910-polydimethylsiloxane(PDMS)substrate with a thin film consisting of 90 wt%poly(vinyl butyral)(PVB)and 10 wt%hydroxypropyl cellulose(HPC)has been reported.The wrinkling system exhibited significant optical tuning from transparent to opaque states with 50%changes in transmittance,which was achieved through the dual mechanical modes of pre-stretching and releasing processes or bending.Upon exposure to ethanol vapor or a re-flattening process,wrinkles can be erased,yielding a transparent state.Consequently,the wrinkling system could be reversibly switched between transparency and opacity for 1000 cycles with marginal changes in the optical performance.Owing to the insolubility of PVB in water,the wrinkling patterns exhibited excellent durability in high-humidity environments(relative humidity(RH)=99%).Furthermore,the smart encryption device is also demonstrated via mechano-controlled surface topography by patterning the wrinkling system,suggesting potential applications of the designed structure in smart windows,anti-counterfeiting,dynamic display,optical information encryption,and rewritable surfaces.展开更多
Waveguide-integrated optical modulators are indispensable for on-chip optical interconnects and optical computing.To cope with the ever-increasing amount of data being generated and consumed,ultrafast waveguide-integr...Waveguide-integrated optical modulators are indispensable for on-chip optical interconnects and optical computing.To cope with the ever-increasing amount of data being generated and consumed,ultrafast waveguide-integrated optical modulators with low energy consumption are highly demanded.In recent years,two-dimensional(2D)materials have attracted a lot of attention and have provided tremendous opportunities for the development of high-performance waveguide-integrated optical modulators because of their extraordinary optoelectronic properties and versatile compatibility.This paper reviews the state-of-the-art waveguide-integrated optical modulators with 2D materials,providing researchers with the developing trends in the field and allowing them to identify existing challenges and promising potential solutions.First,the concept and fundamental mechanisms of optical modulation with 2D materials are summarized.Second,a review of waveguide-integrated optical modulators employing electro-optic,all-optic,and thermo-optic effects is provided.Finally,the challenges and perspectives of waveguide-integrated modulators with 2D materials are discussed.展开更多
The combining microelectronic devices and associated technologies onto a single silicon chip poses a substantial challenge.However,in recent years,the area of silicon photonics has experienced remarkable advancements ...The combining microelectronic devices and associated technologies onto a single silicon chip poses a substantial challenge.However,in recent years,the area of silicon photonics has experienced remarkable advancements and notable leaps in performance.The performance of silicon on insulator(SOI)based photonic devices,such as fast silicon optical modulators,photonic transceivers,optical filters,etc.,have been discussed.This would be a step forward in creating standalone silicon photonic devices,strengthening the possibility of single on-chip nanophotonic integrated circuits.Suppose an integrated silicon photonic chip is designed and fabricated.In that case,it might drastically modify these combined photonic component costs,power consumption,and size,bringing substantial,perhaps revolutionary,changes to the next-generation communications sector.Yet,the monolithic integration of photonic and electrical circuitry is a significant technological difficulty.A complicated set of factors must be carefully considered to determine which application will have the best chance of success employing silicon-based integrated product solutions.The processing limitations connected to the current process flow,the process generation(sometimes referred to as lithography node generation),and packaging requirements are a few of these factors to consider.This review highlights recent developments in integrated silicon photonic devices and their proven applications,including but not limited to photonic waveguides,photonic amplifiers and filters,onchip photonic transceivers,and the state-of-the-art of silicon photonic in multidimensional quantum systems.The investigated devices aim to expedite the transfer of silicon photonics from academia to industry by opening the next phase in on-chip silicon photonics and enabling the application of silicon photonic-based devices in various optical systems.展开更多
We propose a promising method to develop flexible,compact,and tunable light-activated film diffractive optical elements(FDOEs)with exceptional diffraction efficiency,by integrating liquid crystal(LC)geometric phase-ba...We propose a promising method to develop flexible,compact,and tunable light-activated film diffractive optical elements(FDOEs)with exceptional diffraction efficiency,by integrating liquid crystal(LC)geometric phase-based diffractive optical elements(DOEs)with a specifically designed light-activated LC polymer(LCP)film.Arbitrary film bending induced by UV/Vis irradiation is realized through precise mesogens arrangement within the LCP film,enabling 1D and 2D beam steering,as well as dynamic and reversible switching between structured and Gaussian lights after cooperating with the DOE design.Furthermore,remarkable fatigue resistance,solvent resistance,and thermal stability are demonstrated,providing a solid material platform for advanced optical applications.展开更多
An all-fiber optical modulator, which is composed of a piece of no-core fiber spliced between two sections of singlemode fibers and uses magnetic fluid(MF) as the cladding of the no-core fiber section, is proposed a...An all-fiber optical modulator, which is composed of a piece of no-core fiber spliced between two sections of singlemode fibers and uses magnetic fluid(MF) as the cladding of the no-core fiber section, is proposed and investigated experimentally. Due to the tunable refractive index and absorption coefficient of MF, the output intensity can be modulated by controlling an applied magnetic field. The dependences of the modulator's temporal response on the working wavelength,the magnetic field strength(H), and the MF's concentration are investigated experimentally. The results are explained qualitatively by the dynamic response process of MF under the action of a magnetic field. The findings are helpful for optimizing this kind of modulator.展开更多
A transverse relaxation determination of spin-exchange relaxation free (SERF) magnetometer based on polarization modulation technique is proposed. Compared with the radio-frequency (RF) excitation and light intens...A transverse relaxation determination of spin-exchange relaxation free (SERF) magnetometer based on polarization modulation technique is proposed. Compared with the radio-frequency (RF) excitation and light intensity excitation meth- ods used in SERF magnetometer, the light polarization modulation method has a high stability in low-frequency range, which indicates a more accurate transverse relaxation measurement.展开更多
We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fab...We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fabricated using a 5.6-cm-long anti-resonant hollow-core fiber with pure acetylene filling.It has a half-wave optical power of 289 mW at 100 kHz and an average insertion loss 0.6 dB over a broad wavelength range from 1450 to 1650 nm.The rise and fall time constants are 3.5 and 3.7μs,respectively,2–3 orders of magnitude better than the previously reported microfiber-based photo-thermal phase modulators.The gas-filled hollow-core waveguide configuration is promising for optical phase modulation from ultraviolet to mid-infrared which is challenging to achieve with solid optical fibers.展开更多
In order to achieve a modulator with broad bandwidth and perfect impedance match,a novel electro-optical modulator based on GeO2-doped silica waveguides on silicon substrate is designed.The finite element model of the...In order to achieve a modulator with broad bandwidth and perfect impedance match,a novel electro-optical modulator based on GeO2-doped silica waveguides on silicon substrate is designed.The finite element model of the whole electro-optical modulator is established by means of ANSYS.With the finite element method analysis,the performance of the novel modulator is predicted.The simulation reveals that the designed modulator operates with a product of 3 dB optical bandwidth and modulating length of 226.59 GHz·cm,and a characteristic impedance of 51.6 Ω at 1 550 nm wavelength.Moreover,the calculated electrical reflected power of coplanar waveguide electrode is below-20 dB in the frequency ranging from 45 MHz to 65 GHz.Therefore,the designed modulator has wide modulation bandwidth and perfect impedance match.展开更多
基金financially the National Natural Science Foundation of China(U2004175,51902086 and 62222402)China Postdoctoral Science Foundation(2022M711036)the Key Scientific Research Project plan of the University in Henan Province(22A430002)。
文摘Exploring materials with high electrochemical activity is of keen interest for electrochemistry-controlled optical and energy storage devices.However,it remains a great challenge for transition metal oxides to meet this feature due to their low electron conductivity and insufficient reaction sites.Here,we propose a type of transition metal phosphate(NiHPO_(4)·3H_(2)O,NHP)by a facile and scalable electrodeposition method,which can achieve the capability of efficient ion accommodation and injection/extraction for electrochromic energy storage applications.Specifically,the NHP film with an ultra-high transmittance(approach to 100%)achieves a large optical modulation(90.8%at 500 nm),high coloration efficiency(75.4 cm^(2)C^(-1)at 500 nm),and a high specific capacity of 47.8 mAh g^(-1)at 0.4 A g^(-1).Furthermore,the transformation mechanism of NHP upon electrochemical reaction is systematically elucidated using in situ and ex situ techniques.Ultimately,a large-area electrochromic smart window with 100 cm^(2)is constructed based on the NHP electrode,displaying superior electrochromic energy storage performance in regulating natural light and storing electrical charges.Our findings may open up new strategies for developing advanced electrochromic energy storage materials and smart windows.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51775147 and 51705105)the Science Challenge Project of China(Grant No.TZ2016006-0503-01)+2 种基金the Young Elite Scientists Sponsorship Program by CAST(Grant No.2018QNRC001)the China Postdoctoral Science Foundation funded project(Grant Nos.2018T110288 and 2017M621260)the Self-Planned Task of State Key Laboratory of Robotics and System(HIT)(Grant Nos.SKLRS201718A and SKLRS201803B).
文摘CO2 laser rapid ablation mitigation(RAM)of fused silica has been used in high-power laser systems owing to its advantages of high efficiency,and ease of implementing batch and automated repairing.In order to study the effect of repaired morphology of RAM on laser modulation and to improve laser damage threshold of optics,an finite element method(FEM)mathematical model of 351 nm laser irradiating fused silica optics is developed based on Maxwell electromagnetic field equations,to explore the 3D near-field light intensity distribution inside optics with repaired site on its surface.The influences of the cone angle and the size of the repaired site on incident laser modulation are studied as well.The results have shown that for the repaired site with a cone angle of 73.3°,the light intensity distribution has obvious three-dimensional characteristics.The relative light intensity on z-section has a circularly distribution,and the radius of the annular intensification zone increases with the decrease of z.While the distribution of maximum relative light intensity on y-section is parabolical with the increase of y.As the cone angle of the repaired site decreases,the effect of the repaired surface on light modulation becomes stronger,leading to a weak resistance to laser damage.Moreover,the large size repaired site would also reduce the laser damage threshold.Therefore,a repaired site with a larger cone angle and smaller size is preferred in practical CO2 laser repairing of surface damage.This work will provide theoretical guidance for the design of repaired surface topography,as well as the improvement of RAM process.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51573006,51573003,51203003,51303008,51302006,51402006,51272026,and 51273022)the Major Project of Beijing Science and Technology Program,China(Grant Nos.Z151100003315023 and Z141100003814011)the Fok Ying Tung Education Foundation,China(Grant No.142009)
文摘Cholesteric liquid crystals(CLCs) have recently sparked an enormous amount of interest in the development of soft matter materials due to their unique ability to self-organize into a helical supra-molecular architecture and their excellent selective reflection of light based on the Bragg relationship.Nowadays,by the virtue of building the self-organized nanostructures with pitch gradient or non-uniform pitch distribution,extensive work has already been performed to obtain CLC films with a broad reflection band.Based on authors' many years' research experience,this critical review systematically summarizes the physical and optical background of the CLCs with broadband reflection characteristics,methods to obtain broadband reflection of CLCs,as well as the application in the field of intelligent optical modulation materials.Combined with the research status and the advantages in the field,the important basic and applied scientific problems in the research direction are also introduced.
基金supported by the National Natural Science Foundation of China(No.61377075)the Tianjin Natural Science Foundation(No.17JCYBJC16600)
文摘An optical modulation format generation scheme based on spectral filtering and frequency-to-time mapping is experimentally demonstrated. Many modulation formats with continuously adjustable duty radio and bit rate can be formed by changing the dispersion of dispersion element and the bandwidth of shaped spectrum in this scheme. In the experiment, non-return-to-zero(NRZ) signal with bit rate of 29.41 Gbit/s and 1/2 duty ratio return-to-zero(RZ) signal with bit rate of 13.51 Gbit/s are obtained. The maximum bit rate of modulation format signal is also analyzed.
基金supported by the National Key R&D Program of China(No.2022YFA1404201)the National Natural Science Foundation of China(Nos.62305200,U22A2091,62127817,and 62075240)the Fundamental Research Program of Shanxi Province(No.202203021222001).
文摘Optical modulation is significant and ubiquitous to telecommunication technologies,smart windows,and military devices.However,due to the limited tunability of traditional doping,achieving broadband optical property change is a tough problem.Here,we demonstrate a remarkable transformation of optical transmittance in few-layer graphene(FLG)covering the electromagnetic spectra from the visible to the terahertz wave after lithium(Li)intercalation.It results in the transmittance being higher than 90%from the wavelengths of 480 to 1040 nm,and it increases most from 86.4%to 94.1%at 600 nm,reduces from∼80%to∼68%in the wavelength range from 2.5 to 11μm,has∼20%reduction over a wavelength range from 0.4 to 1.2 THz,and reduces from 97.2%to 68.2%at the wavelength of 1.2 THz.The optical modification of lithiated FLG is attributed to the increase of Fermi energy(E_(f))due to the charge transfer from Li to graphene layers.Our results may provide a new strategy for the design of broadband optical modulation devices.
基金supported by the National Natural Science Foundation of China (No.52201363)Hubei Provincial Natural Science Foundation (Nos.2022CFB076 and Q20222202)Artificial Intelligence Innovation Project of Wuhan Science and Technology Bureau (Nos.2023010402040016 and 2022010702040068)。
文摘The 6G transport network will be intricately designed as an integrated carrier, seamlessly integrating computing and networking capabilities. Leveraging the network as its foundation, it aims to deliver differentiated computing power services through supercomputing/intelligent computing and capability resource pooling. This study proposes an advanced modulation format, alternating polarization chirped return-to-zero frequency shift keying(Apol-CRZ-FSK), specifically designed to meet the integrated computing and networking carrying requirements of future 6G. Furthermore, comprehensive comparison and analysis of the transmission performance of 100 Gbps Apol-CRZ-FSK, CRZ-FSK, and differential quadrature phase shift keying(DQPSK) are conducted under identical conditions. The research indicates the high nonlinearity resistance capability exhibited by Apol-CRZ-FSK, highlighting its superior transmission performance.
文摘We propose an optical transmitter with reduced modulator driving voltage. This reduction is achieved through an on-off ratio improvement technique based on FWM. We confirmed the feasibility of the method in a 43-Gbit/s experiment.
文摘We demonstrate a new technique of measuring differential carrier lifetime and linewidth enhancement factor in a semiconductor optical amplifier. In our method, the optical responses and fiber transfer functions of a self-gain modulated SOA are measured and, from these, values of carrier lifetimes and linewidth enhancement factors are determined for various SOA input optical powers.
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Science and Technology of Commission of Shanghai Municipality (Grant Nos.08DZ150010F, 10511500602)the National Natural Science Foundation of China (Grant No.60877053)
文摘A novel scheme of optical modulation in 40 GHz radio-over fiber (RoF) system is proposed. It generates optical QPSK/16QAM signals in a serial-parallel structure of Mach-Zehnder modulators (MZMs). The millimeter-wave is obtained with optical frequency multiplication (OFM). Furthermore, modulation on optical-wave is transferred onto millimeter-wave. It can be used to increase transmission capacity of millimeter-wave RoF systems.
基金financial support from the National Natural Science Foundation of China(Nos.61874141,11904239)Natural Science Foundation of Hunan Province(Grant Nos.2021JJ40709,2021JJ20080,2022JJ20080)+2 种基金Postgraduate Innovative Project of Central South University(Grant No.2021zzts0056)Open Sharing Found for the Large-scale Instruments and Equipment of Central South Universitysupported in part by the High Performance Computing Center of Central South University。
文摘Two-dimensional(2D)nonlinear optical mediums with high and tunable light modulation capability can significantly stimulate the development of ultrathin,compact,and integrated optoelectronics devices and photonic elements.2D carbides and nitrides of transition metals(MXenes)are a new class of 2D materials with excellent intrinsic and strong light-matter interaction characteristics.However,the current understanding of their photo-physical properties and strategies for improving optical performance is insufficient.To address this issue,we rationally designed and in situ synthesized a 2D Nb_(2)C/MoS_(2) heterostructure that outperforms pristine Nb2C in both linear and nonlinear optical performance.Excellent agreement between experimental and theoretical results demonstrated that the Nb_(2)C/MoS_(2) inherited the preponderance of Nb_(2)C and MoS_(2) in absorption at different wavelengths,resulting in the broadband enhanced optical absorption characteristics.In addition to linear optical modulation,we also achieved stronger near infrared nonlinear optical modulation,with a nonlinear absorption coefficient of Nb_(2)C/MoS_(2) being more than two times that of the pristine Nb_(2)C.These results were supported by the band alinement model which was determined by the X-ray photoelectron spectroscopy(XPS)experiment and first-principal theory calculation.The presented facile synthesis approach and robust light modulation strategy pave the way for broadband optoelectronic devices and optical modulators.
文摘We focus on the optimization of SiGe material deposition, the minimization of the parasitic capacitance of the probe pads for high speed, low voltage and high contrast ratio operation. The device fabrication is based on processes for standard Si electronics and is suitable for mass-production. We present observations of quantum confinement and quantum-confined Stark effect (QCSE) electroabsorption in Ge quantum wells (QWs) with SiGe barriers grown on Si substrates. Though Ge is an indirect gap semiconductor, the resulting effects are at least as clear and strong as seen in typical III-V QW structures at similar wavelengths. We also demonstrated a modulator, with eye diagrams of up to 3.5 GHz, a small driving voltage of 2.5 V and a modulation bandwidth at about 10 GHz. Finally, carrier dynamics under ultra-fast laser excitation and high- speed photocurrent response are investigated.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11475135 and 11547302the Doctoral Program Funds of the Ministry of Education of China under Grant No 20126101110004
文摘We study rogue waves in an inhomogeneous nonlinear optical fiber with variable coefficients. An exact rogue wave solution that describes rogue wave excitation and modulation on a bright soliton pulse is obtained. Special properties of rogue waves on the bright soliton, such as the trajectory and spectrum, are analyzed in detail. In particular, our analytical results suggest a way of sustaining the peak shape of rogue waves on the soliton background by choosing an appropriate dispersion parameter.
基金supported by the Science and Technology Development Fund(FDCT),Macao SAR(No.0149/2022/A),and(No.0046/2024/AFJ)Guangdong Science and Technology Department(No.2023QN10C305)。
文摘A high humidity-resistant,dual mechanical responsive,and reversible mechanochromic wrinkling system based on a VHB 4910-polydimethylsiloxane(PDMS)substrate with a thin film consisting of 90 wt%poly(vinyl butyral)(PVB)and 10 wt%hydroxypropyl cellulose(HPC)has been reported.The wrinkling system exhibited significant optical tuning from transparent to opaque states with 50%changes in transmittance,which was achieved through the dual mechanical modes of pre-stretching and releasing processes or bending.Upon exposure to ethanol vapor or a re-flattening process,wrinkles can be erased,yielding a transparent state.Consequently,the wrinkling system could be reversibly switched between transparency and opacity for 1000 cycles with marginal changes in the optical performance.Owing to the insolubility of PVB in water,the wrinkling patterns exhibited excellent durability in high-humidity environments(relative humidity(RH)=99%).Furthermore,the smart encryption device is also demonstrated via mechano-controlled surface topography by patterning the wrinkling system,suggesting potential applications of the designed structure in smart windows,anti-counterfeiting,dynamic display,optical information encryption,and rewritable surfaces.
基金funding support from the National Major Research and Development Program(2019YFB2203603)the National Science Fund for Distinguished Young Scholars(61725503)+2 种基金the National Natural Science Foundation of China(NSFC)(62275273,11804387,and 91950205)the China Postdoctoral Science Foundation(2020M681847)the Zhejiang Provincial Natural Science Foundation(LZ18F050001).
文摘Waveguide-integrated optical modulators are indispensable for on-chip optical interconnects and optical computing.To cope with the ever-increasing amount of data being generated and consumed,ultrafast waveguide-integrated optical modulators with low energy consumption are highly demanded.In recent years,two-dimensional(2D)materials have attracted a lot of attention and have provided tremendous opportunities for the development of high-performance waveguide-integrated optical modulators because of their extraordinary optoelectronic properties and versatile compatibility.This paper reviews the state-of-the-art waveguide-integrated optical modulators with 2D materials,providing researchers with the developing trends in the field and allowing them to identify existing challenges and promising potential solutions.First,the concept and fundamental mechanisms of optical modulation with 2D materials are summarized.Second,a review of waveguide-integrated optical modulators employing electro-optic,all-optic,and thermo-optic effects is provided.Finally,the challenges and perspectives of waveguide-integrated modulators with 2D materials are discussed.
文摘The combining microelectronic devices and associated technologies onto a single silicon chip poses a substantial challenge.However,in recent years,the area of silicon photonics has experienced remarkable advancements and notable leaps in performance.The performance of silicon on insulator(SOI)based photonic devices,such as fast silicon optical modulators,photonic transceivers,optical filters,etc.,have been discussed.This would be a step forward in creating standalone silicon photonic devices,strengthening the possibility of single on-chip nanophotonic integrated circuits.Suppose an integrated silicon photonic chip is designed and fabricated.In that case,it might drastically modify these combined photonic component costs,power consumption,and size,bringing substantial,perhaps revolutionary,changes to the next-generation communications sector.Yet,the monolithic integration of photonic and electrical circuitry is a significant technological difficulty.A complicated set of factors must be carefully considered to determine which application will have the best chance of success employing silicon-based integrated product solutions.The processing limitations connected to the current process flow,the process generation(sometimes referred to as lithography node generation),and packaging requirements are a few of these factors to consider.This review highlights recent developments in integrated silicon photonic devices and their proven applications,including but not limited to photonic waveguides,photonic amplifiers and filters,onchip photonic transceivers,and the state-of-the-art of silicon photonic in multidimensional quantum systems.The investigated devices aim to expedite the transfer of silicon photonics from academia to industry by opening the next phase in on-chip silicon photonics and enabling the application of silicon photonic-based devices in various optical systems.
基金the National Key Research and Development Program of China(No.2022YFA1203700)the National Natural Science Foundation of China(Nos.62275081,62035008,and 22305079)+4 种基金the Innovation Program of Shanghai Municipal Education Commission,Scientific Committee of Shanghai(No.2021-01-07-00-02-E00107)the“Shuguang Program”of Shanghai Education Development Foundation,the Shanghai Municipal Education Commission(No.21SG29)the Shanghai Sailing Program(No.23YF1409000)the Fellowship of China National Postdoctoral Program for Innovative Talents(No.BX20230125)the Postdoctoral Fellowship Program of CPSF(No.GZB20240218)。
文摘We propose a promising method to develop flexible,compact,and tunable light-activated film diffractive optical elements(FDOEs)with exceptional diffraction efficiency,by integrating liquid crystal(LC)geometric phase-based diffractive optical elements(DOEs)with a specifically designed light-activated LC polymer(LCP)film.Arbitrary film bending induced by UV/Vis irradiation is realized through precise mesogens arrangement within the LCP film,enabling 1D and 2D beam steering,as well as dynamic and reversible switching between structured and Gaussian lights after cooperating with the DOE design.Furthermore,remarkable fatigue resistance,solvent resistance,and thermal stability are demonstrated,providing a solid material platform for advanced optical applications.
基金Project supported by the Natural Science Foundation of Tianjin City,China(Grant No.13JCYBJC16100)the National Natural Science Foundation of China(Grant No.61107035)+1 种基金the National Key Scientific Instrument and Equipment Development Project of China(Grant No.2013YQ03091502)the National Basic Research Program of China(Grant Nos.2010CB327802 and 2010CB327806)
文摘An all-fiber optical modulator, which is composed of a piece of no-core fiber spliced between two sections of singlemode fibers and uses magnetic fluid(MF) as the cladding of the no-core fiber section, is proposed and investigated experimentally. Due to the tunable refractive index and absorption coefficient of MF, the output intensity can be modulated by controlling an applied magnetic field. The dependences of the modulator's temporal response on the working wavelength,the magnetic field strength(H), and the MF's concentration are investigated experimentally. The results are explained qualitatively by the dynamic response process of MF under the action of a magnetic field. The findings are helpful for optimizing this kind of modulator.
基金Project supported by the National Natural Science Foundation of China(Grant No.61227902)the National Key R&D Program of China(Grant No.2017YFB0503100)the Natural Science Foundation of Beijing Municipality,China(Grant No.4162038)
文摘A transverse relaxation determination of spin-exchange relaxation free (SERF) magnetometer based on polarization modulation technique is proposed. Compared with the radio-frequency (RF) excitation and light intensity excitation meth- ods used in SERF magnetometer, the light polarization modulation method has a high stability in low-frequency range, which indicates a more accurate transverse relaxation measurement.
基金We are grateful for financial supports from the National Key Research and Development Program of China(2019YFB2203904)the National Natural Science Foundation of China(U21A20506,62105122,61827820,62005233)+1 种基金the Shenzhen STIC Funding(RCBS20200714114819032)the Local Innovative and Research Teams Project of Guangdong Pear River Talents Program(2019BT02X105).
文摘We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fabricated using a 5.6-cm-long anti-resonant hollow-core fiber with pure acetylene filling.It has a half-wave optical power of 289 mW at 100 kHz and an average insertion loss 0.6 dB over a broad wavelength range from 1450 to 1650 nm.The rise and fall time constants are 3.5 and 3.7μs,respectively,2–3 orders of magnitude better than the previously reported microfiber-based photo-thermal phase modulators.The gas-filled hollow-core waveguide configuration is promising for optical phase modulation from ultraviolet to mid-infrared which is challenging to achieve with solid optical fibers.
基金Supported by National Natural Science Foundation of China (No.60577023)Key Laboratory of Opto-Electronics Information and Technical Science of Ministry of Education,China
文摘In order to achieve a modulator with broad bandwidth and perfect impedance match,a novel electro-optical modulator based on GeO2-doped silica waveguides on silicon substrate is designed.The finite element model of the whole electro-optical modulator is established by means of ANSYS.With the finite element method analysis,the performance of the novel modulator is predicted.The simulation reveals that the designed modulator operates with a product of 3 dB optical bandwidth and modulating length of 226.59 GHz·cm,and a characteristic impedance of 51.6 Ω at 1 550 nm wavelength.Moreover,the calculated electrical reflected power of coplanar waveguide electrode is below-20 dB in the frequency ranging from 45 MHz to 65 GHz.Therefore,the designed modulator has wide modulation bandwidth and perfect impedance match.