A novel slotted optical microdisk resonator, which significantly enhances light–matter interaction and provides a promising approach for increasing the sensitivity of sensors, is theoretically and numerically investi...A novel slotted optical microdisk resonator, which significantly enhances light–matter interaction and provides a promising approach for increasing the sensitivity of sensors, is theoretically and numerically investigated. In this slotted resonator, the mode splitting is generated due to reflection of the slot. Remarkably, effects of the slot width and angular position on the mode splitting are mainly studied. The results reveal that the mode splitting is a second function of the slot width, and the maximum mode splitting induced by the slot deformation is achieved with 2.7853 × 10~9Hz∕nm. Therefore, the slotted resonator is an excellent candidate for pressure and force sensing. Besides, the influence of the slot angular position on the mode splitting is a cosine curve with the highest sensitivity of 1.23 × 10^(11)Hz∕deg; thus, the optical characteristic demonstrates that the slotted resonator can be used for inertial measurements.展开更多
We experimentally demonstrate high optical quality factor silica microdisk resonators on a silicon chip with large wedge angles by reactive ion etching. For 2-μm-thick microresonators, we have achieved wedge angles o...We experimentally demonstrate high optical quality factor silica microdisk resonators on a silicon chip with large wedge angles by reactive ion etching. For 2-μm-thick microresonators, we have achieved wedge angles of 59°, 63°,70°, and 79° with optical quality factors of 2.4 × 10~7, 8.1 × 10~6, 5.9 × 10~6, and 7.4 × 10~6, respectively, from ~80 μm diameter microresonators in the 1550 nm wavelength band. Also, for 1-μm-thick microresonators, we have obtained an optical quality factor of 7.3 × 10~6 with a wedge angle of 74°.展开更多
In this work,on-chip three-dimensional(3D)photonic integrated optical sources based on active fluorescent polymer waveguide microdisks are proposed for light display application.Fluorescent green and red oligomers wit...In this work,on-chip three-dimensional(3D)photonic integrated optical sources based on active fluorescent polymer waveguide microdisks are proposed for light display application.Fluorescent green and red oligomers with high-efficiency photoluminescence are doped into epoxy crosslinking SU-8 polymer as the waveguide gain medium.The microdisk-based on-chip optically pumping light sources are designed and fabricated using the organic functionalized materials by direct UV written process.The promising stacking dual-microdisk structures with double gain layers could provide white signal light source generated perpendicular to the chip,and green signal light source stimulated in the chip.The approach could realize the monolithically on-chip assembled vertical and horizontal bright emitters.The optical pumping threshold power is obtained as 50 mW with continuous-wave(CW)pumping.The average gain coefficient of a white light source is measured by vertical fiber coupling as 112 dB/W,and that of green light source by horizontal fiber coupling as 137 dB/W,respectively.The rising and falling response time of the on-chip optical sources are 60 and 80μs under modulating pulsed pumping.This technique is very promising for achieving 3D integrated light display application,including photonic circuits and optical information encryption.展开更多
基金National Natural Science Foundation of China(NSFC)(61575014)Natural Science Foundation of Beijing Municipality(4162038)
文摘A novel slotted optical microdisk resonator, which significantly enhances light–matter interaction and provides a promising approach for increasing the sensitivity of sensors, is theoretically and numerically investigated. In this slotted resonator, the mode splitting is generated due to reflection of the slot. Remarkably, effects of the slot width and angular position on the mode splitting are mainly studied. The results reveal that the mode splitting is a second function of the slot width, and the maximum mode splitting induced by the slot deformation is achieved with 2.7853 × 10~9Hz∕nm. Therefore, the slotted resonator is an excellent candidate for pressure and force sensing. Besides, the influence of the slot angular position on the mode splitting is a cosine curve with the highest sensitivity of 1.23 × 10^(11)Hz∕deg; thus, the optical characteristic demonstrates that the slotted resonator can be used for inertial measurements.
基金supported by the National Basic Research Program of China (Nos. 2012CB921804 and 2011CBA00205)the National Natural Science Foundation of China (Nos. 61435007 and 11321063)
文摘We experimentally demonstrate high optical quality factor silica microdisk resonators on a silicon chip with large wedge angles by reactive ion etching. For 2-μm-thick microresonators, we have achieved wedge angles of 59°, 63°,70°, and 79° with optical quality factors of 2.4 × 10~7, 8.1 × 10~6, 5.9 × 10~6, and 7.4 × 10~6, respectively, from ~80 μm diameter microresonators in the 1550 nm wavelength band. Also, for 1-μm-thick microresonators, we have obtained an optical quality factor of 7.3 × 10~6 with a wedge angle of 74°.
基金National Key Research and Development(R&D)Program of China(2019YFB2203001)National Natural Science Foundation of China(NSFC,No.62171195).
文摘In this work,on-chip three-dimensional(3D)photonic integrated optical sources based on active fluorescent polymer waveguide microdisks are proposed for light display application.Fluorescent green and red oligomers with high-efficiency photoluminescence are doped into epoxy crosslinking SU-8 polymer as the waveguide gain medium.The microdisk-based on-chip optically pumping light sources are designed and fabricated using the organic functionalized materials by direct UV written process.The promising stacking dual-microdisk structures with double gain layers could provide white signal light source generated perpendicular to the chip,and green signal light source stimulated in the chip.The approach could realize the monolithically on-chip assembled vertical and horizontal bright emitters.The optical pumping threshold power is obtained as 50 mW with continuous-wave(CW)pumping.The average gain coefficient of a white light source is measured by vertical fiber coupling as 112 dB/W,and that of green light source by horizontal fiber coupling as 137 dB/W,respectively.The rising and falling response time of the on-chip optical sources are 60 and 80μs under modulating pulsed pumping.This technique is very promising for achieving 3D integrated light display application,including photonic circuits and optical information encryption.