We propose a simple all-optical diode which is comprised of an asymmetric ring cavity containing a two-level atomic ensemble. Attributed to spatial symmetry breaking of the ring cavity, direction-dependent optical bis...We propose a simple all-optical diode which is comprised of an asymmetric ring cavity containing a two-level atomic ensemble. Attributed to spatial symmetry breaking of the ring cavity, direction-dependent optical bistability is obtained in a classical bistable system. Therefore, a giant optical non-reciprocity is generated, which guarantees an all-optical diode with a high contrast up to 22 d B. Furthermore, its application as an all-optical logic AND gate is also discussed.展开更多
Photonic crystal based ring resonators are best choice for designing all-optical devices. In this paper, we used a basic structure of photonic crystal ring resonators and designed all optical logic gates which are wor...Photonic crystal based ring resonators are best choice for designing all-optical devices. In this paper, we used a basic structure of photonic crystal ring resonators and designed all optical logic gates which are working using the Kerr effect. The proposed gates consisted of upper and lower wavegnides coupled through a resonator which was designed for dropping of special wavelength. The resonance wavelength was designed for 1550 nm telecom operation wavelength. We used numerical meth- ods such as plane wave expansion and finite difference time domain (FDTD) for performing our simulations and studied the optical properties of the proposed structures. Our results showed that the critical input power for triggering the gate output was lower compared to previously reported gates.展开更多
This paper gives a brief introduction to our recent works on photonic crystal(Ph C) cavities and related integrated optical structures and devices. Theoretical background and numerical methods for simulation of Ph C c...This paper gives a brief introduction to our recent works on photonic crystal(Ph C) cavities and related integrated optical structures and devices. Theoretical background and numerical methods for simulation of Ph C cavities are first presented. Based on the theoretical basis, two relevant quantities, the cavity mode volume and the quality factor are discussed. Then the methods of fabrication and characterization of silicon Ph C slab cavities are introduced. Several types of Ph C cavities are presented, such as the usual L3 missing-hole cavity, the new concept waveguide-like parallel-hetero cavity, and the low-index nanobeam cavity. The advantages and disadvantages of each type of cavity are discussed. This will help the readers to decide which type of Ph C cavities to use in particular applications. Furthermore, several integrated optical devices based on Ph C cavities, such as optical filters, channel-drop filters, optical switches, and optical logic gates are described in both the working principle and operation characteristics. These devices designed and realized in our group demonstrate the wide range of applications of Ph C cavities and offer possible solutions to some integrated optical problems.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11274242,11474221,and 11574229)the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(Grant No.U1330203)the National Key Basic Research Special Foundation of China(Grant Nos.2011CB922203 and 2013CB632701)
文摘We propose a simple all-optical diode which is comprised of an asymmetric ring cavity containing a two-level atomic ensemble. Attributed to spatial symmetry breaking of the ring cavity, direction-dependent optical bistability is obtained in a classical bistable system. Therefore, a giant optical non-reciprocity is generated, which guarantees an all-optical diode with a high contrast up to 22 d B. Furthermore, its application as an all-optical logic AND gate is also discussed.
文摘Photonic crystal based ring resonators are best choice for designing all-optical devices. In this paper, we used a basic structure of photonic crystal ring resonators and designed all optical logic gates which are working using the Kerr effect. The proposed gates consisted of upper and lower wavegnides coupled through a resonator which was designed for dropping of special wavelength. The resonance wavelength was designed for 1550 nm telecom operation wavelength. We used numerical meth- ods such as plane wave expansion and finite difference time domain (FDTD) for performing our simulations and studied the optical properties of the proposed structures. Our results showed that the critical input power for triggering the gate output was lower compared to previously reported gates.
基金supported by the National Natural Fundamental Research Program of China(Grant Nos.2006CB921702,2007CB613205,2011CB922002 and 2012CB922103)the National Natural Science Foundation of China(Grant Nos.10525419,11375067,11275074,11374116 and 11204096)
文摘This paper gives a brief introduction to our recent works on photonic crystal(Ph C) cavities and related integrated optical structures and devices. Theoretical background and numerical methods for simulation of Ph C cavities are first presented. Based on the theoretical basis, two relevant quantities, the cavity mode volume and the quality factor are discussed. Then the methods of fabrication and characterization of silicon Ph C slab cavities are introduced. Several types of Ph C cavities are presented, such as the usual L3 missing-hole cavity, the new concept waveguide-like parallel-hetero cavity, and the low-index nanobeam cavity. The advantages and disadvantages of each type of cavity are discussed. This will help the readers to decide which type of Ph C cavities to use in particular applications. Furthermore, several integrated optical devices based on Ph C cavities, such as optical filters, channel-drop filters, optical switches, and optical logic gates are described in both the working principle and operation characteristics. These devices designed and realized in our group demonstrate the wide range of applications of Ph C cavities and offer possible solutions to some integrated optical problems.