Visualizing blood flow velocity distribution is essential for comprehending the pathogenesis of various diseases and facilitating early diagnosis and treatment.Current hemodynamic studies utilizing optical coherence t...Visualizing blood flow velocity distribution is essential for comprehending the pathogenesis of various diseases and facilitating early diagnosis and treatment.Current hemodynamic studies utilizing optical coherence tomography(OCT)primarily rely on Doppler OCT(D-OCT)and OCT Angiography(OCTA),which measure axial blood vessel velocity or visualize the vascular architecture,respectively.However,these techniques have limitations in accurately quantifying the absolute velocity of red blood cells(RBCs).This study presents a novel method based on microsphere tracking,which enables precise quantification of absolute blood flow velocity along a blood vessel.In phantom experiments,freshly harvested blood mixed with microspheres was infused into a cellulose tube to simulate a single blood vessel.Experimental results,demon-strating an error margin of less than 10%,validated the effectiveness of this method.Blood flow velocities ranging from 0.472 mm/s to 18.9 mm/s were accurately measured.A preliminary in vivo examination of rabbit ear vessels was conducted,further validating the reliability of this method.This study presents a potential method for specific disease diagnosis by detecting tar-geted vessel flow velocity variations using swept-source optical coherence tomography(SS-OCT)combined with microsphere tracking.展开更多
Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architec...Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architecture makes the PSD perform more functions by modifying its architecture.As the PSD is mainly formed of an array of photodiodes.The primary concept involves employing transistors to alternate between the operating modes of the photodiodes(photoconductive and photovoltaic).Additionally,alternating among output pins can be done based on the required function.This paper presents the mathematical modeling and simulation of a reconfigurable-multifunctional optical sensor which can perform energy harvesting and data acquisition,as well as positioning,which is not available in the traditional PSDs.Simulation using the MATLAB software tool was achieved to demonstrate the modeling.The simulation results confirmed the validity of the mathematical modeling and proved that the modified sensor architecture,as depicted by the equations,accurately describes its behavior.The proposed sensor is expected to extend the battery's lifecycle,reduce its physical size,and increase the integration and functionality of the system.The presented sensor might be used in free space optical(FSO)communication like cube satellites or even in underwater wireless optical communication(UWOC).展开更多
Using traditional particle tracking velocimetry based on optical flow for measuring areas with large velocity gradient changes may cause oversmoothing,resulting in significant measurement errors.To address this proble...Using traditional particle tracking velocimetry based on optical flow for measuring areas with large velocity gradient changes may cause oversmoothing,resulting in significant measurement errors.To address this problem,the traditional particle tracking velocimetry method based on an optical flow was improved.The level set segmentation algorithm was used to obtain the boundary contour of the region with large velocity gradient changes,and the non-uniform flow field was divided into regions according to the boundary contour to obtain sub-regions with uniform velocity distribution.The particle tracking velocimetry method based on optical flow was used to measure the granular flow velocity in each sub-region,thus avoiding the problem of granular flow distribution.The simulation results show that the measurement accuracy of this method is approximately 10%higher than that of traditional methods.The method was applied to a velocity measurement experiment on dense granular flow in silos,and the velocity distribution of the granular flow was obtained,verifying the practicality of the method in granular flow fields.展开更多
Fluorescent probes have revolutionized optical imaging and biosensing by enabling real-time visualization, quantification, and tracking of biological processes at molecular and cellular levels. These probes, ranging f...Fluorescent probes have revolutionized optical imaging and biosensing by enabling real-time visualization, quantification, and tracking of biological processes at molecular and cellular levels. These probes, ranging from organic dyes to genetically encoded proteins and nanomaterials, provide unparalleled specificity, sensitivity, and multiplexing capabilities. However, challenges such as brightness, photobleaching, biocompatibility, and emission range continue to drive innovation in probe design and application. This special issue, comprising four review papers and seven original research studies, highlights cutting-edge advancements in fluorescent probe technologies and their transformative roles in super-resolution imaging, in vivo diagnostics, and cancer therapeutics.展开更多
The demand for broadband data services on high-speed trains is rapidly growing as more people commute between their homes and workplaces.However,current radio frequency(RF)technology cannot adequately meet this demand...The demand for broadband data services on high-speed trains is rapidly growing as more people commute between their homes and workplaces.However,current radio frequency(RF)technology cannot adequately meet this demand.In order to address the bandwidth constraint,a technique known as free space optics(FSO)has been proposed.This paper presents a mathematical derivation and formulation of curve track G2T-FSO(Ground-to-train Free Space Optical)model,where the track radius characteristics is 2667 m,divergence angle track is 1.5°for train velocity at V=250 km/h.Multiple transmitter configurations are proposed to maximize coverage range and enhance curve track G2T-FSO link performance under varying weather conditions.The curved track G2T-FSO model was evaluated in terms of received power,signal-to-noise ratio(SNR),bit error rate(BER),and eye diagrams.The results showed maximum coverage lengths of 618,505,365,and 240 m for 4Tx/1Rx,3Tx/1Rx,2Tx/1Rx,and 1Tx/1Rx configurations,respectively.The analyzed results demonstrate that the G2T-FSO link can be effectively implemented under various weather conditions.展开更多
Optical magnetic twisting cytometry and traction force microscopy are two advanced cell mechanics research tools that employ optical methods to track the motion of microbeads that are either bound to the surface or em...Optical magnetic twisting cytometry and traction force microscopy are two advanced cell mechanics research tools that employ optical methods to track the motion of microbeads that are either bound to the surface or embedded in the substrate underneath the cell.The former measures rheological properties of the cell such as cell stiffness,and the latter measures cell traction force dynamics.Here we describe the principles of these two cell mechanics research tools and an example of using them to study physical behaviors of the living cell in response to transient stretch or compression.We demonstrate that,when subjected to a stretchunstretch manipulation,both the stiffness and traction force of adherent cells promptly reduced,and then gradually recover up to the level prior to the stretch.Immunofluorescent staining and Western blotting results indicate that the actin cytoskeleton of the cells underwent a corresponding disruption and reassembly process almost in step with the changes of cell mechanics.Interestingly,when subjected to compression,the cells did not show such particular behaviors.Taken together,we conclude that adherent cells are very sensitive to the transient stretch but not transient compression,and the stretch-induced cell response is due to the dynamics of actin polymerization.展开更多
Airborne electro-optical tracking and sighting system is a three-degree-of-freedom angular position servo system which is influenced by multi-disturbance,and its control system consists of stabilizing and tracking com...Airborne electro-optical tracking and sighting system is a three-degree-of-freedom angular position servo system which is influenced by multi-disturbance,and its control system consists of stabilizing and tracking components.Stabilizing control is applied to track angular velocity order and control multi-disturbance under airborne condition,and its robustness should be very good;tracking control is applied to compensate tracking error of angular position.A mathematical model is established by taking the control of yaw loop as example.H∞ stabilizing controller is designed by taking the advantage of H∞ control robustness and combining with Kalman filter.A fuzzy control is introduced in general PID control to design a decoupled fuzzy Smith estimating PID controller for tracking control.Simulation research shows that the control effect of airborne electro-optical tracking and sighting system based on fuzzy PID and H∞ control is good,especially when the model parameters change and the multi-disturbance exists,the system capability has little fall,but this system still can effectively track a target.展开更多
An optical-tweezers-based dual-frequency-band particle tracking system was designed and fabricated for liquid viscositydetection. On the basis of the liquid viscosity dependent model of the particle’s restricted Brow...An optical-tweezers-based dual-frequency-band particle tracking system was designed and fabricated for liquid viscositydetection. On the basis of the liquid viscosity dependent model of the particle’s restricted Brownian motion with theFax´en correction taken into account, the liquid viscosity and optical trap stiffness were determined by fitting the theoreticalprediction with the measured power spectral densities of the particle’s displacement and velocity that were derived from thedual-frequency-band particle tracking data. When the SiO2 beads were employed as probe particles in the measurements ofdifferent kinds of liquids, the measurement results exhibit a good agreement with the reported results, as well as a detectionuncertainty better than 4.6%. This kind of noninvasive economical technique can be applied in diverse environments forboth in situ and ex situ viscosity detection of liquids.展开更多
Efficiently tracking and imaging interested moving targets is crucial across various applications,from autonomous systems to surveillance.However,persistent challenges remain in various fields,including environmental ...Efficiently tracking and imaging interested moving targets is crucial across various applications,from autonomous systems to surveillance.However,persistent challenges remain in various fields,including environmental intricacies,limitations in perceptual technologies,and privacy considerations.We present a teacher-student learning model,the generative adversarial network(GAN)-guided diffractive neural network(DNN),which performs visual tracking and imaging of the interested moving target.The GAN,as a teacher model,empowers efficient acquisition of the skill to differentiate the specific target of interest in the domains of visual tracking and imaging.The DNN-based student model learns to master the skill to differentiate the interested target from the GAN.The process of obtaining a GAN-guided DNN starts with capturing moving objects effectively using an event camera with high temporal resolution and low latency.Then,the generative power of GAN is utilized to generate data with position-tracking capability for the interested moving target,subsequently serving as labels to the training of the DNN.The DNN learns to image the target during training while retaining the target’s positional information.Our experimental demonstration highlights the efficacy of the GAN-guided DNN in visual tracking and imaging of the interested moving target.We expect the GAN-guided DNN can significantly enhance autonomous systems and surveillance.展开更多
In the metrology of radon, an environmental lung carcinogen, the integrated measurements necessary for epidemiological studies are made very often using the tracks detector LR 115 type 2. For dosimetric analysis, the ...In the metrology of radon, an environmental lung carcinogen, the integrated measurements necessary for epidemiological studies are made very often using the tracks detector LR 115 type 2. For dosimetric analysis, the etched tracks from radon alpha particles on this detector are usually counted by means of an optical microscope or a spark counter. An optimal reading of the track densities which must be converted into radon concentrations, can’t be done without a good mastery of the mode of operation and use of these devices. Furthermore, investigations to know as to whether or not each of those can be used to determine radon concentration are necessary. These are the objectives of the present work in which LR 115 samples exposed to radon for at least 3 months, were chemically developed under standard conditions and read. The track densities obtained with the microscope are very much higher than those of the counter for each sample. These results are consistent with those published by other authors. However, each of these devices can be used interchangeably for alpha tracks counting, as both provide radon concentrations with a very good linear correlation coefficient of 0.95 taking into account their respective calibration factors for the reading of this detector. In addition, the saturation phenomenon for the spark counter reading of LR 115 detector occurs beyond 11,000 tr/cm<sup>2</sup>, a density never reached during our environmental radon measurements.展开更多
Tracking registration is a key issue in augmented reality applications,particularly where there are no artificial identifier placed manually.In this paper,an efficient markerless tracking registration algorithm which ...Tracking registration is a key issue in augmented reality applications,particularly where there are no artificial identifier placed manually.In this paper,an efficient markerless tracking registration algorithm which combines the detector and the tracker is presented for the augmented reality system.We capture the target images in real scenes as template images,use the random ferns classifier for target detection and solve the problem of reinitialization after tracking registration failures due to changes in ambient lighting or occlusion of targets.Once the target has been successfully detected,the pyramid Lucas-Kanade(LK)optical flow tracker is used to track the detected target in real time to solve the problem of slow speed.The least median of squares(LMedS)method is used to adaptively calculate the homography matrix,and then the three-dimensional pose is estimated and the virtual object is rendered and registered.Experimental results demonstrate that the algorithm is more accurate,faster and more robust.展开更多
Space-based optical(SBO)space surveillance has attracted widespread interest in the last two decades due to its considerable value in space situation awareness(SSA).SBO observation strategy,which is related to the per...Space-based optical(SBO)space surveillance has attracted widespread interest in the last two decades due to its considerable value in space situation awareness(SSA).SBO observation strategy,which is related to the performance of space surveillance,is the top-level design in SSA missions reviewed.The recognized real programs about SBO SAA proposed by the institutions in the U.S.,Canada,Europe,etc.,are summarized firstly,from which an insight of the development trend of SBO SAA can be obtained.According to the aim of the SBO SSA,the missions can be divided into general surveillance and space object tracking.Thus,there are two major categories for SBO SSA strategies.Existing general surveillance strategies for observing low earth orbit(LEO)objects and beyond-LEO objects are summarized and compared in terms of coverage rate,revisit time,visibility period,and image processing.Then,the SBO space object tracking strategies,which has experienced from tracking an object with a single satellite to tracking an object with multiple satellites cooperatively,are also summarized.Finally,this paper looks into the development trend in the future and points out several problems that challenges the SBO SSA.展开更多
Particle tracking velocimetry(PTV)is one of the most commonly applied granular flow velocity measurement methods.However,traditional PTV methods may have issues such as high mismatching rates and a narrow measurement ...Particle tracking velocimetry(PTV)is one of the most commonly applied granular flow velocity measurement methods.However,traditional PTV methods may have issues such as high mismatching rates and a narrow measurement range when measuring granular flows with large bulk density and high-speed contrast.In this study,a novel PTV method is introduced to solve these problems using an optical flow matching algorithm with two further processing steps.The first step involves displacement correction,which is used to solve the mismatching problem in the case of high stacking density.The other step is trajectory splicing,which is used to solve the problem of a measurement range reduction in the case of high-speed contrast The hopper flow experimental results demonstrate superior performance of this proposed method in controlling the number of mismatched particles and better measuring efficiency in comparison with the traditional PTV method.展开更多
Before the task of autonomous underwater vehicle(AUV) was implemented actually,its semi-physical simulation system of pipeline tracking had been designed.This semi-physical simulation system was used to test the softw...Before the task of autonomous underwater vehicle(AUV) was implemented actually,its semi-physical simulation system of pipeline tracking had been designed.This semi-physical simulation system was used to test the software logic,hardware architecture,data interface and reliability of the control system.To implement this system,the whole system plan,including interface computer and the methods of pipeline tracking,was described.Compared to numerical simulation,the semi-physical simulation was used to test the real software and hardware more veritably.In the semi-physical simulation system,tracking experiments of both straight lines and polygonal lines were carried out,considering the influence of ocean current and the situation of buried pipeline.The experimental results indicate that the AUV can do pipeline tracking task,when angles of pipeline are 15°,30°,45° and 60°.In the ocean current of 2 knots,AUV could track buried pipeline.展开更多
In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space divis...In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space division multiple access, and a sensor node uses a modulating retro-reflector for communication. Thus while a random sampling matrix is used to guide the establishment of links between head cluster and sensor nodes, the random linear projection is accomplished. To establish multiple links at the same time, an optical space division multiple access antenna is designed. It works in fixed beams switching mode and consists of optic lens with a large field of view(FOV), fiber array on the focal plane which is used to realize virtual channels segmentation, direction of arrival sensor, optical matrix switch and controller. Based on the angles of nodes' laser beams, by dynamically changing the route, optical matrix switch actualizes the multi-beam full duplex tracking receiving and transmission. Due to the structure of fiber array, there will be several fade zones both in the focal plane and in lens' FOV. In order to lower the impact of fade zones and harmonize multibeam, a fiber array adjustment is designed. By theoretical, simulated and experimental study, the antenna's qualitative feasibility is validated.展开更多
A general solution of sun tracking for an arbitrarily oriented heliostat towards an arbitrarily located target on the earth is published. With the most general form of solar tracking formulae, it is seen that the used...A general solution of sun tracking for an arbitrarily oriented heliostat towards an arbitrarily located target on the earth is published. With the most general form of solar tracking formulae, it is seen that the used azimuthelevation, spinning-elevation tracking formulae etc. are the special cases of it. The possibilities of utilizing the general solution and its significance in solar energy engineering are discussed.展开更多
Free-space optical communication(FSO)can achieve fast,secure,and license-free communication without physical cables,providing a cost-effective,energy-efficient,and flexible solution when fiber connection is unavailabl...Free-space optical communication(FSO)can achieve fast,secure,and license-free communication without physical cables,providing a cost-effective,energy-efficient,and flexible solution when fiber connection is unavailable.To achieve FSO on demand,portable FSO devices are essential for flexible and fast deployment,where the key is achieving compact structure and plug-and-play operation.Here,we develop a miniaturized FSO system and realize 9.16 Gbps FSO in a 1 km link,using commercial single-mode-fibercoupled optical transceiver modules without optical amplification.Fully automatic four-stage acquisition,pointing,and tracking systems are developed,which control the tracking error within 3μrad,resulting in an average link loss of 13.7 dB.It is the key for removing optical amplification;hence FSO is achieved with direct use of commercial transceiver modules in a bidirectional way.Each FSO device is within an overall size of 45 cm×40 cm×35 cm,and 9.5 kg weight,with power consumption of∼10 W.The optical link up to 4 km is tested with average loss of 18 dB,limited by the foggy test environment.With better weather conditions and optical amplification,longer FSO can be expected.Such a portable and automatic FSO system will produce massive applications of field-deployable high-speed wireless communication in the future.展开更多
A nonlinear sliding mode adaptive controller for a thin-film diffractive imaging system is designed to achieve accurate pointing direction over the attitude of subarrays in large-diameter mirror arrays.The kinematics ...A nonlinear sliding mode adaptive controller for a thin-film diffractive imaging system is designed to achieve accurate pointing direction over the attitude of subarrays in large-diameter mirror arrays.The kinematics and dynamics equations based on error quaternion and angular velocity are derived,and a diffractive thin-film sub-mirror array controller is designed to point precisely.Moreover,the global stability of the controller is proved by the Lyapunov method.Since the controller can adaptively identify the inertia matrix of each sub-mirror system,it is robust to bounded disturbances and changes in inertia parameters.At the same time,the continuous arctangent function is introduced,which is effectively anti-chattering.The simulation results show that the designed controller can ensure the accurate tracking of the diffractive film in each sub-mirror in the presence of rotational inertia matrix uncertainty and various disturbances.展开更多
基金supported by the National Natural Science Foundation of China(62175156,81827807)the Science and Technology Commission of Shanghai Municipality(22S31903000)+3 种基金the Collaborative Innovation Project of Shanghai Institute of Technology(XTCX2022-27)the Shenzhen Basic Research Key Project(JCYJ20220818103212026)the Shenzhen Key Technology Project(JSGGZD20220822095200002)the Shenzhen Outstanding Scientific and Technological Innovation Talents Distinguished Young Scientists(RCJC20210609104443085).
文摘Visualizing blood flow velocity distribution is essential for comprehending the pathogenesis of various diseases and facilitating early diagnosis and treatment.Current hemodynamic studies utilizing optical coherence tomography(OCT)primarily rely on Doppler OCT(D-OCT)and OCT Angiography(OCTA),which measure axial blood vessel velocity or visualize the vascular architecture,respectively.However,these techniques have limitations in accurately quantifying the absolute velocity of red blood cells(RBCs).This study presents a novel method based on microsphere tracking,which enables precise quantification of absolute blood flow velocity along a blood vessel.In phantom experiments,freshly harvested blood mixed with microspheres was infused into a cellulose tube to simulate a single blood vessel.Experimental results,demon-strating an error margin of less than 10%,validated the effectiveness of this method.Blood flow velocities ranging from 0.472 mm/s to 18.9 mm/s were accurately measured.A preliminary in vivo examination of rabbit ear vessels was conducted,further validating the reliability of this method.This study presents a potential method for specific disease diagnosis by detecting tar-geted vessel flow velocity variations using swept-source optical coherence tomography(SS-OCT)combined with microsphere tracking.
文摘Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architecture makes the PSD perform more functions by modifying its architecture.As the PSD is mainly formed of an array of photodiodes.The primary concept involves employing transistors to alternate between the operating modes of the photodiodes(photoconductive and photovoltaic).Additionally,alternating among output pins can be done based on the required function.This paper presents the mathematical modeling and simulation of a reconfigurable-multifunctional optical sensor which can perform energy harvesting and data acquisition,as well as positioning,which is not available in the traditional PSDs.Simulation using the MATLAB software tool was achieved to demonstrate the modeling.The simulation results confirmed the validity of the mathematical modeling and proved that the modified sensor architecture,as depicted by the equations,accurately describes its behavior.The proposed sensor is expected to extend the battery's lifecycle,reduce its physical size,and increase the integration and functionality of the system.The presented sensor might be used in free space optical(FSO)communication like cube satellites or even in underwater wireless optical communication(UWOC).
文摘Using traditional particle tracking velocimetry based on optical flow for measuring areas with large velocity gradient changes may cause oversmoothing,resulting in significant measurement errors.To address this problem,the traditional particle tracking velocimetry method based on an optical flow was improved.The level set segmentation algorithm was used to obtain the boundary contour of the region with large velocity gradient changes,and the non-uniform flow field was divided into regions according to the boundary contour to obtain sub-regions with uniform velocity distribution.The particle tracking velocimetry method based on optical flow was used to measure the granular flow velocity in each sub-region,thus avoiding the problem of granular flow distribution.The simulation results show that the measurement accuracy of this method is approximately 10%higher than that of traditional methods.The method was applied to a velocity measurement experiment on dense granular flow in silos,and the velocity distribution of the granular flow was obtained,verifying the practicality of the method in granular flow fields.
文摘Fluorescent probes have revolutionized optical imaging and biosensing by enabling real-time visualization, quantification, and tracking of biological processes at molecular and cellular levels. These probes, ranging from organic dyes to genetically encoded proteins and nanomaterials, provide unparalleled specificity, sensitivity, and multiplexing capabilities. However, challenges such as brightness, photobleaching, biocompatibility, and emission range continue to drive innovation in probe design and application. This special issue, comprising four review papers and seven original research studies, highlights cutting-edge advancements in fluorescent probe technologies and their transformative roles in super-resolution imaging, in vivo diagnostics, and cancer therapeutics.
基金funded by the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia,grant number S-1443-0223.
文摘The demand for broadband data services on high-speed trains is rapidly growing as more people commute between their homes and workplaces.However,current radio frequency(RF)technology cannot adequately meet this demand.In order to address the bandwidth constraint,a technique known as free space optics(FSO)has been proposed.This paper presents a mathematical derivation and formulation of curve track G2T-FSO(Ground-to-train Free Space Optical)model,where the track radius characteristics is 2667 m,divergence angle track is 1.5°for train velocity at V=250 km/h.Multiple transmitter configurations are proposed to maximize coverage range and enhance curve track G2T-FSO link performance under varying weather conditions.The curved track G2T-FSO model was evaluated in terms of received power,signal-to-noise ratio(SNR),bit error rate(BER),and eye diagrams.The results showed maximum coverage lengths of 618,505,365,and 240 m for 4Tx/1Rx,3Tx/1Rx,2Tx/1Rx,and 1Tx/1Rx configurations,respectively.The analyzed results demonstrate that the G2T-FSO link can be effectively implemented under various weather conditions.
文摘Optical magnetic twisting cytometry and traction force microscopy are two advanced cell mechanics research tools that employ optical methods to track the motion of microbeads that are either bound to the surface or embedded in the substrate underneath the cell.The former measures rheological properties of the cell such as cell stiffness,and the latter measures cell traction force dynamics.Here we describe the principles of these two cell mechanics research tools and an example of using them to study physical behaviors of the living cell in response to transient stretch or compression.We demonstrate that,when subjected to a stretchunstretch manipulation,both the stiffness and traction force of adherent cells promptly reduced,and then gradually recover up to the level prior to the stretch.Immunofluorescent staining and Western blotting results indicate that the actin cytoskeleton of the cells underwent a corresponding disruption and reassembly process almost in step with the changes of cell mechanics.Interestingly,when subjected to compression,the cells did not show such particular behaviors.Taken together,we conclude that adherent cells are very sensitive to the transient stretch but not transient compression,and the stretch-induced cell response is due to the dynamics of actin polymerization.
基金Sponsored by Foundation for Excellent Young Teachers in Universities of Henan Province of China(2002[121])
文摘Airborne electro-optical tracking and sighting system is a three-degree-of-freedom angular position servo system which is influenced by multi-disturbance,and its control system consists of stabilizing and tracking components.Stabilizing control is applied to track angular velocity order and control multi-disturbance under airborne condition,and its robustness should be very good;tracking control is applied to compensate tracking error of angular position.A mathematical model is established by taking the control of yaw loop as example.H∞ stabilizing controller is designed by taking the advantage of H∞ control robustness and combining with Kalman filter.A fuzzy control is introduced in general PID control to design a decoupled fuzzy Smith estimating PID controller for tracking control.Simulation research shows that the control effect of airborne electro-optical tracking and sighting system based on fuzzy PID and H∞ control is good,especially when the model parameters change and the multi-disturbance exists,the system capability has little fall,but this system still can effectively track a target.
基金the National NaturalScience Foundation of China (Grant No. 62175135)theSpecial Foundation of Local Scientific and TechnologicalDevelopment Guided by Central Government (GrantNo. YDZJSX20231A006)the Fundamental ResearchProgram of Shanxi Province (Grant No. 202103021224025).
文摘An optical-tweezers-based dual-frequency-band particle tracking system was designed and fabricated for liquid viscositydetection. On the basis of the liquid viscosity dependent model of the particle’s restricted Brownian motion with theFax´en correction taken into account, the liquid viscosity and optical trap stiffness were determined by fitting the theoreticalprediction with the measured power spectral densities of the particle’s displacement and velocity that were derived from thedual-frequency-band particle tracking data. When the SiO2 beads were employed as probe particles in the measurements ofdifferent kinds of liquids, the measurement results exhibit a good agreement with the reported results, as well as a detectionuncertainty better than 4.6%. This kind of noninvasive economical technique can be applied in diverse environments forboth in situ and ex situ viscosity detection of liquids.
基金supported by the National Natural Science Foundation of China(Grant Nos.62422509 and 62405188)the Shanghai Natural Science Foundation(Grant No.23ZR1443700)+3 种基金the Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission(Grant No.23SG41)the Young Elite Scientist Sponsorship Program by CAST(Grant No.20220042)the Science and Technology Commission of Shanghai Municipality(Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,and the Shanghai Frontiers Science Center Program(2021-2025 No.20).
文摘Efficiently tracking and imaging interested moving targets is crucial across various applications,from autonomous systems to surveillance.However,persistent challenges remain in various fields,including environmental intricacies,limitations in perceptual technologies,and privacy considerations.We present a teacher-student learning model,the generative adversarial network(GAN)-guided diffractive neural network(DNN),which performs visual tracking and imaging of the interested moving target.The GAN,as a teacher model,empowers efficient acquisition of the skill to differentiate the specific target of interest in the domains of visual tracking and imaging.The DNN-based student model learns to master the skill to differentiate the interested target from the GAN.The process of obtaining a GAN-guided DNN starts with capturing moving objects effectively using an event camera with high temporal resolution and low latency.Then,the generative power of GAN is utilized to generate data with position-tracking capability for the interested moving target,subsequently serving as labels to the training of the DNN.The DNN learns to image the target during training while retaining the target’s positional information.Our experimental demonstration highlights the efficacy of the GAN-guided DNN in visual tracking and imaging of the interested moving target.We expect the GAN-guided DNN can significantly enhance autonomous systems and surveillance.
文摘In the metrology of radon, an environmental lung carcinogen, the integrated measurements necessary for epidemiological studies are made very often using the tracks detector LR 115 type 2. For dosimetric analysis, the etched tracks from radon alpha particles on this detector are usually counted by means of an optical microscope or a spark counter. An optimal reading of the track densities which must be converted into radon concentrations, can’t be done without a good mastery of the mode of operation and use of these devices. Furthermore, investigations to know as to whether or not each of those can be used to determine radon concentration are necessary. These are the objectives of the present work in which LR 115 samples exposed to radon for at least 3 months, were chemically developed under standard conditions and read. The track densities obtained with the microscope are very much higher than those of the counter for each sample. These results are consistent with those published by other authors. However, each of these devices can be used interchangeably for alpha tracks counting, as both provide radon concentrations with a very good linear correlation coefficient of 0.95 taking into account their respective calibration factors for the reading of this detector. In addition, the saturation phenomenon for the spark counter reading of LR 115 detector occurs beyond 11,000 tr/cm<sup>2</sup>, a density never reached during our environmental radon measurements.
基金supported by National Natural Science Foundation of China(No.61125101).
文摘Tracking registration is a key issue in augmented reality applications,particularly where there are no artificial identifier placed manually.In this paper,an efficient markerless tracking registration algorithm which combines the detector and the tracker is presented for the augmented reality system.We capture the target images in real scenes as template images,use the random ferns classifier for target detection and solve the problem of reinitialization after tracking registration failures due to changes in ambient lighting or occlusion of targets.Once the target has been successfully detected,the pyramid Lucas-Kanade(LK)optical flow tracker is used to track the detected target in real time to solve the problem of slow speed.The least median of squares(LMedS)method is used to adaptively calculate the homography matrix,and then the three-dimensional pose is estimated and the virtual object is rendered and registered.Experimental results demonstrate that the algorithm is more accurate,faster and more robust.
基金This work was supported by the National Natural Science Foundation of China(61690210,61690213).
文摘Space-based optical(SBO)space surveillance has attracted widespread interest in the last two decades due to its considerable value in space situation awareness(SSA).SBO observation strategy,which is related to the performance of space surveillance,is the top-level design in SSA missions reviewed.The recognized real programs about SBO SAA proposed by the institutions in the U.S.,Canada,Europe,etc.,are summarized firstly,from which an insight of the development trend of SBO SAA can be obtained.According to the aim of the SBO SSA,the missions can be divided into general surveillance and space object tracking.Thus,there are two major categories for SBO SSA strategies.Existing general surveillance strategies for observing low earth orbit(LEO)objects and beyond-LEO objects are summarized and compared in terms of coverage rate,revisit time,visibility period,and image processing.Then,the SBO space object tracking strategies,which has experienced from tracking an object with a single satellite to tracking an object with multiple satellites cooperatively,are also summarized.Finally,this paper looks into the development trend in the future and points out several problems that challenges the SBO SSA.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11572201 and 91634202)
文摘Particle tracking velocimetry(PTV)is one of the most commonly applied granular flow velocity measurement methods.However,traditional PTV methods may have issues such as high mismatching rates and a narrow measurement range when measuring granular flows with large bulk density and high-speed contrast.In this study,a novel PTV method is introduced to solve these problems using an optical flow matching algorithm with two further processing steps.The first step involves displacement correction,which is used to solve the mismatching problem in the case of high stacking density.The other step is trajectory splicing,which is used to solve the problem of a measurement range reduction in the case of high-speed contrast The hopper flow experimental results demonstrate superior performance of this proposed method in controlling the number of mismatched particles and better measuring efficiency in comparison with the traditional PTV method.
基金Projects(50909025,51179035) supported by the National Natural Science Foundation of ChinaProject(HEUCFZ1003) supported by the Fundamental Research Funds for Central Universities of China
文摘Before the task of autonomous underwater vehicle(AUV) was implemented actually,its semi-physical simulation system of pipeline tracking had been designed.This semi-physical simulation system was used to test the software logic,hardware architecture,data interface and reliability of the control system.To implement this system,the whole system plan,including interface computer and the methods of pipeline tracking,was described.Compared to numerical simulation,the semi-physical simulation was used to test the real software and hardware more veritably.In the semi-physical simulation system,tracking experiments of both straight lines and polygonal lines were carried out,considering the influence of ocean current and the situation of buried pipeline.The experimental results indicate that the AUV can do pipeline tracking task,when angles of pipeline are 15°,30°,45° and 60°.In the ocean current of 2 knots,AUV could track buried pipeline.
基金supported by the National Natural Science Foundation of China(61372069)and the"111"Project(B08038)
文摘In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space division multiple access, and a sensor node uses a modulating retro-reflector for communication. Thus while a random sampling matrix is used to guide the establishment of links between head cluster and sensor nodes, the random linear projection is accomplished. To establish multiple links at the same time, an optical space division multiple access antenna is designed. It works in fixed beams switching mode and consists of optic lens with a large field of view(FOV), fiber array on the focal plane which is used to realize virtual channels segmentation, direction of arrival sensor, optical matrix switch and controller. Based on the angles of nodes' laser beams, by dynamically changing the route, optical matrix switch actualizes the multi-beam full duplex tracking receiving and transmission. Due to the structure of fiber array, there will be several fade zones both in the focal plane and in lens' FOV. In order to lower the impact of fade zones and harmonize multibeam, a fiber array adjustment is designed. By theoretical, simulated and experimental study, the antenna's qualitative feasibility is validated.
文摘A general solution of sun tracking for an arbitrarily oriented heliostat towards an arbitrarily located target on the earth is published. With the most general form of solar tracking formulae, it is seen that the used azimuthelevation, spinning-elevation tracking formulae etc. are the special cases of it. The possibilities of utilizing the general solution and its significance in solar energy engineering are discussed.
基金supported by the National Key R&D Program of China(Grant No.2019YFA0705000)the Leading-Edge Technology Program of Jiangsu Natural Science Foundation(Grant No.BK20192001)+6 种基金the National Natural Science Foundation of China(Grant Nos.51890861,11690033,and 62293523)the Zhangjiang Laboratory(Grant No.ZJSP21A001)the Key R&D Program of Guangdong Province(Grant No.2018B030329001)the National Postdoctoral Program for Innovative Talents(Grant No.BX2021122)the China Postdoctoral Science Foundation(Grant No.2022M711570)the Fundamental Research Funds for the Central Universities(Grant No.2022300158)the Jiangsu Funding Program for Excellent Postdoctoral Talent.
文摘Free-space optical communication(FSO)can achieve fast,secure,and license-free communication without physical cables,providing a cost-effective,energy-efficient,and flexible solution when fiber connection is unavailable.To achieve FSO on demand,portable FSO devices are essential for flexible and fast deployment,where the key is achieving compact structure and plug-and-play operation.Here,we develop a miniaturized FSO system and realize 9.16 Gbps FSO in a 1 km link,using commercial single-mode-fibercoupled optical transceiver modules without optical amplification.Fully automatic four-stage acquisition,pointing,and tracking systems are developed,which control the tracking error within 3μrad,resulting in an average link loss of 13.7 dB.It is the key for removing optical amplification;hence FSO is achieved with direct use of commercial transceiver modules in a bidirectional way.Each FSO device is within an overall size of 45 cm×40 cm×35 cm,and 9.5 kg weight,with power consumption of∼10 W.The optical link up to 4 km is tested with average loss of 18 dB,limited by the foggy test environment.With better weather conditions and optical amplification,longer FSO can be expected.Such a portable and automatic FSO system will produce massive applications of field-deployable high-speed wireless communication in the future.
基金supported by the Central University Basic Research Fund of China(No.3072022CFJ0202)the Central University Basic Research Fund of China(No.3072022CFJ0204)。
文摘A nonlinear sliding mode adaptive controller for a thin-film diffractive imaging system is designed to achieve accurate pointing direction over the attitude of subarrays in large-diameter mirror arrays.The kinematics and dynamics equations based on error quaternion and angular velocity are derived,and a diffractive thin-film sub-mirror array controller is designed to point precisely.Moreover,the global stability of the controller is proved by the Lyapunov method.Since the controller can adaptively identify the inertia matrix of each sub-mirror system,it is robust to bounded disturbances and changes in inertia parameters.At the same time,the continuous arctangent function is introduced,which is effectively anti-chattering.The simulation results show that the designed controller can ensure the accurate tracking of the diffractive film in each sub-mirror in the presence of rotational inertia matrix uncertainty and various disturbances.