Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran...Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.展开更多
Optogenetic has been widely applied in various pathogenesis investigations of neuropathic diseases since its accurate and targeted regulation of neuronal activity.However,due to the mismatch between the soft tissues a...Optogenetic has been widely applied in various pathogenesis investigations of neuropathic diseases since its accurate and targeted regulation of neuronal activity.However,due to the mismatch between the soft tissues and the optical waveguide,the long-term neural regulation within soft tissue(such as brain and spinal cord)by implantable optical fibers is a large challenge.Herein,we designed a modulus selfadaptive hydrogel optical fiber(MSHOF)with tunable mechanical properties(Young’modulus was tunable in the range of 0.32-10.56MPa)and low light attenuation(0.12-0.21 dB/cm,472nm laser light),which adapts to light transmission under soft tissues.These advantages of MSHOF can ensure the effectiveness of optogenetic stimulation meanwhile safeguarding the safety of the brain/materials interaction interface.In addition,this work provides more design possibilities of MSHOF for photogenetic stimuli and has significant application prospects in photomedical therapy.展开更多
In this paper,a double-effect DNN-based Digital Back-Propagation(DBP)scheme is proposed and studied to achieve the Integrated Communication and Sensing(ICS)ability,which can not only realize nonlinear damage mitigatio...In this paper,a double-effect DNN-based Digital Back-Propagation(DBP)scheme is proposed and studied to achieve the Integrated Communication and Sensing(ICS)ability,which can not only realize nonlinear damage mitigation but also monitor the optical power and dispersion profile over multi-span links.The link status information can be extracted by the characteristics of the learned optical fiber parameters without any other measuring instruments.The efficiency and feasibility of this method have been investigated in different fiber link conditions,including various launch power,transmission distance,and the location and the amount of the abnormal losses.A good monitoring performance can be obtained while the launch optical power is 2 dBm which does not affect the normal operation of the optical communication system and the step size of DBP is 20 km which can provide a better distance resolution.This scheme successfully detects the location of single or multiple optical attenuators in long-distance multi-span fiber links,including different abnormal losses of 2 dB,4 dB,and 6 dB in 360 km and serval combinations of abnormal losses of(1 dB,5 dB),(3 dB,3 dB),(5 dB,1 dB)in 360 km and 760 km.Meanwhile,the transfer relationship of the estimated coefficient values with different step sizes is further investigated to reduce the complexity of the fiber nonlinear damage compensation.These results provide an attractive approach for precisely sensing the optical fiber link status information and making correct strategies timely to ensure optical communication system operations.展开更多
Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality c...Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality characteristics of SPOF limit their integration with traditional fiber optic sensors.This article introduces for the first time a flexible fiber optic vibration sensor based on laser interference technology,which can be applied to vibration measurement under high stretch conditions.This sensor utilizes elastic optical fibers made of polydimethylsiloxane(PDMS)as sensing elements,combined with phase generating carrier technology,to achieve vibration measurement at 50−260 Hz within the stretch range of 0−42%.展开更多
Embedding optical fiber sensors into composite materials offers the advantage of real-time structural monitoring.However,there is an order-of-magnitude difference in diameter between optical fibers and reinforcing fib...Embedding optical fiber sensors into composite materials offers the advantage of real-time structural monitoring.However,there is an order-of-magnitude difference in diameter between optical fibers and reinforcing fibers,and the detailed mechanism of how embedded optical fibers affect the micromechanical behavior and damage failure processes within composite materials remains unclear.This paper presents a micromechanical simulation analysis of composite materials embedded with optical fibers.By constructing representative volume elements(RVEs)with randomly distributed reinforcing fibers,the optical fiber,the matrix,and the interface phase,the micromechanical behavior and damage evolution under transverse tensile and compressive loads are explored.The study finds that the presence of embedded optical fibers significantly influences the initiation and propagation of microscopic damage within the composites.Under transverse tension,the fiber-matrix interface cracks first,followed by plastic cracking in the matrix surrounding the fibers,forming micro-cracks.Eventually,these cracks connect with the debonded areas at the fiber-matrix interface to form a dominant crack that spans the entire model.Under transverse compression,plastic cracking first occurs in the resin surrounding the optical fibers,connecting with the interface debonding areas between the optical fibers and the matrix to form two parallel shear bands.Additionally,it is observed that the strength of the interface between the optical fiber and the matrix critically affects the simulation results.The simulated damage morphologies align closely with those observed using scanning electron microscopy(SEM).These findings offer theoretical insights that can inform the design and fabrication of smart composite materials with embedded optical fiber sensors for advanced structural health monitoring.展开更多
Reverse design of highly GeO2-doped silica optical fibers with broadband and flat dispersion profiles is proposed using a neural network(NN) combined with a particle swarm optimization(PSO) algorithm.Firstly,the NN mo...Reverse design of highly GeO2-doped silica optical fibers with broadband and flat dispersion profiles is proposed using a neural network(NN) combined with a particle swarm optimization(PSO) algorithm.Firstly,the NN model designed to predict optical fiber dispersion is trained with an appropriate choice of hyperparameters,achieving a root mean square error(RMSE) of 9.47×10-7on the test dataset,with a determination coefficient(R2) of 0.999.Secondly,the NN is combined with the PSO algorithm for the inverse design of dispersion-flattened optical fibers.To expand the search space and avoid particles becoming trapped in local optimal solutions,the PSO algorithm incorporates adaptive inertia weight updating and a simulated annealing algorithm.Finally,by using a suitable fitness function,the designed fibers exhibit flat group velocity dispersion(GVD) profiles at 1 400—2 400 nm,where the GVD fluctuations and minimum absolute GVD values are below 18 ps·nm-1·km-1and 7 ps·nm-1·km-1,respectively.展开更多
This paper examines the design and optimization of optical fibers for high-speed data transmission, emphasizing advancements that maximize efficiency in modern communication networks. Optical fibers, core components o...This paper examines the design and optimization of optical fibers for high-speed data transmission, emphasizing advancements that maximize efficiency in modern communication networks. Optical fibers, core components of global communication infrastructure, are capable of transmitting data over long distances with minimal loss through principles like total internal reflection. This study explores single-mode and multi-mode fiber designs, providing an overview of key parameters such as core diameter, refractive index profile, and numerical aperture. Mathematical modeling using Maxwell’s equations plays a central role in optimizing fiber performance, helping engineers mitigate challenges like attenuation and dispersion. The paper also discusses advanced techniques, including dense wavelength division multiplexing (DWDM), which enables terabit-per-second data rates. Case studies in practical applications, such as fiber-to-the-home (FTTH) networks and transoceanic cables, highlight the impact of optimized designs on network performance. Looking forward, innovations in photonic crystal fibers and hollow-core fibers are expected to drive further improvements, enabling ultra-high-speed data transmission. The paper concludes by underscoring the significance of continuous research and development to address challenges in optical fiber technology and support the increasing demands of global communication systems.展开更多
Battery safety has emerged as a critical challenge for achieving carbon neutrality,driven by the increasing frequency of thermal runaway incidents in electric vehicles(EVs)and stationary energy storage systems(ESSs).C...Battery safety has emerged as a critical challenge for achieving carbon neutrality,driven by the increasing frequency of thermal runaway incidents in electric vehicles(EVs)and stationary energy storage systems(ESSs).Conventional battery monitoring technologies struggle to track multiple physicochemical parameters in real time,hindering early hazard detection.Embedded optical fiber sensors have gained prominence as a transformative solution for next-generation smart battery sensing,owing to their micrometer size,multiplexing capability,and electromagnetic immunity.However,comprehensive reviews focusing on their advancements in operando multi-parameter monitoring remain scarce,despite their critical importance for ensuring battery safety.To address this gap,this review first introduces a classification and the fundamental principles of advanced battery-oriented optical fiber sensors.Subsequently,it summarizes recent developments in single-parameter battery monitoring using optical fiber sensors.Building on this foundation,this review presents the first comprehensive analysis of multifunctional optical fiber sensing platforms capable of simultaneously tracking temperature,strain,pressure,refractive index,and monitoring battery aging.Targeted strategies are proposed to facilitate the practical development of this technology,including optimization of sensor integration techniques,minimizing sensor invasiveness,resolving the cross-sensitivity of fiber Bragg grating(FBG)through structural innovation,enhancing techno-economics,and combining with artificial intelligence(AI).By aligning academic research with industry requirements,this review provides a methodological roadmap for developing robust optical sensing systems to ensure battery safety in decarbonization-driven applications.展开更多
The method for self diagnose and self repair of composite materials using hollow optical fiber with injected adhesive is first put forward. The investigation and analysis of pass light mechanism of hollow optical ...The method for self diagnose and self repair of composite materials using hollow optical fiber with injected adhesive is first put forward. The investigation and analysis of pass light mechanism of hollow optical fiber are made in detail. The measurement principle, method and experimental research on self diagnose of the rupture place in composite materials by using hollow optical fiber are also put forward. Experiments on composite materials with or without embedded optical fiber are performed according to Chinese test standards in order to find out the comparable characters. Based on the experimental results, it is found that there is only little difference on the mechanical behavior of composite materials with or without embedded hollow optical fibers. In other words, this method can be used in engineering practice, such as in smart structures and other fields. Finally the general scheme of the entire system is given.展开更多
This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by ...This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by chemical method and their outsides are peeled to form particles of irregular distribution and they differ in size, so the slight disturbance range of stochastic wall are formed in fibers. According to the characteristics of power loss of waveguide mode caused by slight disturbance of stochastic wall and radiative mode transmission, the range of slight disturbance of stochastic wall may be served as the sensitive range of the sensor. On the basis of theory of slight disturbance of stochastic wall of planar optical waveguide, the relation between the corrosion time and the opposite power loss by experiments is investigated. In this paper, the measurement results of object of SIFORS are also presented. The results show that the optical sensor technique may be used in the damage evaluation of an aircraft.展开更多
To achieve a low-complexity nonlinearity compensation(NLC)in high-symbol-rate(HSR)systems,we propose a modified weighted digital backpropagation(M-W-DBP)by jointly shifting the calculated position of nonlinear phase n...To achieve a low-complexity nonlinearity compensation(NLC)in high-symbol-rate(HSR)systems,we propose a modified weighted digital backpropagation(M-W-DBP)by jointly shifting the calculated position of nonlinear phase noise and considering the correlation of neighboring symbols in the NLC section of DBP.Based on this model,with the aid of neural network optimization,a learned version of M-W-DBP(M-W-LDBP)is also proposed and explored.Furthermore,enough technical details are revealed for the first time,including the principle of our proposed M-W-DBP and M-W-LDBP,the training process,and the complexity analysis of different DBPclass NLC algorithms.Evaluated numerically with QPSK,16QAM,and PS-64QAM modulation formats,1-step-per-span(1-StPS)M-W-DBP/LDBP achieves up to 1.29/1.49 dB and 0.63/0.74 dB signal-to-noise ratio improvement compared to chromatic dispersion compensation(CDC)in 90-GBaud and 128-GBaud 1000-km single-channel transmission systems,respectively.Moreover,1-StPS M-W-DBP/LDBP provides a more powerful NLC ability than 2-StPS LDBP but only needs about 60%of the complexity.The effectiveness of the proposed M-W-DBP and M-W-LDBP in the presence of laser phase noise is also verified and the necessity of using the learned version of M-WDBP is also discussed.This work is a comprehensive study of M-W-DBP/LDBP and other DBP-class NLC algorithms in HSR systems.展开更多
The principle of optical time-domain reflection localization limits the sensing spatial resolution of Raman distributed optical fiber sensing.We provide a solution for a Raman distributed optical fiber sensing system ...The principle of optical time-domain reflection localization limits the sensing spatial resolution of Raman distributed optical fiber sensing.We provide a solution for a Raman distributed optical fiber sensing system with kilometer-level sensing distance and submeter spatial resolution.Based on this,we propose a Raman distributed optical fiber sensing scheme based on chaotic pulse cluster demodulation.Chaotic pulse clusters are used as the probe signal,in preference to conventional pulsed or chaotic single-pulse lasers.Furthermore,the accurate positioning of the temperature variety region along the sensing fiber can be realized using chaotic pulse clusters.The proposed demodulation scheme can enhance the signal-to-noise ratio by improving the correlation between the chaotic reference and the chaotic Raman anti-Stokes scattering signals.The experiment achieved a sensing spatial resolution of 30 cm at a distributed temperature-sensing distance of∼6.0 km.Furthermore,we explored the influence of chaotic pulse width and detector bandwidth on the sensing spatial resolution.In addition,the theoretical experiments proved that the sensing spatial resolution in the proposed scheme was independent of the pulse width and sensing distance.展开更多
2.5 Gbit/s monolithic integrated circuits (ICs) for optical fiber transmitter and receiver in 0.35 μm CMOS (complementary metal-oxide-semiconductor transistor) process are presented. The transmitter, which includ...2.5 Gbit/s monolithic integrated circuits (ICs) for optical fiber transmitter and receiver in 0.35 μm CMOS (complementary metal-oxide-semiconductor transistor) process are presented. The transmitter, which includes a 4: 1 multiplexer and a laser diode driver (LDD), has four 622 Mbit/s random signals as its inputs and gets a 2.5 Gbit/s driving signal as its output; the receiver detects a 2.5 Gbit/s random signal and gets four 622 Mbit/s signals at the output. The main circuits include a trans-impedance amplifier (TIA), a limiting amplifier, a clock and data recovery (CDR) unit, and a 1: 4 demultiplexer (DEMUX). Test results prove the logic functions of the transmitter to be right, and the 10% to 90% rise and fall times of transmitter's output data eye diagram are 211.1 ps and 200 ps, respectively. The sensitivity of the receiver is measured to be better than 20 mV. The root mean square jitter of the DEMUX's output data is 15.6 ps and that of the clock after 1: 4 frequency dividing is 1.9 ps. Two chips are both applicable to 2.5 Gbit/s optical fiber communication systems.展开更多
With Al2O3 and SiO2 as polishing medium, under different polishing conditions, e.g. with different polishing pressure, polishing time and polishing fluid, the influences of polishing treatment on the return loss of op...With Al2O3 and SiO2 as polishing medium, under different polishing conditions, e.g. with different polishing pressure, polishing time and polishing fluid, the influences of polishing treatment on the return loss of optical fiber connectors were investigated. The return loss of optical fiber connectors is 32CD*238dB before polishing. The results show that dry polishing(i.e. no polishing fluid) with Al2O3 has less influence on return loss of optical fiber connectors, while dry polishing with SiO2 reduces return loss to about 20dB because of the end-face of optical fiber contaminated. The wet polishing(i.e. using distilled water as polishing fluid) with Al2O3 or SiO2 can increase return loss to 45CD*250dB, but wet polishing with Al2O3 may produce optical fiber undercut depth of 80CD*2140nm. Wet polishing with SiO2 should be preferentially selected for optical fiber connectors and polishing time should be controlled within 20CD*230s.展开更多
This paper investigated the continuous measurement of a refractive index(RI)sensor based on macrobending microoptical plastic fiber(m-POF).The sensing properties of the RI sensor depend on the structure parameter,whic...This paper investigated the continuous measurement of a refractive index(RI)sensor based on macrobending microoptical plastic fiber(m-POF).The sensing properties of the RI sensor depend on the structure parameter,which is the ratio of macrobending radius of m-POF to the radius of fiber itself.The ratio changes with the measurement time increasing because of the water absorption,which introduces an maximum measurement deviation of 7.3×10^(-5) RIU when the immersion time exceeds 40 h.This work indicates that for the sensors based on POF,the measurement time must be taken into consideration for continuous measurement.展开更多
Environmental vibration causes mechanical deformation in optical fibers, which induces excess frequency noise in fiber-stabilized lasers. In order to solve such a problem, we propose an ultralow acceleration sensitivi...Environmental vibration causes mechanical deformation in optical fibers, which induces excess frequency noise in fiber-stabilized lasers. In order to solve such a problem, we propose an ultralow acceleration sensitivity fiber spool with symmetrically mounted structure. By numerical analysis with the finite element method, we obtain the optimal geometry parameters of the spool with which the horizontal and vertical acceleration sensitivity can be reduced to 3.25 × 10^-12/g and 5.38 × 10^-12/g respectively. Moreover, the structure features the insensitivity to the variation of geometry parameters,which will minimize the influence from numerical simulation error and manufacture tolerance.展开更多
The development of remote frequency transfer techniques,especially the appearance of optical clocks with unprecedented stability,has prompted geoscientists to study their applications in geodesy.Using remote frequency...The development of remote frequency transfer techniques,especially the appearance of optical clocks with unprecedented stability,has prompted geoscientists to study their applications in geodesy.Using remote frequency transfer technique,by frequency comparison of two optical clocks at two points P and Q connected by optical fibers,one can measure the signal’s frequency shift between them,and the geopotential difference between them can be determined based on the gravity frequency shift equation.Given the orthometric height of P,the orthometric height of Q can be determined.Since the present stability of the optical clock has achieved 1×10^(-18) or better and comparing the frequency transfer via optical fiber provides stability at 10^(-19) level,the optical clock network enables determining the orthometric height at centimeter-level.This study provides a formulation to determine the height diffe rence at one-centimeter level between two points on the ground based on the optical fiber frequency transfer technique.展开更多
This paper introduces a new-developed mine fire-resistant optical fiber cable (OFC)KL5004,its structural characteristics, main feature, the theory about fire resistance and its application in high output and efficienc...This paper introduces a new-developed mine fire-resistant optical fiber cable (OFC)KL5004,its structural characteristics, main feature, the theory about fire resistance and its application in high output and efficiency mine.展开更多
Surface Plasmon Resonance (SPR) is a powerful technique for directly sensing in biological studies, chemical detection and environmental pollution monitoring. In this paper, we present polymer optical fiber applicat...Surface Plasmon Resonance (SPR) is a powerful technique for directly sensing in biological studies, chemical detection and environmental pollution monitoring. In this paper, we present polymer optical fiber application in SPR sensors, including wavelength interrogation surface enhanced Raman scattering SPR sensor and surface enhanced Raman scattering (SERS) probe. Long-period fiber gratings are fabricated on single mode polymer optical fiber (POF) with 120 μm period and 50% duty cycle. The polarization characteristic of this kind of birefringent grating is studied. Theoretical analysis shows it will be advantageous in SPR sensing applications.展开更多
Structural deformation monitoring of flight vehicles based on optical fiber sensing(OFS)technology has been a focus of research in the field of aerospace.After nearly 30 years of research and development,Chinese and i...Structural deformation monitoring of flight vehicles based on optical fiber sensing(OFS)technology has been a focus of research in the field of aerospace.After nearly 30 years of research and development,Chinese and international researchers have made significant advances in the areas of theory and methods,technology and systems,and ground experiments and flight tests.These advances have led to the development of OFS technology from the laboratory research stage to the engineering application stage.However,a few problems encountered in practical applications limit the wider application and further development of this technology,and thus urgently require solutions.This paper reviews the history of research on the deformation monitoring of flight vehicles.It examines various aspects of OFS-based deformation monitoring including the main varieties of OFS technology,technical advantages and disadvantages,suitability in aerospace applications,deformation reconstruction algorithms,and typical applications.This paper points out the key unresolved problems and the main evolution paradigms of engineering applications.It further discusses future development directions from the perspectives of an evolution paradigm,standardization,new materials,intelligentization,and collaboration.展开更多
基金research was funded by Science and Technology Project of State Grid Corporation of China under grant number 5200-202319382A-2-3-XG.
文摘Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.
基金supported by the National Key Research and Development Program of China(Nos.2021YFA1201302 and 2021YFA1201300)the National Natural Science Foundation of China(Nos.52303033,52173029)+1 种基金Shanghai Sailing Program(No.23YF1400400)the Natural Science Foundation of Shanghai(No.21ZR1400500).
文摘Optogenetic has been widely applied in various pathogenesis investigations of neuropathic diseases since its accurate and targeted regulation of neuronal activity.However,due to the mismatch between the soft tissues and the optical waveguide,the long-term neural regulation within soft tissue(such as brain and spinal cord)by implantable optical fibers is a large challenge.Herein,we designed a modulus selfadaptive hydrogel optical fiber(MSHOF)with tunable mechanical properties(Young’modulus was tunable in the range of 0.32-10.56MPa)and low light attenuation(0.12-0.21 dB/cm,472nm laser light),which adapts to light transmission under soft tissues.These advantages of MSHOF can ensure the effectiveness of optogenetic stimulation meanwhile safeguarding the safety of the brain/materials interaction interface.In addition,this work provides more design possibilities of MSHOF for photogenetic stimuli and has significant application prospects in photomedical therapy.
基金supported by the National Key Research and Development Program of China (2019YFB1803905)the National Natural Science Foundation of China (No.62171022)+2 种基金Beijing Natural Science Foundation (4222009)Guangdong Basic and Applied Basic Research Foundation (2021B1515120057)the Scientific and Technological Innovation Foundation of Shunde Graduate School,USTB (No.BK19AF005)。
文摘In this paper,a double-effect DNN-based Digital Back-Propagation(DBP)scheme is proposed and studied to achieve the Integrated Communication and Sensing(ICS)ability,which can not only realize nonlinear damage mitigation but also monitor the optical power and dispersion profile over multi-span links.The link status information can be extracted by the characteristics of the learned optical fiber parameters without any other measuring instruments.The efficiency and feasibility of this method have been investigated in different fiber link conditions,including various launch power,transmission distance,and the location and the amount of the abnormal losses.A good monitoring performance can be obtained while the launch optical power is 2 dBm which does not affect the normal operation of the optical communication system and the step size of DBP is 20 km which can provide a better distance resolution.This scheme successfully detects the location of single or multiple optical attenuators in long-distance multi-span fiber links,including different abnormal losses of 2 dB,4 dB,and 6 dB in 360 km and serval combinations of abnormal losses of(1 dB,5 dB),(3 dB,3 dB),(5 dB,1 dB)in 360 km and 760 km.Meanwhile,the transfer relationship of the estimated coefficient values with different step sizes is further investigated to reduce the complexity of the fiber nonlinear damage compensation.These results provide an attractive approach for precisely sensing the optical fiber link status information and making correct strategies timely to ensure optical communication system operations.
文摘Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality characteristics of SPOF limit their integration with traditional fiber optic sensors.This article introduces for the first time a flexible fiber optic vibration sensor based on laser interference technology,which can be applied to vibration measurement under high stretch conditions.This sensor utilizes elastic optical fibers made of polydimethylsiloxane(PDMS)as sensing elements,combined with phase generating carrier technology,to achieve vibration measurement at 50−260 Hz within the stretch range of 0−42%.
基金funded by the National Key Research and Development Program of China(Grant No.2022YFB3402500)the National Natural Science Foundation of China(Grant No.12372129).
文摘Embedding optical fiber sensors into composite materials offers the advantage of real-time structural monitoring.However,there is an order-of-magnitude difference in diameter between optical fibers and reinforcing fibers,and the detailed mechanism of how embedded optical fibers affect the micromechanical behavior and damage failure processes within composite materials remains unclear.This paper presents a micromechanical simulation analysis of composite materials embedded with optical fibers.By constructing representative volume elements(RVEs)with randomly distributed reinforcing fibers,the optical fiber,the matrix,and the interface phase,the micromechanical behavior and damage evolution under transverse tensile and compressive loads are explored.The study finds that the presence of embedded optical fibers significantly influences the initiation and propagation of microscopic damage within the composites.Under transverse tension,the fiber-matrix interface cracks first,followed by plastic cracking in the matrix surrounding the fibers,forming micro-cracks.Eventually,these cracks connect with the debonded areas at the fiber-matrix interface to form a dominant crack that spans the entire model.Under transverse compression,plastic cracking first occurs in the resin surrounding the optical fibers,connecting with the interface debonding areas between the optical fibers and the matrix to form two parallel shear bands.Additionally,it is observed that the strength of the interface between the optical fiber and the matrix critically affects the simulation results.The simulated damage morphologies align closely with those observed using scanning electron microscopy(SEM).These findings offer theoretical insights that can inform the design and fabrication of smart composite materials with embedded optical fiber sensors for advanced structural health monitoring.
基金supported by the Fundamental Research Funds for the Central Universities (No.2024JBZY021)the National Natural Science Foundation of China (No.61575018)。
文摘Reverse design of highly GeO2-doped silica optical fibers with broadband and flat dispersion profiles is proposed using a neural network(NN) combined with a particle swarm optimization(PSO) algorithm.Firstly,the NN model designed to predict optical fiber dispersion is trained with an appropriate choice of hyperparameters,achieving a root mean square error(RMSE) of 9.47×10-7on the test dataset,with a determination coefficient(R2) of 0.999.Secondly,the NN is combined with the PSO algorithm for the inverse design of dispersion-flattened optical fibers.To expand the search space and avoid particles becoming trapped in local optimal solutions,the PSO algorithm incorporates adaptive inertia weight updating and a simulated annealing algorithm.Finally,by using a suitable fitness function,the designed fibers exhibit flat group velocity dispersion(GVD) profiles at 1 400—2 400 nm,where the GVD fluctuations and minimum absolute GVD values are below 18 ps·nm-1·km-1and 7 ps·nm-1·km-1,respectively.
文摘This paper examines the design and optimization of optical fibers for high-speed data transmission, emphasizing advancements that maximize efficiency in modern communication networks. Optical fibers, core components of global communication infrastructure, are capable of transmitting data over long distances with minimal loss through principles like total internal reflection. This study explores single-mode and multi-mode fiber designs, providing an overview of key parameters such as core diameter, refractive index profile, and numerical aperture. Mathematical modeling using Maxwell’s equations plays a central role in optimizing fiber performance, helping engineers mitigate challenges like attenuation and dispersion. The paper also discusses advanced techniques, including dense wavelength division multiplexing (DWDM), which enables terabit-per-second data rates. Case studies in practical applications, such as fiber-to-the-home (FTTH) networks and transoceanic cables, highlight the impact of optimized designs on network performance. Looking forward, innovations in photonic crystal fibers and hollow-core fibers are expected to drive further improvements, enabling ultra-high-speed data transmission. The paper concludes by underscoring the significance of continuous research and development to address challenges in optical fiber technology and support the increasing demands of global communication systems.
基金the financial supports of the National Natural Science Foundation of China(No.52372200)a project supported by the State Key Laboratory of Mechanics and Control for Aerospace Structures(No.MCAS-S-0324G01)。
文摘Battery safety has emerged as a critical challenge for achieving carbon neutrality,driven by the increasing frequency of thermal runaway incidents in electric vehicles(EVs)and stationary energy storage systems(ESSs).Conventional battery monitoring technologies struggle to track multiple physicochemical parameters in real time,hindering early hazard detection.Embedded optical fiber sensors have gained prominence as a transformative solution for next-generation smart battery sensing,owing to their micrometer size,multiplexing capability,and electromagnetic immunity.However,comprehensive reviews focusing on their advancements in operando multi-parameter monitoring remain scarce,despite their critical importance for ensuring battery safety.To address this gap,this review first introduces a classification and the fundamental principles of advanced battery-oriented optical fiber sensors.Subsequently,it summarizes recent developments in single-parameter battery monitoring using optical fiber sensors.Building on this foundation,this review presents the first comprehensive analysis of multifunctional optical fiber sensing platforms capable of simultaneously tracking temperature,strain,pressure,refractive index,and monitoring battery aging.Targeted strategies are proposed to facilitate the practical development of this technology,including optimization of sensor integration techniques,minimizing sensor invasiveness,resolving the cross-sensitivity of fiber Bragg grating(FBG)through structural innovation,enhancing techno-economics,and combining with artificial intelligence(AI).By aligning academic research with industry requirements,this review provides a methodological roadmap for developing robust optical sensing systems to ensure battery safety in decarbonization-driven applications.
文摘The method for self diagnose and self repair of composite materials using hollow optical fiber with injected adhesive is first put forward. The investigation and analysis of pass light mechanism of hollow optical fiber are made in detail. The measurement principle, method and experimental research on self diagnose of the rupture place in composite materials by using hollow optical fiber are also put forward. Experiments on composite materials with or without embedded optical fiber are performed according to Chinese test standards in order to find out the comparable characters. Based on the experimental results, it is found that there is only little difference on the mechanical behavior of composite materials with or without embedded hollow optical fibers. In other words, this method can be used in engineering practice, such as in smart structures and other fields. Finally the general scheme of the entire system is given.
文摘This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by chemical method and their outsides are peeled to form particles of irregular distribution and they differ in size, so the slight disturbance range of stochastic wall are formed in fibers. According to the characteristics of power loss of waveguide mode caused by slight disturbance of stochastic wall and radiative mode transmission, the range of slight disturbance of stochastic wall may be served as the sensitive range of the sensor. On the basis of theory of slight disturbance of stochastic wall of planar optical waveguide, the relation between the corrosion time and the opposite power loss by experiments is investigated. In this paper, the measurement results of object of SIFORS are also presented. The results show that the optical sensor technique may be used in the damage evaluation of an aircraft.
基金supported in part by National Natural Science Foundation of China(No.62271080)in part by Fund of State Key Laboratory of IPOC(BUPT)(No.IPOC2022ZT06)in part by BUPT Excellent Ph.D Students Foundation(No.CX2022102).
文摘To achieve a low-complexity nonlinearity compensation(NLC)in high-symbol-rate(HSR)systems,we propose a modified weighted digital backpropagation(M-W-DBP)by jointly shifting the calculated position of nonlinear phase noise and considering the correlation of neighboring symbols in the NLC section of DBP.Based on this model,with the aid of neural network optimization,a learned version of M-W-DBP(M-W-LDBP)is also proposed and explored.Furthermore,enough technical details are revealed for the first time,including the principle of our proposed M-W-DBP and M-W-LDBP,the training process,and the complexity analysis of different DBPclass NLC algorithms.Evaluated numerically with QPSK,16QAM,and PS-64QAM modulation formats,1-step-per-span(1-StPS)M-W-DBP/LDBP achieves up to 1.29/1.49 dB and 0.63/0.74 dB signal-to-noise ratio improvement compared to chromatic dispersion compensation(CDC)in 90-GBaud and 128-GBaud 1000-km single-channel transmission systems,respectively.Moreover,1-StPS M-W-DBP/LDBP provides a more powerful NLC ability than 2-StPS LDBP but only needs about 60%of the complexity.The effectiveness of the proposed M-W-DBP and M-W-LDBP in the presence of laser phase noise is also verified and the necessity of using the learned version of M-WDBP is also discussed.This work is a comprehensive study of M-W-DBP/LDBP and other DBP-class NLC algorithms in HSR systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.U23A20375 and 62075151)the National Key Research and Development Program of China(Grant No.202103021223042).
文摘The principle of optical time-domain reflection localization limits the sensing spatial resolution of Raman distributed optical fiber sensing.We provide a solution for a Raman distributed optical fiber sensing system with kilometer-level sensing distance and submeter spatial resolution.Based on this,we propose a Raman distributed optical fiber sensing scheme based on chaotic pulse cluster demodulation.Chaotic pulse clusters are used as the probe signal,in preference to conventional pulsed or chaotic single-pulse lasers.Furthermore,the accurate positioning of the temperature variety region along the sensing fiber can be realized using chaotic pulse clusters.The proposed demodulation scheme can enhance the signal-to-noise ratio by improving the correlation between the chaotic reference and the chaotic Raman anti-Stokes scattering signals.The experiment achieved a sensing spatial resolution of 30 cm at a distributed temperature-sensing distance of∼6.0 km.Furthermore,we explored the influence of chaotic pulse width and detector bandwidth on the sensing spatial resolution.In addition,the theoretical experiments proved that the sensing spatial resolution in the proposed scheme was independent of the pulse width and sensing distance.
基金The National High Technology Research and Develop-ment Program of China (863 Program) (No.2001AA312010).
文摘2.5 Gbit/s monolithic integrated circuits (ICs) for optical fiber transmitter and receiver in 0.35 μm CMOS (complementary metal-oxide-semiconductor transistor) process are presented. The transmitter, which includes a 4: 1 multiplexer and a laser diode driver (LDD), has four 622 Mbit/s random signals as its inputs and gets a 2.5 Gbit/s driving signal as its output; the receiver detects a 2.5 Gbit/s random signal and gets four 622 Mbit/s signals at the output. The main circuits include a trans-impedance amplifier (TIA), a limiting amplifier, a clock and data recovery (CDR) unit, and a 1: 4 demultiplexer (DEMUX). Test results prove the logic functions of the transmitter to be right, and the 10% to 90% rise and fall times of transmitter's output data eye diagram are 211.1 ps and 200 ps, respectively. The sensitivity of the receiver is measured to be better than 20 mV. The root mean square jitter of the DEMUX's output data is 15.6 ps and that of the clock after 1: 4 frequency dividing is 1.9 ps. Two chips are both applicable to 2.5 Gbit/s optical fiber communication systems.
文摘With Al2O3 and SiO2 as polishing medium, under different polishing conditions, e.g. with different polishing pressure, polishing time and polishing fluid, the influences of polishing treatment on the return loss of optical fiber connectors were investigated. The return loss of optical fiber connectors is 32CD*238dB before polishing. The results show that dry polishing(i.e. no polishing fluid) with Al2O3 has less influence on return loss of optical fiber connectors, while dry polishing with SiO2 reduces return loss to about 20dB because of the end-face of optical fiber contaminated. The wet polishing(i.e. using distilled water as polishing fluid) with Al2O3 or SiO2 can increase return loss to 45CD*250dB, but wet polishing with Al2O3 may produce optical fiber undercut depth of 80CD*2140nm. Wet polishing with SiO2 should be preferentially selected for optical fiber connectors and polishing time should be controlled within 20CD*230s.
基金National Natural Science Foundation of China(No.61405127)Key Program for International S&T Cooperation Projects of China(No.2013DFR10150)
文摘This paper investigated the continuous measurement of a refractive index(RI)sensor based on macrobending microoptical plastic fiber(m-POF).The sensing properties of the RI sensor depend on the structure parameter,which is the ratio of macrobending radius of m-POF to the radius of fiber itself.The ratio changes with the measurement time increasing because of the water absorption,which introduces an maximum measurement deviation of 7.3×10^(-5) RIU when the immersion time exceeds 40 h.This work indicates that for the sensors based on POF,the measurement time must be taken into consideration for continuous measurement.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11034008 and 11274324)the Key Research Program of the Chinese Academy of Sciences(Grant No.KJZD-EW-W02)
文摘Environmental vibration causes mechanical deformation in optical fibers, which induces excess frequency noise in fiber-stabilized lasers. In order to solve such a problem, we propose an ultralow acceleration sensitivity fiber spool with symmetrically mounted structure. By numerical analysis with the finite element method, we obtain the optimal geometry parameters of the spool with which the horizontal and vertical acceleration sensitivity can be reduced to 3.25 × 10^-12/g and 5.38 × 10^-12/g respectively. Moreover, the structure features the insensitivity to the variation of geometry parameters,which will minimize the influence from numerical simulation error and manufacture tolerance.
基金supported by the National Natural Science Foundations of China(Grant Nos.42030105,41721003,41804012,41631072,41874023)the Space Station Project(Grant No.2020-228)the Natural Science Foundation of Hubei Province of China(Grant No.2019CFB611)。
文摘The development of remote frequency transfer techniques,especially the appearance of optical clocks with unprecedented stability,has prompted geoscientists to study their applications in geodesy.Using remote frequency transfer technique,by frequency comparison of two optical clocks at two points P and Q connected by optical fibers,one can measure the signal’s frequency shift between them,and the geopotential difference between them can be determined based on the gravity frequency shift equation.Given the orthometric height of P,the orthometric height of Q can be determined.Since the present stability of the optical clock has achieved 1×10^(-18) or better and comparing the frequency transfer via optical fiber provides stability at 10^(-19) level,the optical clock network enables determining the orthometric height at centimeter-level.This study provides a formulation to determine the height diffe rence at one-centimeter level between two points on the ground based on the optical fiber frequency transfer technique.
文摘This paper introduces a new-developed mine fire-resistant optical fiber cable (OFC)KL5004,its structural characteristics, main feature, the theory about fire resistance and its application in high output and efficiency mine.
基金supported by the National Basic Research Program of China under Grant No. 2006cb302905the Key Program of National Natural Science Foundation of China under Grant No. 60736037the National Natural Science Foundation of China under Grant No. 10704070
文摘Surface Plasmon Resonance (SPR) is a powerful technique for directly sensing in biological studies, chemical detection and environmental pollution monitoring. In this paper, we present polymer optical fiber application in SPR sensors, including wavelength interrogation surface enhanced Raman scattering SPR sensor and surface enhanced Raman scattering (SERS) probe. Long-period fiber gratings are fabricated on single mode polymer optical fiber (POF) with 120 μm period and 50% duty cycle. The polarization characteristic of this kind of birefringent grating is studied. Theoretical analysis shows it will be advantageous in SPR sensing applications.
基金funded by the National Natural Science Foundation of China(51705024,51535002,51675053,61903041,61903042,and 61903041)the National Key Research and Development Program of China(2016YFF0101801)+4 种基金the National Hightech Research and Development Program of China(2015AA042308)the Innovative Equipment Pre-Research Key Fund Project(6140414030101)the Manned Space Pre-Research Project(20184112043)the Beijing Municipal Natural Science Foundation(F7202017 and 4204101)the Beijing Nova Program of Science and Technology(Z191100001119052)。
文摘Structural deformation monitoring of flight vehicles based on optical fiber sensing(OFS)technology has been a focus of research in the field of aerospace.After nearly 30 years of research and development,Chinese and international researchers have made significant advances in the areas of theory and methods,technology and systems,and ground experiments and flight tests.These advances have led to the development of OFS technology from the laboratory research stage to the engineering application stage.However,a few problems encountered in practical applications limit the wider application and further development of this technology,and thus urgently require solutions.This paper reviews the history of research on the deformation monitoring of flight vehicles.It examines various aspects of OFS-based deformation monitoring including the main varieties of OFS technology,technical advantages and disadvantages,suitability in aerospace applications,deformation reconstruction algorithms,and typical applications.This paper points out the key unresolved problems and the main evolution paradigms of engineering applications.It further discusses future development directions from the perspectives of an evolution paradigm,standardization,new materials,intelligentization,and collaboration.