Liquid crystal Pacharatnam-Berry phase optical elements(PBOEs)have found promising applications in augmented reality and virtual reality because of their slim formfactor,lightweight,and high optical efficiency.However...Liquid crystal Pacharatnam-Berry phase optical elements(PBOEs)have found promising applications in augmented reality and virtual reality because of their slim formfactor,lightweight,and high optical efficiency.However,chromatic aberration remains a serious longstanding problem for diffractive optics,hindering their broader adoption.To overcome the chromatic aberrations for red,green and blue(RGB)light sources,in this paper,we propose a counterintuitive multi-twist structure to achieve narrowband PBOEs without crosstalk,which plays a vital role to eliminate the chromatic aberration.The performance of our designed and fabricated narrowband Pacharatnam-Berry lenses(PBLs)aligns well with our simulation results.Furthermore,in a feasibility demonstration experiment using a laser projector,our proposed PBL system indeed exhibits a diminished chromatic aberration as compared to a broadband PBL.Additionally,polarization raytracing is implemented to demonstrate the versatility of the multi-twist structure for designing any RGB wavelengths with high contrast ratios.This analysis explores the feasibility of using RGB laser lines and quantum dot light-emitting diodes.Overall,our approach enables high optical efficiency,low fabrication complexity,and high degree of design freedom to accommodate any liquid crystal material and RGB light sources,holding immense potential for widespread applications of achromatic PBOEs.展开更多
In the light of some assumptions that are very close to the practical working conditions,a very complicated polishing process of optical element can be simplified as a linear and shift invariant system that is relatd ...In the light of some assumptions that are very close to the practical working conditions,a very complicated polishing process of optical element can be simplified as a linear and shift invariant system that is relatd only to the speed,pres- sure and time of processing.In polishing,the removed material can be represented and entreated by the convolution of the removal function of polishing head and the dwell function.The properties of removal function are presented.The assumptions and methods given by the author have been shown to be correct and applicable by experiments using a ring lap to polish the optical surfac.展开更多
Surface particles growing in large aperture optical element (LAOE) have significant impact on LAOE's stable operation. It is a challenge for the online system to inspect the particles with long working distance, en...Surface particles growing in large aperture optical element (LAOE) have significant impact on LAOE's stable operation. It is a challenge for the online system to inspect the particles with long working distance, enough precision and high efficiency because of the system constraints. In this paper, an effective and portable inspection instrument is designed based on dark-field imaging principle. A Nikon lens and an industrial high definition (HD) camera are selected to construct the vision system to inspect particles of microns size spreading over hundreds of millimeters. Using two motors and other mechanical structure, the system can realize auto-focus and image rectification functions. The line light sources are installed on both sides of the LAOE in a sealed box while the vision system is portable and working outside the box. An adaptive binarization method is proposed to process the captured dark-field image. The distribution of particles on the LAOE's surface is investigated. Because of the high resolution of the captured image, the SSE2 instructions optimization method is used to reduce the time cost of the algorithm. Experiments show that the instrument can inspect LAOE effectively and accurately.展开更多
Diffractive optical elements(DOEs) with spectrum separation and beam concentration(SSBC) functions have important applications in solar cell systems. With the SSBC DOEs, the sunlight radiation is divided into seve...Diffractive optical elements(DOEs) with spectrum separation and beam concentration(SSBC) functions have important applications in solar cell systems. With the SSBC DOEs, the sunlight radiation is divided into several wave bands so as to be effectively absorbed by photovoltaic materials with different band gaps. A new method is proposed for designing high-efficiency SSBC DOEs, which is physically simple, numerically fast, and universally applicable. The SSBC DOEs are designed by the new design method, and their performances are analyzed by the Fresnel diffraction integral method.The new design method takes two advantages over the previous design method. Firstly, the optical focusing efficiency is heightened by up to 10%. Secondly, focal positions of all the designed wavelengths can be designated arbitrarily and independently. It is believed that the designed SSBC DOEs should have practical applications to solar cell systems.展开更多
In this paper,a novel method is proposed and employed to design a single diffractive optical element(DOE) for implementing spectrum-splitting and beam-concentration(SSBC) functions simultaneously.We develop an opt...In this paper,a novel method is proposed and employed to design a single diffractive optical element(DOE) for implementing spectrum-splitting and beam-concentration(SSBC) functions simultaneously.We develop an optimization algorithm,through which the SSBC DOE can be optimized within an arbitrary thickness range according to the limitations of modern photolithography technology.Theoretical simulation results reveal that the designed SSBC DOE has a high optical focusing efficiency.It is expected that the designed SSBC DOE should have practical applications in high-efficiency solar cell systems.展开更多
Based on the facts that multijunction solar cells can increase the efficiency and concentration can reduce the cost dramatically, a special design of parallel multijunction solar cells was presented. The design employ...Based on the facts that multijunction solar cells can increase the efficiency and concentration can reduce the cost dramatically, a special design of parallel multijunction solar cells was presented. The design employed a diffractive optical element (DOE) to split and concentrate the sunlight. A rainbow region and a zero-order diffraction region were generated on the output plane where solar cells with corresponding band gaps were placed. An analytical expression of the light intensity distribution on the output plane of the special DOE was deduced, and the limiting photovoltaic efficiency of such parallel multijunction solar ceils was obtained based on Shockley-Queisser's theory. An efficiency exceeding the Shockley--Queisser limit (33%) can be expected using multijunction solar cells consisting of separately fabricated subcells. The results provide an important alternative approach to realize high photovoltaic efficiency without the need for expensive epitaxial technology widely used in tandem solar cells, thus stimulating the research and application of high efficiency and low cost solar cells.展开更多
We propose a simple experimental scheme in which an unknown two-qubit state is faithfully and deterministically teleported from Alice to Bob. The scheme is constructed with four photons from parametric down conversion...We propose a simple experimental scheme in which an unknown two-qubit state is faithfully and deterministically teleported from Alice to Bob. The scheme is constructed with four photons from parametric down conversion, linear optical elements, and conventional photon detectors, all of which are available in current technology. It is shown that the probability of successful teleportation ideally reaches 100% based on single-photon two-qubit-assisted Bell-state measurement, which can distinguish all four Bell-states simultaneously via conventional photon detectors. By generalizing the scheme, the teleportation of an unknown multi-qubit system can also be realized.展开更多
We propose two schemes to concentrate unknown nonmaximally tripartite GHZ entangled states via linear optical elements. The finial maximally entangled states obtained from our schemes are shared by two or three partie...We propose two schemes to concentrate unknown nonmaximally tripartite GHZ entangled states via linear optical elements. The finial maximally entangled states obtained from our schemes are shared by two or three parties. Our schemes only need polarizing beam splitters and single-photon detectors. In addition, the schemes can be demonstrated within current experimental technology.展开更多
Two improved algorithms are proposed to extend a diffractive optical element (DOE) to work under the broad spec- trum of sunlight. An optimum design has been found for the DOE, with a weighted average optical effici...Two improved algorithms are proposed to extend a diffractive optical element (DOE) to work under the broad spec- trum of sunlight. An optimum design has been found for the DOE, with a weighted average optical efficiency of about 6.8% better than that of the previous design. The optimization of designing high optical efficiency DOEs will pave the way for future designs of high-efficiency, low-cost lateral multijunction solar cells based on such a DOE.展开更多
In the Fresnel transform domain, an effective improvement to the conventional iterative algorithm for designing the diffractive optical elements (DOEs) used for spatial beam shaping has been proposed. The algorithm ca...In the Fresnel transform domain, an effective improvement to the conventional iterative algorithm for designing the diffractive optical elements (DOEs) used for spatial beam shaping has been proposed. The algorithm can successfully achieve to design DOEs for beam shaping. Compared with conventional algorithm, this algorithm can provide faster convergence, more powerful ability to overcome local minimum problem and better shaping quality. By computer simulation, the result has shown that the DOEs designed by this algorithm has snch advantages as high uniformity at the main lobe, low profile error and steep edge.展开更多
1 Introduction 1.1 Advantages of DOE 1)High diffraction efficiency; 2)Dispersive; 3)More selectivity of designing parameters; 4)More selectivity of primary materials; 5)Can make components miniature,forming array and ...1 Introduction 1.1 Advantages of DOE 1)High diffraction efficiency; 2)Dispersive; 3)More selectivity of designing parameters; 4)More selectivity of primary materials; 5)Can make components miniature,forming array and integration. 1.2 1.3 megapixel triplet plastic mobile展开更多
In this paper,we present the electric field controllable diffractive optical elements in strontium-barium niobate single crystals with stable tailored spiral-shaped domain structure and demonstrate the generation of o...In this paper,we present the electric field controllable diffractive optical elements in strontium-barium niobate single crystals with stable tailored spiral-shaped domain structure and demonstrate the generation of optical beam with orbital angular momentum.The required domain pattern was created in the sample with initial domain structure by electric field application using the photolithographically defined liquid electrode.A series of bipolar triangular electric field pulses were applied to the sample for determination of the optimal parameters for complete polarization switching under the electrode.The stable tailored domain pattern of the spiral shape was created by the application of the unipolar pulse of a special shape.The complete switching under the electrode and partial switching under the photoresist layer have been revealed.The imaging by Cherenkov-type second harmonic generation microscopy confirmed that the created domain structure reaches the opposite polar surface.The imaging of the diffraction pattern of the laser beam passing through a voltage-biased DOE confirmed the formation of the beam with orbital angular momentum.The half-wave voltages of 237V and 302 V for wavelength 632.8 nm and 532 nm,respectively,for 2-mmthick sample were measured.The obtained knowledge can be used for the development of domain engineering methods in strontium-barium niobate single crystals for the creation of tailored domain structures for manufacturing of electric field controllablediffractiveoptical elements.展开更多
We propose a promising method to develop flexible,compact,and tunable light-activated film diffractive optical elements(FDOEs)with exceptional diffraction efficiency,by integrating liquid crystal(LC)geometric phase-ba...We propose a promising method to develop flexible,compact,and tunable light-activated film diffractive optical elements(FDOEs)with exceptional diffraction efficiency,by integrating liquid crystal(LC)geometric phase-based diffractive optical elements(DOEs)with a specifically designed light-activated LC polymer(LCP)film.Arbitrary film bending induced by UV/Vis irradiation is realized through precise mesogens arrangement within the LCP film,enabling 1D and 2D beam steering,as well as dynamic and reversible switching between structured and Gaussian lights after cooperating with the DOE design.Furthermore,remarkable fatigue resistance,solvent resistance,and thermal stability are demonstrated,providing a solid material platform for advanced optical applications.展开更多
One of the challenges in the field of multi-photon 3D laser printing lies in further increasing the print speed in terms of voxels/s.Here,we present a setup based on a 7×7 focus array(rather than 3×3 in our ...One of the challenges in the field of multi-photon 3D laser printing lies in further increasing the print speed in terms of voxels/s.Here,we present a setup based on a 7×7 focus array(rather than 3×3 in our previous work)and using a focus velocity of about 1 m/s(rather than 0.5 m/s in our previous work)at the diffraction limit(40×/NA1.4 microscope objective lens).Combined,this advance leads to a ten times increased print speed of about 108 voxels/s.We demonstrate polymer printing of a chiral metamaterial containing more than 1.7×10^(12) voxels as well as millions of printed microparticles for potential pharmaceutical applications.The critical high-quality micro-optical components of the setup,namely a diffractive optical element generating the 7×7 beamlets and a 7×7 lens array,are manufactured by using a commercial two-photon grayscale 3D laser printer.展开更多
Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architec...Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architecture makes the PSD perform more functions by modifying its architecture.As the PSD is mainly formed of an array of photodiodes.The primary concept involves employing transistors to alternate between the operating modes of the photodiodes(photoconductive and photovoltaic).Additionally,alternating among output pins can be done based on the required function.This paper presents the mathematical modeling and simulation of a reconfigurable-multifunctional optical sensor which can perform energy harvesting and data acquisition,as well as positioning,which is not available in the traditional PSDs.Simulation using the MATLAB software tool was achieved to demonstrate the modeling.The simulation results confirmed the validity of the mathematical modeling and proved that the modified sensor architecture,as depicted by the equations,accurately describes its behavior.The proposed sensor is expected to extend the battery's lifecycle,reduce its physical size,and increase the integration and functionality of the system.The presented sensor might be used in free space optical(FSO)communication like cube satellites or even in underwater wireless optical communication(UWOC).展开更多
Diffractive optics is an important technique for beam shaping with high light efficiency and strong diffraction pattern flexibility. Since the diffraction angle is limited by the unit size of the diffractive optical e...Diffractive optics is an important technique for beam shaping with high light efficiency and strong diffraction pattern flexibility. Since the diffraction angle is limited by the unit size of the diffractive optical element (DOE), the size of the required diffraction pattern is always rather small. In this Letter, refractive/diffractive hybrid optical elements (RDHOEs) consisting of a DOE and a lens are used to realize beam shaping for a large diffraction pattern. The lens, as the component of the RDHOEs, can not only be concave but also convex, and the double sampling Fresnel diffraction algorithm is developed for the design of these two types of RDHOEs. The simulation and experimental results provide solid evidence to demonstrate the proposed method with the pure phase spatial light modulator.展开更多
Diffractive optical elements(DOEs)are intricately designed devices with the purpose of manipulating light fields by precisely modifying their wavefronts.The concept of DOEs has its origins dating back to 1948 when D.G...Diffractive optical elements(DOEs)are intricately designed devices with the purpose of manipulating light fields by precisely modifying their wavefronts.The concept of DOEs has its origins dating back to 1948 when D.Gabor first introduced holography.Subsequently,researchers introduced binary optical elements(BOEs),including computer-generated holograms(CGHs),as a distinct category within the realm of DOEs.This was the first revolution in optical devices.The next major breakthrough in light field manipulation occurred during the early 21st century,marked by the advent of metamaterials and metasurfaces.Metasurfaces are particularly appealing due to their ultra-thin,ultra-compact properties and their capacity to exert precise control over virtually every aspect of light fields,including amplitude,phase,polarization,wavelength/frequency,angular momentum,etc.The advancement of light field manipulation with micro/nano-structures has also enabled various applications in fields such as information acquisition,transmission,storage,processing,and display.In this review,we cover the fundamental science,cutting-edge technologies,and wide-ranging applications associated with micro/nano-scale optical devices for regulating light fields.We also delve into the prevailing challenges in the pursuit of developing viable technology for real-world applications.Furthermore,we offer insights into potential future research trends and directions within the realm of light field manipulation.展开更多
In this study, we propose a holographic augmented reality (AR) display with a wide viewing zone realized by using a special-designed reflective optical element. A conical holographic optical element (HOE) is used as s...In this study, we propose a holographic augmented reality (AR) display with a wide viewing zone realized by using a special-designed reflective optical element. A conical holographic optical element (HOE) is used as such a reflective optical element. This conical HOE was implemented to reconstruct a diverging spherical wave with a wide spread angle. It has a sharp wavelength selectivity by recording it as a volume hologram, enabling augmented reality (AR) representation of real and virtual 3D objects. The quality of the generated spherical wave and the spectral reflectivity of the fabricated conical HOE were investigated. An optical superimposition between real and virtual 3D objects was demonstrated, thereby enhancing the validity of our proposed method. A horizontal viewing zone of 140° and a vertical viewing zone of 30° were experimentally confirmed. The fabrication procedure for the conical HOE is presented, and the calculation method of the computer-generated hologram (CGH) based on Fermat’s principle is explained in detail.展开更多
The matrix eigenvalue method is used to analyze a laser resonator composed of diffraction optical elements. The results show that this type of resonator can separate fundamental mode and high order modes effectively. ...The matrix eigenvalue method is used to analyze a laser resonator composed of diffraction optical elements. The results show that this type of resonator can separate fundamental mode and high order modes effectively. The output beams can be designed for different requests.展开更多
In the integral imaging light field display, the introduction of a diffractive optical element (DOE) can solve the problem of limited depth of field of the traditional lens. However, the strong aberration of the DOE s...In the integral imaging light field display, the introduction of a diffractive optical element (DOE) can solve the problem of limited depth of field of the traditional lens. However, the strong aberration of the DOE significantly reduces the final display quality. Thus, herein, an end-to-end joint optimization method for optimizing DOE and aberration correction is proposed. The DOE model is established using thickness as the variable, and a deep learning network is built to preprocess the composite image loaded on the display panel. The simulation results show that the peak signal to noise ratio value of the optimized image increases by 8 dB, which confirms that the end-to-end joint optimization method can effectively reduce the aberration problem.展开更多
基金supports from the National Key Research and Development Program of China(2023YFB2806803)the National Natural Science Foundation of China(62075127).
文摘Liquid crystal Pacharatnam-Berry phase optical elements(PBOEs)have found promising applications in augmented reality and virtual reality because of their slim formfactor,lightweight,and high optical efficiency.However,chromatic aberration remains a serious longstanding problem for diffractive optics,hindering their broader adoption.To overcome the chromatic aberrations for red,green and blue(RGB)light sources,in this paper,we propose a counterintuitive multi-twist structure to achieve narrowband PBOEs without crosstalk,which plays a vital role to eliminate the chromatic aberration.The performance of our designed and fabricated narrowband Pacharatnam-Berry lenses(PBLs)aligns well with our simulation results.Furthermore,in a feasibility demonstration experiment using a laser projector,our proposed PBL system indeed exhibits a diminished chromatic aberration as compared to a broadband PBL.Additionally,polarization raytracing is implemented to demonstrate the versatility of the multi-twist structure for designing any RGB wavelengths with high contrast ratios.This analysis explores the feasibility of using RGB laser lines and quantum dot light-emitting diodes.Overall,our approach enables high optical efficiency,low fabrication complexity,and high degree of design freedom to accommodate any liquid crystal material and RGB light sources,holding immense potential for widespread applications of achromatic PBOEs.
文摘In the light of some assumptions that are very close to the practical working conditions,a very complicated polishing process of optical element can be simplified as a linear and shift invariant system that is relatd only to the speed,pres- sure and time of processing.In polishing,the removed material can be represented and entreated by the convolution of the removal function of polishing head and the dwell function.The properties of removal function are presented.The assumptions and methods given by the author have been shown to be correct and applicable by experiments using a ring lap to polish the optical surfac.
基金supported by National Natural Science Foundation of China(Nos.61473293,61227804 and 61303177)
文摘Surface particles growing in large aperture optical element (LAOE) have significant impact on LAOE's stable operation. It is a challenge for the online system to inspect the particles with long working distance, enough precision and high efficiency because of the system constraints. In this paper, an effective and portable inspection instrument is designed based on dark-field imaging principle. A Nikon lens and an industrial high definition (HD) camera are selected to construct the vision system to inspect particles of microns size spreading over hundreds of millimeters. Using two motors and other mechanical structure, the system can realize auto-focus and image rectification functions. The line light sources are installed on both sides of the LAOE in a sealed box while the vision system is portable and working outside the box. An adaptive binarization method is proposed to process the captured dark-field image. The distribution of particles on the LAOE's surface is investigated. Because of the high resolution of the captured image, the SSE2 instructions optimization method is used to reduce the time cost of the algorithm. Experiments show that the instrument can inspect LAOE effectively and accurately.
基金Project supported by the National Basic Research Program of China(Grant No.2013CBA01702)the National Natural Science Foundation of China(Grant Nos.11474206,91233202,11374216,and 11404224)+1 种基金the Scientific Research Project of Beijing Education Commission,China(Grant No.KM201310028005)the Scientific Research Base Development Program of the Beijing Municipal Commission of Education and the Beijing Youth Top-Notch Talent Training Plan,China(Grant No.CIT&TCD201504080)
文摘Diffractive optical elements(DOEs) with spectrum separation and beam concentration(SSBC) functions have important applications in solar cell systems. With the SSBC DOEs, the sunlight radiation is divided into several wave bands so as to be effectively absorbed by photovoltaic materials with different band gaps. A new method is proposed for designing high-efficiency SSBC DOEs, which is physically simple, numerically fast, and universally applicable. The SSBC DOEs are designed by the new design method, and their performances are analyzed by the Fresnel diffraction integral method.The new design method takes two advantages over the previous design method. Firstly, the optical focusing efficiency is heightened by up to 10%. Secondly, focal positions of all the designed wavelengths can be designated arbitrarily and independently. It is believed that the designed SSBC DOEs should have practical applications to solar cell systems.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB301801)the National Natural Science Foundation of China (GrantNos. 91233202,10904099,11204188,61205097,and 11174211)
文摘In this paper,a novel method is proposed and employed to design a single diffractive optical element(DOE) for implementing spectrum-splitting and beam-concentration(SSBC) functions simultaneously.We develop an optimization algorithm,through which the SSBC DOE can be optimized within an arbitrary thickness range according to the limitations of modern photolithography technology.Theoretical simulation results reveal that the designed SSBC DOE has a high optical focusing efficiency.It is expected that the designed SSBC DOE should have practical applications in high-efficiency solar cell systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.91233202,21173260,and 51072221)the National Basic Research Program of China(Grant No.2012CB932903)
文摘Based on the facts that multijunction solar cells can increase the efficiency and concentration can reduce the cost dramatically, a special design of parallel multijunction solar cells was presented. The design employed a diffractive optical element (DOE) to split and concentrate the sunlight. A rainbow region and a zero-order diffraction region were generated on the output plane where solar cells with corresponding band gaps were placed. An analytical expression of the light intensity distribution on the output plane of the special DOE was deduced, and the limiting photovoltaic efficiency of such parallel multijunction solar ceils was obtained based on Shockley-Queisser's theory. An efficiency exceeding the Shockley--Queisser limit (33%) can be expected using multijunction solar cells consisting of separately fabricated subcells. The results provide an important alternative approach to realize high photovoltaic efficiency without the need for expensive epitaxial technology widely used in tandem solar cells, thus stimulating the research and application of high efficiency and low cost solar cells.
文摘We propose a simple experimental scheme in which an unknown two-qubit state is faithfully and deterministically teleported from Alice to Bob. The scheme is constructed with four photons from parametric down conversion, linear optical elements, and conventional photon detectors, all of which are available in current technology. It is shown that the probability of successful teleportation ideally reaches 100% based on single-photon two-qubit-assisted Bell-state measurement, which can distinguish all four Bell-states simultaneously via conventional photon detectors. By generalizing the scheme, the teleportation of an unknown multi-qubit system can also be realized.
基金The project supported by the Natural Science Foundation of the Education Department of Anhui Province under Grant Nos. 2006kj070A and 2006kj057B, and the Talent Foundation of Anhui University
文摘We propose two schemes to concentrate unknown nonmaximally tripartite GHZ entangled states via linear optical elements. The finial maximally entangled states obtained from our schemes are shared by two or three parties. Our schemes only need polarizing beam splitters and single-photon detectors. In addition, the schemes can be demonstrated within current experimental technology.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.91233202,21173260,and 51072221)the National Basic Research Program of China(Grant No.2012CB932903
文摘Two improved algorithms are proposed to extend a diffractive optical element (DOE) to work under the broad spec- trum of sunlight. An optimum design has been found for the DOE, with a weighted average optical efficiency of about 6.8% better than that of the previous design. The optimization of designing high optical efficiency DOEs will pave the way for future designs of high-efficiency, low-cost lateral multijunction solar cells based on such a DOE.
文摘In the Fresnel transform domain, an effective improvement to the conventional iterative algorithm for designing the diffractive optical elements (DOEs) used for spatial beam shaping has been proposed. The algorithm can successfully achieve to design DOEs for beam shaping. Compared with conventional algorithm, this algorithm can provide faster convergence, more powerful ability to overcome local minimum problem and better shaping quality. By computer simulation, the result has shown that the DOEs designed by this algorithm has snch advantages as high uniformity at the main lobe, low profile error and steep edge.
文摘1 Introduction 1.1 Advantages of DOE 1)High diffraction efficiency; 2)Dispersive; 3)More selectivity of designing parameters; 4)More selectivity of primary materials; 5)Can make components miniature,forming array and integration. 1.2 1.3 megapixel triplet plastic mobile
基金support of the Ministry of Science and Higher Education of the Russian Federation(state task FEUZ-2023-0017)The equipment of the Ural Center for Shared Use“"Modern nanotechnology"Ural Federal University(Reg.No 2968)was used.
文摘In this paper,we present the electric field controllable diffractive optical elements in strontium-barium niobate single crystals with stable tailored spiral-shaped domain structure and demonstrate the generation of optical beam with orbital angular momentum.The required domain pattern was created in the sample with initial domain structure by electric field application using the photolithographically defined liquid electrode.A series of bipolar triangular electric field pulses were applied to the sample for determination of the optimal parameters for complete polarization switching under the electrode.The stable tailored domain pattern of the spiral shape was created by the application of the unipolar pulse of a special shape.The complete switching under the electrode and partial switching under the photoresist layer have been revealed.The imaging by Cherenkov-type second harmonic generation microscopy confirmed that the created domain structure reaches the opposite polar surface.The imaging of the diffraction pattern of the laser beam passing through a voltage-biased DOE confirmed the formation of the beam with orbital angular momentum.The half-wave voltages of 237V and 302 V for wavelength 632.8 nm and 532 nm,respectively,for 2-mmthick sample were measured.The obtained knowledge can be used for the development of domain engineering methods in strontium-barium niobate single crystals for the creation of tailored domain structures for manufacturing of electric field controllablediffractiveoptical elements.
基金the National Key Research and Development Program of China(No.2022YFA1203700)the National Natural Science Foundation of China(Nos.62275081,62035008,and 22305079)+4 种基金the Innovation Program of Shanghai Municipal Education Commission,Scientific Committee of Shanghai(No.2021-01-07-00-02-E00107)the“Shuguang Program”of Shanghai Education Development Foundation,the Shanghai Municipal Education Commission(No.21SG29)the Shanghai Sailing Program(No.23YF1409000)the Fellowship of China National Postdoctoral Program for Innovative Talents(No.BX20230125)the Postdoctoral Fellowship Program of CPSF(No.GZB20240218)。
文摘We propose a promising method to develop flexible,compact,and tunable light-activated film diffractive optical elements(FDOEs)with exceptional diffraction efficiency,by integrating liquid crystal(LC)geometric phase-based diffractive optical elements(DOEs)with a specifically designed light-activated LC polymer(LCP)film.Arbitrary film bending induced by UV/Vis irradiation is realized through precise mesogens arrangement within the LCP film,enabling 1D and 2D beam steering,as well as dynamic and reversible switching between structured and Gaussian lights after cooperating with the DOE design.Furthermore,remarkable fatigue resistance,solvent resistance,and thermal stability are demonstrated,providing a solid material platform for advanced optical applications.
基金funding by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under Germany’s Excellence Strategy for the Excellence Cluster“3D Matter Made to Order”(2082/1-390761711)by the Carl Zeiss Foundation,and by the Helmholtz program Materials Systems Engineering.
文摘One of the challenges in the field of multi-photon 3D laser printing lies in further increasing the print speed in terms of voxels/s.Here,we present a setup based on a 7×7 focus array(rather than 3×3 in our previous work)and using a focus velocity of about 1 m/s(rather than 0.5 m/s in our previous work)at the diffraction limit(40×/NA1.4 microscope objective lens).Combined,this advance leads to a ten times increased print speed of about 108 voxels/s.We demonstrate polymer printing of a chiral metamaterial containing more than 1.7×10^(12) voxels as well as millions of printed microparticles for potential pharmaceutical applications.The critical high-quality micro-optical components of the setup,namely a diffractive optical element generating the 7×7 beamlets and a 7×7 lens array,are manufactured by using a commercial two-photon grayscale 3D laser printer.
文摘Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architecture makes the PSD perform more functions by modifying its architecture.As the PSD is mainly formed of an array of photodiodes.The primary concept involves employing transistors to alternate between the operating modes of the photodiodes(photoconductive and photovoltaic).Additionally,alternating among output pins can be done based on the required function.This paper presents the mathematical modeling and simulation of a reconfigurable-multifunctional optical sensor which can perform energy harvesting and data acquisition,as well as positioning,which is not available in the traditional PSDs.Simulation using the MATLAB software tool was achieved to demonstrate the modeling.The simulation results confirmed the validity of the mathematical modeling and proved that the modified sensor architecture,as depicted by the equations,accurately describes its behavior.The proposed sensor is expected to extend the battery's lifecycle,reduce its physical size,and increase the integration and functionality of the system.The presented sensor might be used in free space optical(FSO)communication like cube satellites or even in underwater wireless optical communication(UWOC).
基金partially supported by the National Key Basic Research Program of China(No.2013CB329202)the National Scientific Equipment Development SpecialFoundation of China(No.2011YQ03013401)+1 种基金the National Natural Science Foundation of China(No.61475021)the Beijing Natural Science Foundation(No.4152015)
文摘Diffractive optics is an important technique for beam shaping with high light efficiency and strong diffraction pattern flexibility. Since the diffraction angle is limited by the unit size of the diffractive optical element (DOE), the size of the required diffraction pattern is always rather small. In this Letter, refractive/diffractive hybrid optical elements (RDHOEs) consisting of a DOE and a lens are used to realize beam shaping for a large diffraction pattern. The lens, as the component of the RDHOEs, can not only be concave but also convex, and the double sampling Fresnel diffraction algorithm is developed for the design of these two types of RDHOEs. The simulation and experimental results provide solid evidence to demonstrate the proposed method with the pure phase spatial light modulator.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030009)the National Natural Science Foundation of China(Nos.62235009,62035003,62205173,61935013,62375181,61975133,and 12104318)+1 种基金the Science and Technology Innovation Commission of Shenzhen(Nos.KQTD20170330110444030 and JCYJ20200109114018750)the Scientific Instrument Developing Project of Shenzhen University(No.2023YQ001).
文摘Diffractive optical elements(DOEs)are intricately designed devices with the purpose of manipulating light fields by precisely modifying their wavefronts.The concept of DOEs has its origins dating back to 1948 when D.Gabor first introduced holography.Subsequently,researchers introduced binary optical elements(BOEs),including computer-generated holograms(CGHs),as a distinct category within the realm of DOEs.This was the first revolution in optical devices.The next major breakthrough in light field manipulation occurred during the early 21st century,marked by the advent of metamaterials and metasurfaces.Metasurfaces are particularly appealing due to their ultra-thin,ultra-compact properties and their capacity to exert precise control over virtually every aspect of light fields,including amplitude,phase,polarization,wavelength/frequency,angular momentum,etc.The advancement of light field manipulation with micro/nano-structures has also enabled various applications in fields such as information acquisition,transmission,storage,processing,and display.In this review,we cover the fundamental science,cutting-edge technologies,and wide-ranging applications associated with micro/nano-scale optical devices for regulating light fields.We also delve into the prevailing challenges in the pursuit of developing viable technology for real-world applications.Furthermore,we offer insights into potential future research trends and directions within the realm of light field manipulation.
文摘In this study, we propose a holographic augmented reality (AR) display with a wide viewing zone realized by using a special-designed reflective optical element. A conical holographic optical element (HOE) is used as such a reflective optical element. This conical HOE was implemented to reconstruct a diverging spherical wave with a wide spread angle. It has a sharp wavelength selectivity by recording it as a volume hologram, enabling augmented reality (AR) representation of real and virtual 3D objects. The quality of the generated spherical wave and the spectral reflectivity of the fabricated conical HOE were investigated. An optical superimposition between real and virtual 3D objects was demonstrated, thereby enhancing the validity of our proposed method. A horizontal viewing zone of 140° and a vertical viewing zone of 30° were experimentally confirmed. The fabrication procedure for the conical HOE is presented, and the calculation method of the computer-generated hologram (CGH) based on Fermat’s principle is explained in detail.
基金This project is supported by the National Natural Science Foundation of China under the Grant No. 19970438.
文摘The matrix eigenvalue method is used to analyze a laser resonator composed of diffraction optical elements. The results show that this type of resonator can separate fundamental mode and high order modes effectively. The output beams can be designed for different requests.
基金supported by the National Natural Science Foundation of China(Nos.62175015,61905019,and 62075016)Fundamental Research Funds for the Central Universities(No.2021RC13)。
文摘In the integral imaging light field display, the introduction of a diffractive optical element (DOE) can solve the problem of limited depth of field of the traditional lens. However, the strong aberration of the DOE significantly reduces the final display quality. Thus, herein, an end-to-end joint optimization method for optimizing DOE and aberration correction is proposed. The DOE model is established using thickness as the variable, and a deep learning network is built to preprocess the composite image loaded on the display panel. The simulation results show that the peak signal to noise ratio value of the optimized image increases by 8 dB, which confirms that the end-to-end joint optimization method can effectively reduce the aberration problem.