Braille serves as an efficient means for visually impaired individuals to access textual information and engage in communication.However,the process of reading Braille can often be cumbersome and time-intensive,partic...Braille serves as an efficient means for visually impaired individuals to access textual information and engage in communication.However,the process of reading Braille can often be cumbersome and time-intensive,particularly in bidirectional human-machine interaction.In this work,a compact optical device for contactless detection of Braille is fabricated and characterized.The GaN-on-sapphire chip,which employs monolithic integration,serves as the core for both light emission and photodetection,significantly reducing its overall footprint.The incorporation of the semiellipsoid epoxy lens with optimized dimensions ensures consistent and accurate detection.The sensing device demonstrates high stability and fast response through its line-scanning capabilities on Braille codes.The captured signals are analyzed using a microcontroller,and the Braille recognition results are wirelessly transmitted to a portable mobile device,enabling the conversion into audio and visual formats.This innovative design not only facilitates Braille reading but also holds the potential to advance human-machine interaction.展开更多
Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hie...Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hierarchical micro/nanograting structures is important for these applications.In this study,a strategy for machining hierarchical micro/nanograting structures is developed by controlling the tool movement trajectory.A coupling Euler-Lagrange finite element model is established to simulate the machining process.The effect of the machining methods on the nanograting formation is demonstrated,and a suitable machining method for reducing the cutting force is obtained.The height of the nanograting decreases with an increase in the tool edge radius.Furthermore,optical variable devices(OVDs)are machined using an array overlap machining approach.Coding schemes for the parallel column unit crossover and column unit in the groove crossover are designed to achieve high-quality machining of OVDs.The coloring of the logo of the Harbin Institute of Technology and the logo of the centennial anniversary of the Harbin Institute of Technology on the surface of metal samples,such as aluminum alloys,is realized.The findings of this study provide a method for the fabrication of hierarchical micro/nanograting structures that can be used to prepare OVDs.展开更多
Ultrafast lasers play an important role in a variety of applications ranging from optical communications to medical diagnostics and industrial materials processing. Graphene and other two-dimensional(2D) noncarbon m...Ultrafast lasers play an important role in a variety of applications ranging from optical communications to medical diagnostics and industrial materials processing. Graphene and other two-dimensional(2D) noncarbon materials, including topological insulators(TIs), transition metal dichalcogenides(TMDCs), phosphorene, bismuthene, and antimonene, have witnessed a very fast development of both fundamental and practical aspects in ultrafast photonics since 2009. Their unique nonlinear optical properties enable them to be used as excellent saturable absorbers(SAs) that have fast responses and broadband operation, and can be easily integrated into lasers. Here, we catalog and review recent progress in the exploitation of these 2D noncarbon materials in this emerging field. The fabrication techniques, nonlinear optical properties, and device integration strategies of 2D noncarbon materials are first introduced with a comprehensive view. Then, various mode-locked/Q-switched lasers(e.g., fiber, solid-state, disk, and waveguide lasers) based on 2D noncarbon materials are reviewed. In addition, versatile soliton pulses generated from the mode-locked fiber lasers based on 2D noncarbon materials are also summarized. Finally, future challenges and perspectives of 2D materials-based lasers are addressed.展开更多
In this paper, we propose a simple method of illusion optics based on conformal mappings. By carefully developing designs with specific conformal mappings, one can make an object look like another with a significantly...In this paper, we propose a simple method of illusion optics based on conformal mappings. By carefully developing designs with specific conformal mappings, one can make an object look like another with a significantly different shape. In addition, the illusion optical devices can work in a broadband of frequencies.展开更多
We have seen a lot of unique features off vertical cavity surface emitting lasers (VCSELs), such as low power consumption, wafer-level testing, small packaging capability, and so on. The market of VCSELs has been gr...We have seen a lot of unique features off vertical cavity surface emitting lasers (VCSELs), such as low power consumption, wafer-level testing, small packaging capability, and so on. The market of VCSELs has been growing up rapidly in recent years and they are now the key devices in local area networks using multi-mode optical fibers. In addition, new functions on VCSELs have been demonstrated. In this paper, the recent advances of VCSEL photonics will be reviewed which include the wavelength engineering and the athermal operation based on microelectro mechanical system (MEMS) technologies. Also, this paper explores the potential and challenges for new functions of VCSELs, including high-speed control of optical phase, slow light devices, plasmonic VCSELs, and so on.展开更多
Femtosecond laser is a perfect laser source for materials processing when high accuracy and small structure size are required. Due to the ultra short interaction time and the high peak power, the process is generally ...Femtosecond laser is a perfect laser source for materials processing when high accuracy and small structure size are required. Due to the ultra short interaction time and the high peak power, the process is generally characterized by the absence of heat diffusion and, consequently molten layers. Various induced structures have been observed in materials after the femtosecond laser irradiation. Here, we report on fabrication of micro-optical devices by the femtosecond laser. 1) formation of optical waveg...展开更多
Optical waveguide is used to guide the transmission of light. This paper reviews multilayer optical waveguide and some devices based on it. The optical waveguide can be divided into single-layer and multilayer optical...Optical waveguide is used to guide the transmission of light. This paper reviews multilayer optical waveguide and some devices based on it. The optical waveguide can be divided into single-layer and multilayer optical waveguides in general. Here, multilayer cylindrical waveguide and multilayer planar waveguides were mainly focused. The analyzing method and the structures of waveguides were also demonstrated in briefly. Both these multilayer optical waveguide used in different kinds of optical devices including optical modulator, laser, optical amplifier, optical switch and special fiber were further presented. At last, the principle and structure of these multilayer optical devices were compared.展开更多
On this paper, we investigate the algorithm and efficiency of simulation of optical devices using parallel computing method, implement some real wavelength division multiplexing (WDM) components such as resonators to ...On this paper, we investigate the algorithm and efficiency of simulation of optical devices using parallel computing method, implement some real wavelength division multiplexing (WDM) components such as resonators to test the method's possibility and efficiency.展开更多
Power-electronic devices are widely used in various applications, such as voltage and frequency control for transmitting and converting electric power. As these devices are becoming increasingly important, there is a ...Power-electronic devices are widely used in various applications, such as voltage and frequency control for transmitting and converting electric power. As these devices are becoming increasingly important, there is a need to reduce their losses and improve their performance to reduce electric power consumption. Current power semiconductor devices, such as inverters, are made of silicon (Si), but the performance of these Si power devices is reaching its limit due to physical properties and energy bandgap. To address this issue, recent developments in wide bandgap (WBG) semiconductor materials, such as silicon carbide (SiC) and gallium nitride (GaN), offer the potential for a new generation of power semiconductor devices that can perform significantly better than silicon-based devices. In this research, a green synthesized copper-zinc-tin-sulfide (CZTS) nanoparticle is proposed as a new WBG semiconductor material that could be used for optical and electronic devices. Its synthesis, consisting of the production methods and materials used, is discussed. The characterization is also discussed, and further research is recommended in the later sections to enable the continual advancement of this technology.展开更多
Exploiting new concepts for dense, fast, and nonvolatile random access memory with reduced energy consump- tion is a significant issue for information technology. Here we design an 'electrically written and optically...Exploiting new concepts for dense, fast, and nonvolatile random access memory with reduced energy consump- tion is a significant issue for information technology. Here we design an 'electrically written and optically read' information storage device employing BiFeO3/A u heterostruetures with strong absorption resonance. The electro- optic effect is the basis for the device design, which arises from the strong absorption resonance in BiFeO3/Au heterostructures and the electrically tunable significant birefringence of the BiFeO3 film. We first construct a sim- ulation calculation of the BiFeO3/Au structure spectrum and identify absorption resonance and electro-optical modulation characteristics. Following a micro scale partition, the surface reflected light intensity of different polarization units is calculated. The results depend on electric polarization states of the BiFeO3 film, thus BiFeO3/Au heterostructures can essentially be designed as a type of electrically written and optically read infor- mation storage device by utilizing the scanning near-field optical microscopy technology based on the conductive silicon cantilever tip with nanofabricated aperture. This work will shed light on information storage technology.展开更多
Based on the phase-change material Ge_(2)Sb_(2)Te_(5)(GST),achromatic metasurface optical device in the longer-infrared wavelength is designed.With the combination of the linear phase gradient GST nanopillar and the a...Based on the phase-change material Ge_(2)Sb_(2)Te_(5)(GST),achromatic metasurface optical device in the longer-infrared wavelength is designed.With the combination of the linear phase gradient GST nanopillar and the adjustment of the crystalline fraction m value of GST,the polarization insensitive achromic metalenses and beam deflector metasurface within the longer-infrared wavelength 9.5μm to 13μm are realized.The design results show that the achromatic metalenses can be focused on the same focal plane within the working waveband.The simulation calculation results show that the fullwidth at half-maximum(FWHM)of the focusing spot reaches the diffraction limit at each wavelength.In addition,the same method is also used to design a broadband achromatic beam deflector metasurface with the same deflection angle of 19°.The method proposed in this article not only provides new ideas for the design of achromatic metasurfaces,but also provides new possibilities for the integration of optical imaging,optical coding and other related optical systems.展开更多
Optofluidics is a rising technology that combines microfluidics and optics.Its goal is to manipulate light and flowing liquids on the micro/nanoscale and exploiting their interaction in optofluidic chips.The fluid flo...Optofluidics is a rising technology that combines microfluidics and optics.Its goal is to manipulate light and flowing liquids on the micro/nanoscale and exploiting their interaction in optofluidic chips.The fluid flow in the on-chip devices is reconfigurable,non-uniform and usually transports substances being analyzed,offering a new idea in the accurate manipulation of lights and biochemical samples.In this paper,we summarized the light modulation in heterogeneous media by unique fluid dynamic properties such as molecular diffusion,heat conduction,centrifugation effect,light-matter interaction and others.By understanding the novel phenomena due to the interaction of light and flowing liquids,quantities of tunable and reconfigurable optofluidic devices such as waveguides,lenses,and lasers are introduced.Those novel applications bring us firm conviction that optofluidics would provide better solutions to high-efficient and high-quality lab-on-chip systems in terms of biochemical analysis and environment monitoring.展开更多
Gallium nitride(GaN)/porous silicon(PSi)film was prepared using a pulsed laser deposition method and 1064 nm Nd:YAG laser for optoelectronic applications and a series of Psi substrates were fabricated using a photoele...Gallium nitride(GaN)/porous silicon(PSi)film was prepared using a pulsed laser deposition method and 1064 nm Nd:YAG laser for optoelectronic applications and a series of Psi substrates were fabricated using a photoelectrochemical etching method assisted by laser at different etching times for 2.5–15 min at 2.5 min intervals.X-ray diffraction,room-temperature photoluminescence,atomic force microscopy and field emission scanning electron microscopy images,and electrical characteristics in the prepared GaN on the Psi film were investigated.The optimum Psi substrate was obtained under the following conditions:10 min,10 mA/cm^(2),and 24%hydrofluoric acid.The substrate exhibited two highly cubic crystalline structures at(200)and(400)orientations and yellow visible band photoluminescence,and homogeneous pores formed over the entire surface.The pores had steep oval shapes and were accompanied by small dark pores that appeared topographically and morphologically.The GaN/Psi film fabricated through PLD exhibited a high and hexagonal crystallographic texture in the(002)plane.Spectroscopic properties results revealed that the photoluminescence emission of the deposited nano-GaN films was in the ultraviolet band(374 nm)related to GaN material and in the near-infrared band(730 nm)related to the Psi substrate.The topographical and morphological results of the GaN films confirmed that the deposited film contained spherical grains with an average diameter of 51.8 nm and surface roughness of 4.8 nm.The GaN/Psi surface showed a cauliflower-like morphology,and the built-in voltage decreased from 3.4 to 2.7 eV after deposition.The fabricated GaN/Psi film exhibited good electrical characteristics.展开更多
The pulsed laser deposition(PLD)technology was used to effectively create conductive nano and micro hafnium oxide with great purity and transparency for(HfO_(2))nanofilms.In many optoelectronics devices and their appl...The pulsed laser deposition(PLD)technology was used to effectively create conductive nano and micro hafnium oxide with great purity and transparency for(HfO_(2))nanofilms.In many optoelectronics devices and their applications,the presence of a high dielectric substance like a nano HfO2,between the metal contacts and the substrates was critical.We used the Pulsed Laser Deposition method to fabricate an Al/HfO_(2)/p-Si Schottky barrier diode where the nanostructured HfO2 films as an intermediate layer and varied substrate temperatures.The optical result reveals a high degree of transparency(93%).The optical bandgap of deposited HfO2 films was observed to vary between 4.9 and 5.3 eV,with a value of roughly 5.3 eV at the optimal preparation condition.The morphology of the surface shows a high homogeneous nano structure with the average values of the roughness about(0.3 nm).With regard to substrate temperature,the produced factor ideality for fabricated diode was determined to be lowering and the associated values of the barrier height rose based on I-Vcharacterization.With regard to substrate temperature,the produced factor ideality for fabricated diode was determined to be lowering and the associated values of the barrier height rose based on I-V characterization.The diode manufactured at 600℃,in particular,had a higher ideality factor value(n=3.2).展开更多
With the gradual maturity of the microfluidic technology,the integration of the microfluidic chip technology and optofluidic methods in microstructured optical fibers(MOFs)has gradually formed a highly attractive new ...With the gradual maturity of the microfluidic technology,the integration of the microfluidic chip technology and optofluidic methods in microstructured optical fibers(MOFs)has gradually formed a highly attractive new research direction.In this paper,we summarize our recent work focusing on the microfluidic sensing technology based on microhole fibers.The design and fabrication of such microfluidic fibers,device processing and fabrication techniques based on microfluidic fibers,and surface modification and coating methods for fibers are systematically introduced.Finally,several typical cases combining the optical fiber and microfluidic substance detection are presented.展开更多
The aqueous polymerization of acrylamide and crosslinking with N,N-methylenebisacrylamide afforded hydrogelsdisplaying high levels of light scattering (poor optical clarity). Enhancement of the optical clarity within ...The aqueous polymerization of acrylamide and crosslinking with N,N-methylenebisacrylamide afforded hydrogelsdisplaying high levels of light scattering (poor optical clarity). Enhancement of the optical clarity within a polyacrylamide(PAm) hydrogel was accomplished through the implementation of 'refractive index matching'. Water-soluble additives wereutilised to better match the refractive index inhomogeneities throughout a given hydrogel. This resulted in lower lightscattering within the system and hence improved clarity. Amino acids, sugars, polymers, and other water-soluble additivessuch as glycerol were investigated by this methodology. Most additives investigaed displayed potential for effectivelyreducing the light scattering within a PAm hydrogel as a function of increased additive concentration. On increasing therefractive index of the water medium, the overall refractive index of a PAm hydrogel was also observed to increase. Thisprovided a quantitative means of determining the effectiveness of a given additive for improving the optical clarity within ahydrogel.展开更多
A silicon-based field emission light emitting diode for low-voltage operation is fabricated in the standard 0.35 μm 2P4M salieide complementary metal-oxide-semiconduetor (CMOS) technology. Partially overlapping p^...A silicon-based field emission light emitting diode for low-voltage operation is fabricated in the standard 0.35 μm 2P4M salieide complementary metal-oxide-semiconduetor (CMOS) technology. Partially overlapping p^+ and n^+ regions with a salicide block layer are employed in this device to constitute a heavily doped p^+-n^+ junction which has soft "knee" Zener breakdown characteristics, thus its working voltage can be reduced preferably below 5 V, and at the same time the power efficiency is improved. The spectra of this device are spread over 500nm to 1000nm with the main peak at about 722nm and an obvious red shift of the spectra peak is observed with the increasing current through the device. During the emission process, field emission rather than avalanche process plays a major role. Differences between low-voltage Zener breakdown emission and high-voltage avalanche breakdown emission performance are observed and compared.展开更多
An optical readout uncooled infrared detector, employing a substrate-free focal plane array with pitch size 60μm, is established. The reflector deformation induced by the stress mismatching of the bi-layer structure ...An optical readout uncooled infrared detector, employing a substrate-free focal plane array with pitch size 60μm, is established. The reflector deformation induced by the stress mismatching of the bi-layer structure is discussed and, in turn, a universal solution to determine both the optical readout sensitivity and the optimal filter position is found. By applying this solution, the optical readout sensitivity for the ideal plane reflector could theoretically increase by 80% as compared with the conventional operation, and the sensitivity loss caused by the reflector deformation can also be reduced to a reasonable level.展开更多
In this paper, we design and fabricate a silicon integrated optical filter consisting of two cascaded micro-ring resonators and two straight waveguides. Two micro-heaters are fabricated on the top of two micro-rings r...In this paper, we design and fabricate a silicon integrated optical filter consisting of two cascaded micro-ring resonators and two straight waveguides. Two micro-heaters are fabricated on the top of two micro-rings respectively, which are employed to modulate the micro-rings to perform the function of a tunable optical filter by the thermo–optic effect. The static response test indicates that the extinction ratio and 3-d B bandwidth are 29.01 d B and 0.21 nm respectively, the dynamic response test indicates that the 10%–90% rise and 90%–10% fall time of the filter are 16 μs and 12 μs, respectively,which can meet the requirements of optical communication and information processing. Finally, the power consumption of the device is also characterized, and the total power consumption is about 9.43 m W/nm, which has been improved efficiently.展开更多
Even in the early stage,endocrine metabolism disease may lead to micro aneurysms in retinal capillaries whose diameters are less than 10 μm.However,the fundus cameras used in clinic diagnosis can only obtain images o...Even in the early stage,endocrine metabolism disease may lead to micro aneurysms in retinal capillaries whose diameters are less than 10 μm.However,the fundus cameras used in clinic diagnosis can only obtain images of vessels larger than 20 μm in diameter.The human retina is a thin and multiple layer tissue,and the layer of capillaries less than10 μm in diameter only exists in the inner nuclear layer.The layer thickness of capillaries less than 10 μm in diameter is about 40 μm and the distance range to rod&cone cell surface is tens of micrometers,which varies from person to person.Therefore,determining reasonable capillary layer(CL) position in different human eyes is very difficult.In this paper,we propose a method to determine the position of retinal CL based on the rod&cone cell layer.The public positions of CL are recognized with 15 subjects from 40 to 59 years old,and the imaging planes of CL are calculated by the effective focal length of the human eye.High resolution retinal capillary imaging results obtained from 17 subjects with a liquid crystal adaptive optics system(LCAOS) validate our method.All of the subjects' CLs have public positions from 127 μm to 147 μm from the rod&cone cell layer,which is influenced by the depth of focus.展开更多
基金financial support from the National Natural Science Foundation of China under Grant 12074170in part by the Shenzhen Fundamental Research Program under Grant JCYJ20220530113201003.
文摘Braille serves as an efficient means for visually impaired individuals to access textual information and engage in communication.However,the process of reading Braille can often be cumbersome and time-intensive,particularly in bidirectional human-machine interaction.In this work,a compact optical device for contactless detection of Braille is fabricated and characterized.The GaN-on-sapphire chip,which employs monolithic integration,serves as the core for both light emission and photodetection,significantly reducing its overall footprint.The incorporation of the semiellipsoid epoxy lens with optimized dimensions ensures consistent and accurate detection.The sensing device demonstrates high stability and fast response through its line-scanning capabilities on Braille codes.The captured signals are analyzed using a microcontroller,and the Braille recognition results are wirelessly transmitted to a portable mobile device,enabling the conversion into audio and visual formats.This innovative design not only facilitates Braille reading but also holds the potential to advance human-machine interaction.
基金Supported by National Natural Science Foundation of China(Grant Nos.52035004,52105434).
文摘Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hierarchical micro/nanograting structures is important for these applications.In this study,a strategy for machining hierarchical micro/nanograting structures is developed by controlling the tool movement trajectory.A coupling Euler-Lagrange finite element model is established to simulate the machining process.The effect of the machining methods on the nanograting formation is demonstrated,and a suitable machining method for reducing the cutting force is obtained.The height of the nanograting decreases with an increase in the tool edge radius.Furthermore,optical variable devices(OVDs)are machined using an array overlap machining approach.Coding schemes for the parallel column unit crossover and column unit in the groove crossover are designed to achieve high-quality machining of OVDs.The coloring of the logo of the Harbin Institute of Technology and the logo of the centennial anniversary of the Harbin Institute of Technology on the surface of metal samples,such as aluminum alloys,is realized.The findings of this study provide a method for the fabrication of hierarchical micro/nanograting structures that can be used to prepare OVDs.
基金supported by the Program for Equipment Pre-research Field Funds(No.6140414040116CB01012)the National Natural Science Foundation of China(Nos.61575051 and 11704086)the 111 project of the Harbin Engineering University(No.B13015)
文摘Ultrafast lasers play an important role in a variety of applications ranging from optical communications to medical diagnostics and industrial materials processing. Graphene and other two-dimensional(2D) noncarbon materials, including topological insulators(TIs), transition metal dichalcogenides(TMDCs), phosphorene, bismuthene, and antimonene, have witnessed a very fast development of both fundamental and practical aspects in ultrafast photonics since 2009. Their unique nonlinear optical properties enable them to be used as excellent saturable absorbers(SAs) that have fast responses and broadband operation, and can be easily integrated into lasers. Here, we catalog and review recent progress in the exploitation of these 2D noncarbon materials in this emerging field. The fabrication techniques, nonlinear optical properties, and device integration strategies of 2D noncarbon materials are first introduced with a comprehensive view. Then, various mode-locked/Q-switched lasers(e.g., fiber, solid-state, disk, and waveguide lasers) based on 2D noncarbon materials are reviewed. In addition, versatile soliton pulses generated from the mode-locked fiber lasers based on 2D noncarbon materials are also summarized. Finally, future challenges and perspectives of 2D materials-based lasers are addressed.
基金Acknowledgements This work was supported by the National Science Foundation of China for Excellent Young Scientists (Grant No. 61322504), the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 201217), and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.
文摘In this paper, we propose a simple method of illusion optics based on conformal mappings. By carefully developing designs with specific conformal mappings, one can make an object look like another with a significantly different shape. In addition, the illusion optical devices can work in a broadband of frequencies.
基金Grant-in-Aid for Creative Scientific Research from the Ministry of Education,Science,Sport and Culture(#14GS0212")and was partly by NICT
文摘We have seen a lot of unique features off vertical cavity surface emitting lasers (VCSELs), such as low power consumption, wafer-level testing, small packaging capability, and so on. The market of VCSELs has been growing up rapidly in recent years and they are now the key devices in local area networks using multi-mode optical fibers. In addition, new functions on VCSELs have been demonstrated. In this paper, the recent advances of VCSEL photonics will be reviewed which include the wavelength engineering and the athermal operation based on microelectro mechanical system (MEMS) technologies. Also, this paper explores the potential and challenges for new functions of VCSELs, including high-speed control of optical phase, slow light devices, plasmonic VCSELs, and so on.
文摘Femtosecond laser is a perfect laser source for materials processing when high accuracy and small structure size are required. Due to the ultra short interaction time and the high peak power, the process is generally characterized by the absence of heat diffusion and, consequently molten layers. Various induced structures have been observed in materials after the femtosecond laser irradiation. Here, we report on fabrication of micro-optical devices by the femtosecond laser. 1) formation of optical waveg...
基金This work was partly supported by the National Natural Science Foundation of China (Grant Nos. 61275076, 61177069).
文摘Optical waveguide is used to guide the transmission of light. This paper reviews multilayer optical waveguide and some devices based on it. The optical waveguide can be divided into single-layer and multilayer optical waveguides in general. Here, multilayer cylindrical waveguide and multilayer planar waveguides were mainly focused. The analyzing method and the structures of waveguides were also demonstrated in briefly. Both these multilayer optical waveguide used in different kinds of optical devices including optical modulator, laser, optical amplifier, optical switch and special fiber were further presented. At last, the principle and structure of these multilayer optical devices were compared.
文摘On this paper, we investigate the algorithm and efficiency of simulation of optical devices using parallel computing method, implement some real wavelength division multiplexing (WDM) components such as resonators to test the method's possibility and efficiency.
文摘Power-electronic devices are widely used in various applications, such as voltage and frequency control for transmitting and converting electric power. As these devices are becoming increasingly important, there is a need to reduce their losses and improve their performance to reduce electric power consumption. Current power semiconductor devices, such as inverters, are made of silicon (Si), but the performance of these Si power devices is reaching its limit due to physical properties and energy bandgap. To address this issue, recent developments in wide bandgap (WBG) semiconductor materials, such as silicon carbide (SiC) and gallium nitride (GaN), offer the potential for a new generation of power semiconductor devices that can perform significantly better than silicon-based devices. In this research, a green synthesized copper-zinc-tin-sulfide (CZTS) nanoparticle is proposed as a new WBG semiconductor material that could be used for optical and electronic devices. Its synthesis, consisting of the production methods and materials used, is discussed. The characterization is also discussed, and further research is recommended in the later sections to enable the continual advancement of this technology.
基金Supported by the National Natural Science Foundation of China under Grant No 11304384the Research Project of National University of Defense Technology under Grant No JC13-07-02
文摘Exploiting new concepts for dense, fast, and nonvolatile random access memory with reduced energy consump- tion is a significant issue for information technology. Here we design an 'electrically written and optically read' information storage device employing BiFeO3/A u heterostruetures with strong absorption resonance. The electro- optic effect is the basis for the device design, which arises from the strong absorption resonance in BiFeO3/Au heterostructures and the electrically tunable significant birefringence of the BiFeO3 film. We first construct a sim- ulation calculation of the BiFeO3/Au structure spectrum and identify absorption resonance and electro-optical modulation characteristics. Following a micro scale partition, the surface reflected light intensity of different polarization units is calculated. The results depend on electric polarization states of the BiFeO3 film, thus BiFeO3/Au heterostructures can essentially be designed as a type of electrically written and optically read infor- mation storage device by utilizing the scanning near-field optical microscopy technology based on the conductive silicon cantilever tip with nanofabricated aperture. This work will shed light on information storage technology.
基金Project supported by the Natural Science Foundation of Shaanxi Province,China(Grant No.2021JM466)
文摘Based on the phase-change material Ge_(2)Sb_(2)Te_(5)(GST),achromatic metasurface optical device in the longer-infrared wavelength is designed.With the combination of the linear phase gradient GST nanopillar and the adjustment of the crystalline fraction m value of GST,the polarization insensitive achromic metalenses and beam deflector metasurface within the longer-infrared wavelength 9.5μm to 13μm are realized.The design results show that the achromatic metalenses can be focused on the same focal plane within the working waveband.The simulation calculation results show that the fullwidth at half-maximum(FWHM)of the focusing spot reaches the diffraction limit at each wavelength.In addition,the same method is also used to design a broadband achromatic beam deflector metasurface with the same deflection angle of 19°.The method proposed in this article not only provides new ideas for the design of achromatic metasurfaces,but also provides new possibilities for the integration of optical imaging,optical coding and other related optical systems.
基金This work is financially supported by National Natural Science Foundation of China(No.11774274)National Key R&D Program of China(2018YFC1003200)+1 种基金Open Financial Grant from Qingdao National Laboratory for Marine Science and Technology(No.QNLM2016ORP0410)Foundation Research Fund of Shenzhen Science and Technology Program(No.JCYJ20170818112939064).
文摘Optofluidics is a rising technology that combines microfluidics and optics.Its goal is to manipulate light and flowing liquids on the micro/nanoscale and exploiting their interaction in optofluidic chips.The fluid flow in the on-chip devices is reconfigurable,non-uniform and usually transports substances being analyzed,offering a new idea in the accurate manipulation of lights and biochemical samples.In this paper,we summarized the light modulation in heterogeneous media by unique fluid dynamic properties such as molecular diffusion,heat conduction,centrifugation effect,light-matter interaction and others.By understanding the novel phenomena due to the interaction of light and flowing liquids,quantities of tunable and reconfigurable optofluidic devices such as waveguides,lenses,and lasers are introduced.Those novel applications bring us firm conviction that optofluidics would provide better solutions to high-efficient and high-quality lab-on-chip systems in terms of biochemical analysis and environment monitoring.
文摘Gallium nitride(GaN)/porous silicon(PSi)film was prepared using a pulsed laser deposition method and 1064 nm Nd:YAG laser for optoelectronic applications and a series of Psi substrates were fabricated using a photoelectrochemical etching method assisted by laser at different etching times for 2.5–15 min at 2.5 min intervals.X-ray diffraction,room-temperature photoluminescence,atomic force microscopy and field emission scanning electron microscopy images,and electrical characteristics in the prepared GaN on the Psi film were investigated.The optimum Psi substrate was obtained under the following conditions:10 min,10 mA/cm^(2),and 24%hydrofluoric acid.The substrate exhibited two highly cubic crystalline structures at(200)and(400)orientations and yellow visible band photoluminescence,and homogeneous pores formed over the entire surface.The pores had steep oval shapes and were accompanied by small dark pores that appeared topographically and morphologically.The GaN/Psi film fabricated through PLD exhibited a high and hexagonal crystallographic texture in the(002)plane.Spectroscopic properties results revealed that the photoluminescence emission of the deposited nano-GaN films was in the ultraviolet band(374 nm)related to GaN material and in the near-infrared band(730 nm)related to the Psi substrate.The topographical and morphological results of the GaN films confirmed that the deposited film contained spherical grains with an average diameter of 51.8 nm and surface roughness of 4.8 nm.The GaN/Psi surface showed a cauliflower-like morphology,and the built-in voltage decreased from 3.4 to 2.7 eV after deposition.The fabricated GaN/Psi film exhibited good electrical characteristics.
文摘The pulsed laser deposition(PLD)technology was used to effectively create conductive nano and micro hafnium oxide with great purity and transparency for(HfO_(2))nanofilms.In many optoelectronics devices and their applications,the presence of a high dielectric substance like a nano HfO2,between the metal contacts and the substrates was critical.We used the Pulsed Laser Deposition method to fabricate an Al/HfO_(2)/p-Si Schottky barrier diode where the nanostructured HfO2 films as an intermediate layer and varied substrate temperatures.The optical result reveals a high degree of transparency(93%).The optical bandgap of deposited HfO2 films was observed to vary between 4.9 and 5.3 eV,with a value of roughly 5.3 eV at the optimal preparation condition.The morphology of the surface shows a high homogeneous nano structure with the average values of the roughness about(0.3 nm).With regard to substrate temperature,the produced factor ideality for fabricated diode was determined to be lowering and the associated values of the barrier height rose based on I-Vcharacterization.With regard to substrate temperature,the produced factor ideality for fabricated diode was determined to be lowering and the associated values of the barrier height rose based on I-V characterization.The diode manufactured at 600℃,in particular,had a higher ideality factor value(n=3.2).
基金supported in part by the National Natural Science Foundation of China(Grant Nos.62305231 and U23A20373)the Natural Science Foundation of Top Talent of Shenzhen Technology University,China(Grant No.GDRC202317).
文摘With the gradual maturity of the microfluidic technology,the integration of the microfluidic chip technology and optofluidic methods in microstructured optical fibers(MOFs)has gradually formed a highly attractive new research direction.In this paper,we summarize our recent work focusing on the microfluidic sensing technology based on microhole fibers.The design and fabrication of such microfluidic fibers,device processing and fabrication techniques based on microfluidic fibers,and surface modification and coating methods for fibers are systematically introduced.Finally,several typical cases combining the optical fiber and microfluidic substance detection are presented.
基金This work was financially supported through a sub-contract from Syracuse University under contract F30602-98C-0105
文摘The aqueous polymerization of acrylamide and crosslinking with N,N-methylenebisacrylamide afforded hydrogelsdisplaying high levels of light scattering (poor optical clarity). Enhancement of the optical clarity within a polyacrylamide(PAm) hydrogel was accomplished through the implementation of 'refractive index matching'. Water-soluble additives wereutilised to better match the refractive index inhomogeneities throughout a given hydrogel. This resulted in lower lightscattering within the system and hence improved clarity. Amino acids, sugars, polymers, and other water-soluble additivessuch as glycerol were investigated by this methodology. Most additives investigaed displayed potential for effectivelyreducing the light scattering within a PAm hydrogel as a function of increased additive concentration. On increasing therefractive index of the water medium, the overall refractive index of a PAm hydrogel was also observed to increase. Thisprovided a quantitative means of determining the effectiveness of a given additive for improving the optical clarity within ahydrogel.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60536030, 60776024, 60877035 and 90820002, the National High-Technology Research and Development Program of China under Grant Nos 2007AA04Z329 and 2007AA04Z254.
文摘A silicon-based field emission light emitting diode for low-voltage operation is fabricated in the standard 0.35 μm 2P4M salieide complementary metal-oxide-semiconduetor (CMOS) technology. Partially overlapping p^+ and n^+ regions with a salicide block layer are employed in this device to constitute a heavily doped p^+-n^+ junction which has soft "knee" Zener breakdown characteristics, thus its working voltage can be reduced preferably below 5 V, and at the same time the power efficiency is improved. The spectra of this device are spread over 500nm to 1000nm with the main peak at about 722nm and an obvious red shift of the spectra peak is observed with the increasing current through the device. During the emission process, field emission rather than avalanche process plays a major role. Differences between low-voltage Zener breakdown emission and high-voltage avalanche breakdown emission performance are observed and compared.
基金Supported by grants from by the Natural Science Foundation of China under Grant Nos 10732080, 10627201 and 10872191, and the National Basic Research Program of China under Grant No 2006CB300404.
文摘An optical readout uncooled infrared detector, employing a substrate-free focal plane array with pitch size 60μm, is established. The reflector deformation induced by the stress mismatching of the bi-layer structure is discussed and, in turn, a universal solution to determine both the optical readout sensitivity and the optimal filter position is found. By applying this solution, the optical readout sensitivity for the ideal plane reflector could theoretically increase by 80% as compared with the conventional operation, and the sensitivity loss caused by the reflector deformation can also be reduced to a reasonable level.
基金Project supported by the National Natural Science Foundation of China(Grant No.61405082)the Fundamental Research Funds for the Central Universities
文摘In this paper, we design and fabricate a silicon integrated optical filter consisting of two cascaded micro-ring resonators and two straight waveguides. Two micro-heaters are fabricated on the top of two micro-rings respectively, which are employed to modulate the micro-rings to perform the function of a tunable optical filter by the thermo–optic effect. The static response test indicates that the extinction ratio and 3-d B bandwidth are 29.01 d B and 0.21 nm respectively, the dynamic response test indicates that the 10%–90% rise and 90%–10% fall time of the filter are 16 μs and 12 μs, respectively,which can meet the requirements of optical communication and information processing. Finally, the power consumption of the device is also characterized, and the total power consumption is about 9.43 m W/nm, which has been improved efficiently.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174274,11174279,61205021,11204299,61475152,and 61405194)
文摘Even in the early stage,endocrine metabolism disease may lead to micro aneurysms in retinal capillaries whose diameters are less than 10 μm.However,the fundus cameras used in clinic diagnosis can only obtain images of vessels larger than 20 μm in diameter.The human retina is a thin and multiple layer tissue,and the layer of capillaries less than10 μm in diameter only exists in the inner nuclear layer.The layer thickness of capillaries less than 10 μm in diameter is about 40 μm and the distance range to rod&cone cell surface is tens of micrometers,which varies from person to person.Therefore,determining reasonable capillary layer(CL) position in different human eyes is very difficult.In this paper,we propose a method to determine the position of retinal CL based on the rod&cone cell layer.The public positions of CL are recognized with 15 subjects from 40 to 59 years old,and the imaging planes of CL are calculated by the effective focal length of the human eye.High resolution retinal capillary imaging results obtained from 17 subjects with a liquid crystal adaptive optics system(LCAOS) validate our method.All of the subjects' CLs have public positions from 127 μm to 147 μm from the rod&cone cell layer,which is influenced by the depth of focus.