期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Fine Tuned Hybrid Deep Learning Model for Effective Judgment Prediction
1
作者 G.Sukanya J.Priyadarshini 《Computer Modeling in Engineering & Sciences》 2025年第3期2925-2958,共34页
Advancements in Natural Language Processing and Deep Learning techniques have significantly pro-pelled the automation of Legal Judgment Prediction,achieving remarkable progress in legal research.Most of the existing r... Advancements in Natural Language Processing and Deep Learning techniques have significantly pro-pelled the automation of Legal Judgment Prediction,achieving remarkable progress in legal research.Most of the existing research works on Legal Judgment Prediction(LJP)use traditional optimization algorithms in deep learning techniques falling into local optimization.This research article focuses on using the modified Pelican Optimization method which mimics the collective behavior of Pelicans in the exploration and exploitation phase during cooperative food searching.Typically,the selection of search agents within a boundary is done randomly,which increases the time required to achieve global optimization.To address this,the proposed Chaotic Opposition Learning-based Pelican Optimization(COLPO)method incorporates the concept of Opposition-Based Learning combined with a chaotic cubic function,enabling deterministic selection of random numbers and reducing the number of iterations needed to reach global optimization.Also,the LJP approach in this work uses improved semantic similarity and entropy features to train a hybrid classifier combining Bi-GRU and Deep Maxout.The output scores are fused using improved score level fusion to boost prediction accuracy.The proposed COLPO method experiments with real-time Madras High Court criminal cases(Dataset 1)and the Supreme Court of India database(Dataset 2),and its performance is compared with nature-inspired algorithms such as Sparrow Search Algorithm(SSA),COOT,Spider Monkey Optimization(SMO),Pelican Optimization Algorithm(POA),as well as baseline classifier models and transformer neural networks.The results show that the proposed hybrid classifier with COLPO outperforms other cutting-edge LJP algorithms achieving 93.4%and 94.24%accuracy,respectively. 展开更多
关键词 Bi-GRU deep maxout semantic similarity legal judgment prediction opposition based learning pelican optimization
在线阅读 下载PDF
Opposition-Based Firefly Algorithm for Earth Slope Stability Evaluation 被引量:5
2
作者 Mohammad KHAJEHZADEH Mohd Raihan TAHA Mahdiyeh ESLAMI 《China Ocean Engineering》 SCIE EI CSCD 2014年第5期713-724,共12页
This paper introduces a new approach of firefly algorithm based on opposition-based learning (OBFA) to enhance the global search ability of the original algorithm. The new algorithm employs opposition based learning... This paper introduces a new approach of firefly algorithm based on opposition-based learning (OBFA) to enhance the global search ability of the original algorithm. The new algorithm employs opposition based learning concept to generate initial population and also updating agents’ positions. The proposed OBFA is applied for minimization of the factor of safety and search for critical failure surface in slope stability analysis. The numerical experiments demonstrate the effectiveness and robustness of the new algorithm. 展开更多
关键词 firefly algorithm opposition based learning safety factor slope stability
在线阅读 下载PDF
Hybrid Deep Learning Enabled Air Pollution Monitoring in ITS Environment
3
作者 Ashit Kumar Dutta Jenyfal Sampson +4 位作者 Sultan Ahmad T.Avudaiappan Kanagaraj Narayanasamy Irina V.Pustokhina Denis A.Pustokhin 《Computers, Materials & Continua》 SCIE EI 2022年第7期1157-1172,共16页
Intelligent Transportation Systems(ITS)have become a vital part in improving human lives and modern economy.It aims at enhancing road safety and environmental quality.There is a tremendous increase observed in the num... Intelligent Transportation Systems(ITS)have become a vital part in improving human lives and modern economy.It aims at enhancing road safety and environmental quality.There is a tremendous increase observed in the number of vehicles in recent years,owing to increasing population.Each vehicle has its own individual emission rate;however,the issue arises when the emission rate crosses a standard value.Owing to the technological advances made in Artificial Intelligence(AI)techniques,it is easy to leverage it to develop prediction approaches so as to monitor and control air pollution.The current research paper presents Oppositional Shark Shell Optimization with Hybrid Deep Learning Model for Air Pollution Monitoring(OSSOHDLAPM)in ITS environment.The proposed OSSO-HDLAPM technique includes a set of sensors embedded in vehicles to measure the level of pollutants.In addition,hybridized Convolution Neural Network with Long Short-Term Memory(HCNN-LSTM)model is used to predict pollutant level based on the data attained earlier by the sensors.In HCNN-LSTM model,the hyperparameters are selected and optimized using OSSO algorithm.In order to validate the performance of the proposed OSSO-HDLAPM technique,a series of experiments was conducted and the obtained results showcase the superior performance of OSSO-HDLAPM technique under different evaluation parameters. 展开更多
关键词 Deep learning air pollution environment monitoring internet of things intelligent transportation systems oppositional learning LSTM model
在线阅读 下载PDF
A Machine Learning Based Algorithm to Process Partial Shading Effects in PV Arrays
4
作者 Kamran Sadiq Awan Tahir Mahmood +2 位作者 Mohammad Shorfuzzaman Rashid Ali Raja Majid Mehmood 《Computers, Materials & Continua》 SCIE EI 2021年第7期29-43,共15页
Solar energy is a widely used type of renewable energy.Photovoltaic arrays are used to harvest solar energy.The major goal,in harvesting the maximum possible power,is to operate the system at its maximum power point(M... Solar energy is a widely used type of renewable energy.Photovoltaic arrays are used to harvest solar energy.The major goal,in harvesting the maximum possible power,is to operate the system at its maximum power point(MPP).If the irradiation conditions are uniform,the P-V curve of the PV array has only one peak that is called its MPP.But when the irradiation conditions are non-uniform,the P-V curve has multiple peaks.Each peak represents an MPP for a specific irradiation condition.The highest of all the peaks is called Global Maximum Power Point(GMPP).Under uniform irradiation conditions,there is zero or no partial shading.But the changing irradiance causes a shading effect which is called Partial Shading.Many conventional and soft computing techniques have been in use to harvest solar energy.These techniques perform well under uniform and weak shading conditions but fail when shading conditions are strong.In this paper,a new method is proposed which uses Machine Learning based algorithm called Opposition-Based-Learning(OBL)to deal with partial shading conditions.Simulation studies on different cases of partial shading have proven this technique effective in attaining MPP. 展开更多
关键词 Maximum power point tracking flower pollination algorithm opposition-based-learning flower pollination algorithm hybridized with opposition based learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部