The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(...The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(■,...,■),t∈C,b∈C^(N) and A is a linear operator on C^(N).An example of 2-complex symmetric bounded weighted composition operator with the conjugation J_(t,A,b) is given.展开更多
Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(...Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(R^(n)).In this paper,the authors prove that if sup ζ∈S^(n−1)∫Sn−1^(|Ω(θ)|log^(β)(1/|θ·ζ|)dθ<∞ with β>2,then[b,T_(Ω)]is bounded on Triebel–Lizorkin space F^(0,q)p(R^(n))provided that 1+1/β−1<p,q<β.展开更多
We prove the boundedness of the parametric Lusin's S functionμ_(S)^(?)(f)and Littlewood-Paley's g_(λ)^(*)-funtionμ_(λ),^(*,?)(f)on grand Herz-Morrey spaces with variable exponents.Additionally,we establish...We prove the boundedness of the parametric Lusin's S functionμ_(S)^(?)(f)and Littlewood-Paley's g_(λ)^(*)-funtionμ_(λ),^(*,?)(f)on grand Herz-Morrey spaces with variable exponents.Additionally,we establish the boundedness of higher-order commutators ofμ_(S)^(?)andμ_(λ),^(*,?)with BMO functions applying some properties of variable exponents and generalized BMO norms.展开更多
In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditio...In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditions for a composition operator with zero characteristic to be bounded or compact on weighted Bergman spaces of Dirichlet series.The corresponding sufficient condition for compactness in the case of positive characteristics is also obtained.展开更多
We consider plus-operators in Krein spaces and generated operator linear fractional relations of the following form: . We study some special type of factorization for plus-operators T, among them the following one: T ...We consider plus-operators in Krein spaces and generated operator linear fractional relations of the following form: . We study some special type of factorization for plus-operators T, among them the following one: T = BU, where B is a lower triangular plus-operator, U is a J-unitary operator. We apply the above factorization to the study of basical properties of relations (1), in particular, convexity and compactness of their images with respect to the weak operator topology. Obtained results we apply to the known Koenigs embedding problem, the Krein-Phillips problem of existing of invariant semidefinite subspaces for some families of plus-operators and to some other fields.展开更多
The paper defines an extended Cesaro operator Tg with holomorphic symbol g in the unit ball B of Cn asWhere is the radial derivative of g. In this paper, the author characterizes g for which Tg is bounded (or compact)...The paper defines an extended Cesaro operator Tg with holomorphic symbol g in the unit ball B of Cn asWhere is the radial derivative of g. In this paper, the author characterizes g for which Tg is bounded (or compact) on the Bloch space B and the little Bloch space Bo-展开更多
We study Hausdorff operators on the product Besov space B0,1 1 (Rn ×Rm) and on the local product Hardy space h1 (Rn ×Rm). We establish some boundedness criteria for Hausdorff operators on these function ...We study Hausdorff operators on the product Besov space B0,1 1 (Rn ×Rm) and on the local product Hardy space h1 (Rn ×Rm). We establish some boundedness criteria for Hausdorff operators on these function spaces.展开更多
Similarity relation is one of the spatial relations in the community of geographic information science and cartography.It is widely used in the retrieval of spatial databases, the recognition of spatial objects from i...Similarity relation is one of the spatial relations in the community of geographic information science and cartography.It is widely used in the retrieval of spatial databases, the recognition of spatial objects from images, and the description of spatial features on maps.However, little achievements have been made for it by far.In this paper, spatial similarity relation was put forward with the introduction of automated map generalization in the construction of multi-scale map databases;then the definition of spatial similarity relations was presented based on set theory, the concept of spatial similarity degree was given, and the characteristics of spatial similarity were discussed in detail, in-cluding reflexivity, symmetry, non-transitivity, self-similarity in multi-scale spaces, and scale-dependence.Finally a classification system for spatial similarity relations in multi-scale map spaces was addressed.This research may be useful to automated map generalization, spatial similarity retrieval and spatial reasoning.展开更多
We find a lower bound for the essential norm of the difference of two composition operators acting on H 2(BN ) or As2 (BN ) (s 1). This result plays an important role in proving a necessary and sufficient condit...We find a lower bound for the essential norm of the difference of two composition operators acting on H 2(BN ) or As2 (BN ) (s 1). This result plays an important role in proving a necessary and sufficient condition for the difference of linear fractional composition operators to be compact, which answers a question posed by MacCluer and Weir in 2005.展开更多
It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to ...It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to obtain this, the author first establish the weighted boundedness for the commutators of some singular integral operators on Lp, (w).展开更多
We obtain several estimates of the essential norms of the products of differen- tiation operators and weighted composition operators between weighted Banach spaces of analytic functions with general weights. As applic...We obtain several estimates of the essential norms of the products of differen- tiation operators and weighted composition operators between weighted Banach spaces of analytic functions with general weights. As applications, we also give estimates of the es- sential norms of weighted composition operators between weighted Banach space of analytic functions and Bloch-type spaces.展开更多
Boundary inner and outer operators are introduced, and union, intersection, complement operators of approximations are redefined. The approximation operators have a good property of maintaining union, intersection, co...Boundary inner and outer operators are introduced, and union, intersection, complement operators of approximations are redefined. The approximation operators have a good property of maintaining union, intersection, complement operators, so the rough set theory has been enriched from the operator-oriented and set-oriented views. Approximate power set spaces are defined, and it is proved that the approximation operators are epimorphisms from power set space to approximate power set spaces. Some basic properties of approximate power set space are got by epimorphisms in contrast to power set space.展开更多
For all 0 〈 p, q 〈 ∞, let Cφ denote the composition operator from q-Bloch spaces βp to little p-Bloch spaces β0q on the unit ball of C^n. In this article, necessary and sufficient conditions for Cφ to be a boun...For all 0 〈 p, q 〈 ∞, let Cφ denote the composition operator from q-Bloch spaces βp to little p-Bloch spaces β0q on the unit ball of C^n. In this article, necessary and sufficient conditions for Cφ to be a bounded or compact operator are given.展开更多
In this paper, we shall deal with the boundedness of the Littlewood-Paley operators with rough kernel. We prove the boundedness of the Lusin-area integral μΩs and Littlewood-Paley functions μΩ and μλ^* on the w...In this paper, we shall deal with the boundedness of the Littlewood-Paley operators with rough kernel. We prove the boundedness of the Lusin-area integral μΩs and Littlewood-Paley functions μΩ and μλ^* on the weighted amalgam spaces (Lω^q,L^p)^α(R^n)as 1〈q≤α〈p≤∞.展开更多
In this paper, we first investigate the finite-rank product problem of several Toeplitz operators with quasihomogeneous symbols on the harmonic Bergman space. Next, we char- acterize finite rank commutators and semi-c...In this paper, we first investigate the finite-rank product problem of several Toeplitz operators with quasihomogeneous symbols on the harmonic Bergman space. Next, we char- acterize finite rank commutators and semi-commutators of two Toeplitz operators with quasi- homogeneous symbols.展开更多
This paper is devoted to characterizing the Riemann-Stieltjes operators and pointwise multipliers on F(p, q, s) spaces in the unit ball of C^n which contain many classical function spaces, such as the Bloch space, B...This paper is devoted to characterizing the Riemann-Stieltjes operators and pointwise multipliers on F(p, q, s) spaces in the unit ball of C^n which contain many classical function spaces, such as the Bloch space, BMOA and Q8 spaces. The boundedness and compactness of these operators on F(p, q, s) spaces are characterized by means of an embedding theorem, i.e., F(p,q, s) spaces boundedly embedded into the tent-type spaces Tp,s^∞(μ)展开更多
In this paper, we obtain the boundedness of the fractional integral operators, the bilineax fractional integral operators and the bilinear Hilbert transform on α-modulation spaces.
In this paper, we investigate a new perturbation theorem for the Moore-Penrose metric generalized inverses of a bounded linear operator in Banach space. The main tool in this paper is "the generalized Neumann lemma"...In this paper, we investigate a new perturbation theorem for the Moore-Penrose metric generalized inverses of a bounded linear operator in Banach space. The main tool in this paper is "the generalized Neumann lemma" which is quite different from the method in [12] where "the generalized Banach lemma" was used. By the method of the perturba- tion analysis of bounded linear operators, we obtain an explicit perturbation theorem and three inequalities about error estimates for the Moore-Penrose metric generalized inverse of bounded linear operator under the generalized Neumann lemma and the concept of stable perturbations in Banach spaces.展开更多
基金Supported by Sichuan Science and Technology Program (No.2022ZYD0010)。
文摘The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(■,...,■),t∈C,b∈C^(N) and A is a linear operator on C^(N).An example of 2-complex symmetric bounded weighted composition operator with the conjugation J_(t,A,b) is given.
基金Supported by NSFC(No.11971295)Guangdong Higher Education Teaching Reform Project(No.2023307)。
文摘Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(R^(n)).In this paper,the authors prove that if sup ζ∈S^(n−1)∫Sn−1^(|Ω(θ)|log^(β)(1/|θ·ζ|)dθ<∞ with β>2,then[b,T_(Ω)]is bounded on Triebel–Lizorkin space F^(0,q)p(R^(n))provided that 1+1/β−1<p,q<β.
基金Supported by the Natural Science Research Project of Anhui Educational Committee(Grant No.2024AH050129)。
文摘We prove the boundedness of the parametric Lusin's S functionμ_(S)^(?)(f)and Littlewood-Paley's g_(λ)^(*)-funtionμ_(λ),^(*,?)(f)on grand Herz-Morrey spaces with variable exponents.Additionally,we establish the boundedness of higher-order commutators ofμ_(S)^(?)andμ_(λ),^(*,?)with BMO functions applying some properties of variable exponents and generalized BMO norms.
基金supported by the National Natural Science Foundation of China(12171373)Chen's work also supported by the Fundamental Research Funds for the Central Universities of China(GK202207018).
文摘In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditions for a composition operator with zero characteristic to be bounded or compact on weighted Bergman spaces of Dirichlet series.The corresponding sufficient condition for compactness in the case of positive characteristics is also obtained.
文摘We consider plus-operators in Krein spaces and generated operator linear fractional relations of the following form: . We study some special type of factorization for plus-operators T, among them the following one: T = BU, where B is a lower triangular plus-operator, U is a J-unitary operator. We apply the above factorization to the study of basical properties of relations (1), in particular, convexity and compactness of their images with respect to the weak operator topology. Obtained results we apply to the known Koenigs embedding problem, the Krein-Phillips problem of existing of invariant semidefinite subspaces for some families of plus-operators and to some other fields.
文摘The paper is given the interpolation of operators between weighted Hardy spaces and weighted L p spaces when w∈A 1 by Calderon Zygmund decomposition.
基金This research is partially supported by the 151 Projectionthe Natural Science Foundation of Zhejiang Province.
文摘The paper defines an extended Cesaro operator Tg with holomorphic symbol g in the unit ball B of Cn asWhere is the radial derivative of g. In this paper, the author characterizes g for which Tg is bounded (or compact) on the Bloch space B and the little Bloch space Bo-
基金Supported by the National Natural Science Foundation of China(10931001, 10871173 and 11026104)
文摘We study Hausdorff operators on the product Besov space B0,1 1 (Rn ×Rm) and on the local product Hardy space h1 (Rn ×Rm). We establish some boundedness criteria for Hausdorff operators on these function spaces.
文摘Similarity relation is one of the spatial relations in the community of geographic information science and cartography.It is widely used in the retrieval of spatial databases, the recognition of spatial objects from images, and the description of spatial features on maps.However, little achievements have been made for it by far.In this paper, spatial similarity relation was put forward with the introduction of automated map generalization in the construction of multi-scale map databases;then the definition of spatial similarity relations was presented based on set theory, the concept of spatial similarity degree was given, and the characteristics of spatial similarity were discussed in detail, in-cluding reflexivity, symmetry, non-transitivity, self-similarity in multi-scale spaces, and scale-dependence.Finally a classification system for spatial similarity relations in multi-scale map spaces was addressed.This research may be useful to automated map generalization, spatial similarity retrieval and spatial reasoning.
基金Supported by the National Natural Science Foundation of China (10971219)Shanghai Education Research and Innovation Project (10YZ185)Shanghai University Research Special Foundation for Outstanding Young Teachers (sjr09015)
文摘We find a lower bound for the essential norm of the difference of two composition operators acting on H 2(BN ) or As2 (BN ) (s 1). This result plays an important role in proving a necessary and sufficient condition for the difference of linear fractional composition operators to be compact, which answers a question posed by MacCluer and Weir in 2005.
文摘It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to obtain this, the author first establish the weighted boundedness for the commutators of some singular integral operators on Lp, (w).
文摘We obtain several estimates of the essential norms of the products of differen- tiation operators and weighted composition operators between weighted Banach spaces of analytic functions with general weights. As applications, we also give estimates of the es- sential norms of weighted composition operators between weighted Banach space of analytic functions and Bloch-type spaces.
基金Supported by the National Natural Science Foundation of China (No.69803007)
文摘Boundary inner and outer operators are introduced, and union, intersection, complement operators of approximations are redefined. The approximation operators have a good property of maintaining union, intersection, complement operators, so the rough set theory has been enriched from the operator-oriented and set-oriented views. Approximate power set spaces are defined, and it is proved that the approximation operators are epimorphisms from power set space to approximate power set spaces. Some basic properties of approximate power set space are got by epimorphisms in contrast to power set space.
文摘For all 0 〈 p, q 〈 ∞, let Cφ denote the composition operator from q-Bloch spaces βp to little p-Bloch spaces β0q on the unit ball of C^n. In this article, necessary and sufficient conditions for Cφ to be a bounded or compact operator are given.
基金supported in part by National Natural Foundation of China (Grant No. 11161042 and No. 11071250)
文摘In this paper, we shall deal with the boundedness of the Littlewood-Paley operators with rough kernel. We prove the boundedness of the Lusin-area integral μΩs and Littlewood-Paley functions μΩ and μλ^* on the weighted amalgam spaces (Lω^q,L^p)^α(R^n)as 1〈q≤α〈p≤∞.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1127105911301047)the Scientific Research Found of Higher School of Inner Mongolia(Grant No.NJZY 13298)
文摘In this paper, we first investigate the finite-rank product problem of several Toeplitz operators with quasihomogeneous symbols on the harmonic Bergman space. Next, we char- acterize finite rank commutators and semi-commutators of two Toeplitz operators with quasi- homogeneous symbols.
基金Supported in part by the National Natural Science Foundation of China(11271359)the Fundamental Research Funds for the Central Universities(2014-Ia-037and 2015-IVA-069)
文摘This paper is devoted to characterizing the Riemann-Stieltjes operators and pointwise multipliers on F(p, q, s) spaces in the unit ball of C^n which contain many classical function spaces, such as the Bloch space, BMOA and Q8 spaces. The boundedness and compactness of these operators on F(p, q, s) spaces are characterized by means of an embedding theorem, i.e., F(p,q, s) spaces boundedly embedded into the tent-type spaces Tp,s^∞(μ)
基金Supported by the National Natural Science Foundation of China(11271330)
文摘In this paper, we obtain the boundedness of the fractional integral operators, the bilineax fractional integral operators and the bilinear Hilbert transform on α-modulation spaces.
基金Supported by the Nature Science Foundation of China(11471091 and 11401143)
文摘In this paper, we investigate a new perturbation theorem for the Moore-Penrose metric generalized inverses of a bounded linear operator in Banach space. The main tool in this paper is "the generalized Neumann lemma" which is quite different from the method in [12] where "the generalized Banach lemma" was used. By the method of the perturba- tion analysis of bounded linear operators, we obtain an explicit perturbation theorem and three inequalities about error estimates for the Moore-Penrose metric generalized inverse of bounded linear operator under the generalized Neumann lemma and the concept of stable perturbations in Banach spaces.