The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(...The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(■,...,■),t∈C,b∈C^(N) and A is a linear operator on C^(N).An example of 2-complex symmetric bounded weighted composition operator with the conjugation J_(t,A,b) is given.展开更多
Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(...Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(R^(n)).In this paper,the authors prove that if sup ζ∈S^(n−1)∫Sn−1^(|Ω(θ)|log^(β)(1/|θ·ζ|)dθ<∞ with β>2,then[b,T_(Ω)]is bounded on Triebel–Lizorkin space F^(0,q)p(R^(n))provided that 1+1/β−1<p,q<β.展开更多
We prove the boundedness of the parametric Lusin's S functionμ_(S)^(?)(f)and Littlewood-Paley's g_(λ)^(*)-funtionμ_(λ),^(*,?)(f)on grand Herz-Morrey spaces with variable exponents.Additionally,we establish...We prove the boundedness of the parametric Lusin's S functionμ_(S)^(?)(f)and Littlewood-Paley's g_(λ)^(*)-funtionμ_(λ),^(*,?)(f)on grand Herz-Morrey spaces with variable exponents.Additionally,we establish the boundedness of higher-order commutators ofμ_(S)^(?)andμ_(λ),^(*,?)with BMO functions applying some properties of variable exponents and generalized BMO norms.展开更多
In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditio...In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditions for a composition operator with zero characteristic to be bounded or compact on weighted Bergman spaces of Dirichlet series.The corresponding sufficient condition for compactness in the case of positive characteristics is also obtained.展开更多
This paper is committed to dealing with the measure of noncompactness of operators in Banach spaces.First,we give a characterization of the measure of noncompact Hausdorff operators with respect to the Hausdorff metri...This paper is committed to dealing with the measure of noncompactness of operators in Banach spaces.First,we give a characterization of the measure of noncompact Hausdorff operators with respect to the Hausdorff metric.Then,we show a formula of the Hausdorff measure of noncompactness of operators in l^(p)(1≤p<∞).Finally,several common equivalent measures of noncompactness of operators and related proofs are provided.展开更多
The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic fu...The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic functions in the unit ball by radial derivative.Then we extend the Sharma's results.展开更多
The purpose of this article is to introduce a new method with a self-adaptive stepsize for approximating a common solution of monotone inclusion problems and variational inequality problems in reflexive Banach spaces....The purpose of this article is to introduce a new method with a self-adaptive stepsize for approximating a common solution of monotone inclusion problems and variational inequality problems in reflexive Banach spaces.The strong convergence result for our method is established under some standard assumptions without any requirement of the knowledge of the Lipschitz constant of the mapping.Several numerical experiments are provided to verify the advantages and efficiency of proposed algorithms.展开更多
In this paper,we investigate sufficient and necessary conditions such that generalized Forelli-Rudin type operators T_(λ,τ,k),S_(λ,τ,k),Q_(λ,τ,k)and R_(λ,τ,k)are bounded between Lebesgue type spaces.In order t...In this paper,we investigate sufficient and necessary conditions such that generalized Forelli-Rudin type operators T_(λ,τ,k),S_(λ,τ,k),Q_(λ,τ,k)and R_(λ,τ,k)are bounded between Lebesgue type spaces.In order to prove the main results,we first give some bidirectional estimates for several typical integrals.展开更多
Recently,Choe-Koo-Wang(J Funct Anal,2020,278)demonstrated the rigid phenomenon:The compact linear combination of composition operators under the Coefficient Non-cancellation Condition(CNC),implies that each difference...Recently,Choe-Koo-Wang(J Funct Anal,2020,278)demonstrated the rigid phenomenon:The compact linear combination of composition operators under the Coefficient Non-cancellation Condition(CNC),implies that each difference is compact on the weighted Bergman space in the unit disk.Motivated by the subtle connection of composition operator theory on the weighted Bergman spaces,Korenblum spaces and bounded holomorphic function spaces,we first explore the rigid phenomenon which also holds on the Korenblum space over the unit ball.Furthermore,we discuss which difference of composition operators is compact when the compact combination of composition operators does not satisfy the condition(CNC)on Korenblum spaces and bounded holomorphic function spaces over the unit ball setting.展开更多
Letϕbe a smooth radial weight that decays faster than the class Gaussian ones.We obtain certain estimates for the reproducing kernels and the Lp-estimates for solutions of theδ-equation on the weighted Fock spaces F_...Letϕbe a smooth radial weight that decays faster than the class Gaussian ones.We obtain certain estimates for the reproducing kernels and the Lp-estimates for solutions of theδ-equation on the weighted Fock spaces F_(ϕ)^(p)(1≤p≤∞),which extends the classical Hörmander Theorem.Furthermore,for a suitable f,we completely characterize the boundedness and compactness of the Hankel operator H_(f):F_(ϕ)^(p)→L^(q)(C,e^(qϕ(·))dm)for all possible 1≤p,q<∞and also characterize the Schatten-p class Hankel operator Hf from F_(ϕ)^(2)to L^(2)(C,E^(-2ϕ)dm) for all 0<p<∞. As an application, we give a complete characterization of the simultaneously bounded, compact and Schatten-p classes Hankel operators H_(f) and h_(f)^(-) on F_(ϕ)^(2).展开更多
In this paper,we first introduce the notion of relative Rota-Baxter operators of nonzero weight on 3-Hom-Lie algebras and define a cohomology of relative Rota-Baxter operators of nonzero weight on 3-Hom-Lie algebras w...In this paper,we first introduce the notion of relative Rota-Baxter operators of nonzero weight on 3-Hom-Lie algebras and define a cohomology of relative Rota-Baxter operators of nonzero weight on 3-Hom-Lie algebras with coefficients in a suitable representation.Next,we introduce and study 3-Hom-post-Lie-algebras as the underlying structure of relative Rota-Baxter operators of nonzero weight on 3-Hom-Lie algebras.Finally,we investigate relative Rota-Baxter operators of nonzero weight on 3-Hom-Lie algebras induced by Hom-Lie algebras.展开更多
In this paper,it is shown that the harmonic Bergman projection P_(ω)^(h),induced by a radial,induced by a radial weightω,is bounded and onto from L^(∞)(D)to the harmonic Bloch space B_(h)if and only ifω∈D,,which ...In this paper,it is shown that the harmonic Bergman projection P_(ω)^(h),induced by a radial,induced by a radial weightω,is bounded and onto from L^(∞)(D)to the harmonic Bloch space B_(h)if and only ifω∈D,,which is a class of radial weights satisfying the two-sided doubling conditions.As an application,the bounded and compact positive Toeplitz operators T_(μ,ω)on the endpoint case weighted harmonic Bergman space L_(h,ω)^(1)(D)are characterized.展开更多
Let 0<p≤1<q<∞,andω1,ω2 E A1(Muckenhoupt-class).We study an oscillating multiplier operator Tγ,βand obtain that it is boundedon the homogeneous weighted Herz-type Hardy spaces HK_(q)^(α,p)(R^(n);ω1,ω2...Let 0<p≤1<q<∞,andω1,ω2 E A1(Muckenhoupt-class).We study an oscillating multiplier operator Tγ,βand obtain that it is boundedon the homogeneous weighted Herz-type Hardy spaces HK_(q)^(α,p)(R^(n);ω1,ω2)whenγ=nβ/2,α=n(1-1/q).Also,for the unweighted case,we obtain the Hk_(q)^(α,p)(R^(n))boundedness of Tγ,βunder certain conditions on y.These results are substantial improvements and extensions of the main results in the papers by Li and Lu and by Cao and Sun.As an application,we prove the HK_(q)^(α,p)(R^(n))boundedness of the spherical average S_(t)^(δ)uniformly on t>0.展开更多
In modal logic,topological semantics is an intuitive and natural special case of neighbourhood semantics.This paper stems from the observation that the satisfaction relation of topological semantics applies to subset ...In modal logic,topological semantics is an intuitive and natural special case of neighbourhood semantics.This paper stems from the observation that the satisfaction relation of topological semantics applies to subset spaces which are more general than topological spaces.The minimal modal logic which is strongly sound and complete with respect to the class of subset spaces is found.Soundness and completeness results of some famous modal logics(e.g.S4,S5 and Tr)with respect to various important classes of subset spaces(eg intersection structures and complete fields of sets)are also proved.In the meantime,some known results,e.g.the soundness and completeness of Tr with respect to the class of discrete topological spaces,are proved directly using some modifications of the method of canonical mode1,without a detour via neighbourhood semantics or relational semantics.展开更多
In this article,we investigate the(big) Hankel operator H_(f) on the Hardy spaces of bounded strongly pseudoconvex domains Ω in C^(n).We observe that H_(f ) is bounded on H~p(Ω)(1 <p <∞) if f belongs to BMO a...In this article,we investigate the(big) Hankel operator H_(f) on the Hardy spaces of bounded strongly pseudoconvex domains Ω in C^(n).We observe that H_(f ) is bounded on H~p(Ω)(1 <p <∞) if f belongs to BMO and we obtain some characterizations for Hf on H^(2)(Ω) of other pseudoconvex domains.In these arguments,Amar's L^(p)-estimations and Berndtsson's L^(2)-estimations for solutions of the ■_(b)-equation play a crucial role.In addition,we solve Gleason's problem for Hardy spaces H^(p)(Ω)(1 ≤p≤∞) of bounded strongly pseudoconvex domains.展开更多
Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying som...Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying some mild assumptions.Let HX,L(ℝ^(n))be the Hardy space associated with both X and L,which is defined by the Lusin area function related to the semigroup generated by L.In this article,the authors establish various maximal function characterizations of the Hardy space HX,L(ℝ^(n))and then apply these characterizations to obtain the solvability of the related Cauchy problem.These results have a wide range of generality and,in particular,the specific spaces X to which these results can be applied include the weighted space,the variable space,the mixed-norm space,the Orlicz space,the Orlicz-slice space,and the Morrey space.Moreover,the obtained maximal function characterizations of the mixed-norm Hardy space,the Orlicz-slice Hardy space,and the Morrey-Hardy space associated with L are completely new.展开更多
In this paper,we study the necessary and sufficient condition that the Toeplitz operators with respect to the conjugations of one permutation are 2-complex symmetric.Firstly,we introduce a class of conjugations called...In this paper,we study the necessary and sufficient condition that the Toeplitz operators with respect to the conjugations of one permutation are 2-complex symmetric.Firstly,we introduce a class of conjugations called the conjugations of one permutations on the classical Hardy space.Secondly,Toeplitz operators are completely characterized as 2-complex symmetric structure under this class of conjugations.The matrix representation of Toeplitz operators in the classical regular orthogonal basis on Hardy space is used to describe this class of 2-complex symmetric Toeplitz operators.Finally,we add two preconditions f_(n)=-f_(-n)and f_(n)=f_(-n)respectively to the Toeplitz operators,and we get more simplified results.Under the second condition,we study the 3-complex symmetry of Toeplitz operators,and we get the same result for T_(f)is a 3-CSO with the conjugation C_((i,j))and 2-CSO's.展开更多
We consider plus-operators in Krein spaces and generated operator linear fractional relations of the following form: . We study some special type of factorization for plus-operators T, among them the following one: T ...We consider plus-operators in Krein spaces and generated operator linear fractional relations of the following form: . We study some special type of factorization for plus-operators T, among them the following one: T = BU, where B is a lower triangular plus-operator, U is a J-unitary operator. We apply the above factorization to the study of basical properties of relations (1), in particular, convexity and compactness of their images with respect to the weak operator topology. Obtained results we apply to the known Koenigs embedding problem, the Krein-Phillips problem of existing of invariant semidefinite subspaces for some families of plus-operators and to some other fields.展开更多
We consider dual Toeplitz operators on the orthogonal complements of the FockSobolev spaces of all nonnegative real orders.First,for symbols in a certain class containing all bounded functions,we study the problem of ...We consider dual Toeplitz operators on the orthogonal complements of the FockSobolev spaces of all nonnegative real orders.First,for symbols in a certain class containing all bounded functions,we study the problem of when an operator which is finite sums of the dual Toeplitz products is compact or zero.Next,for bounded symbols,we construct a symbol map and exhibit a short exact sequence associated with the C^(*)-algebra generated by all dual Toeplitz operators with bounded symbols.展开更多
基金Supported by Sichuan Science and Technology Program (No.2022ZYD0010)。
文摘The aim of the present paper is to study 2-complex symmetric bounded weighted composition operators on the Fock space of C^(N) with the conjugations J and J_(t,A,b) defined by ■ respectively,where k(z_(1),...,z_N)=(■,...,■),t∈C,b∈C^(N) and A is a linear operator on C^(N).An example of 2-complex symmetric bounded weighted composition operator with the conjugation J_(t,A,b) is given.
基金Supported by NSFC(No.11971295)Guangdong Higher Education Teaching Reform Project(No.2023307)。
文摘Let Ω be homogeneous of degree zero,integrable on S^(n−1) and have mean value zero,T_(Ω) be the homogeneous singular integral operator with kernel Ω(x)/|x|^(n) and[b,T_(Ω)]be the commutator of T_(Ω)with symbol b∈BMO(R^(n)).In this paper,the authors prove that if sup ζ∈S^(n−1)∫Sn−1^(|Ω(θ)|log^(β)(1/|θ·ζ|)dθ<∞ with β>2,then[b,T_(Ω)]is bounded on Triebel–Lizorkin space F^(0,q)p(R^(n))provided that 1+1/β−1<p,q<β.
基金Supported by the Natural Science Research Project of Anhui Educational Committee(Grant No.2024AH050129)。
文摘We prove the boundedness of the parametric Lusin's S functionμ_(S)^(?)(f)and Littlewood-Paley's g_(λ)^(*)-funtionμ_(λ),^(*,?)(f)on grand Herz-Morrey spaces with variable exponents.Additionally,we establish the boundedness of higher-order commutators ofμ_(S)^(?)andμ_(λ),^(*,?)with BMO functions applying some properties of variable exponents and generalized BMO norms.
基金supported by the National Natural Science Foundation of China(12171373)Chen's work also supported by the Fundamental Research Funds for the Central Universities of China(GK202207018).
文摘In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditions for a composition operator with zero characteristic to be bounded or compact on weighted Bergman spaces of Dirichlet series.The corresponding sufficient condition for compactness in the case of positive characteristics is also obtained.
文摘This paper is committed to dealing with the measure of noncompactness of operators in Banach spaces.First,we give a characterization of the measure of noncompact Hausdorff operators with respect to the Hausdorff metric.Then,we show a formula of the Hausdorff measure of noncompactness of operators in l^(p)(1≤p<∞).Finally,several common equivalent measures of noncompactness of operators and related proofs are provided.
基金Supported by Natural Science Foundation of Guangdong Province in China(2018KTSCX161)。
文摘The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic functions in the unit ball by radial derivative.Then we extend the Sharma's results.
基金Supported by NSFC(No.12171062)the Natural Science Foundation of Chongqing(No.CSTB2022NSCQ-JQX0004)+1 种基金the Chongqing Talent Support Program(No.cstc2024ycjh-bgzxm0121)Science and Technology Project of Chongqing Education Committee(No.KJZD-M202300503)。
文摘The purpose of this article is to introduce a new method with a self-adaptive stepsize for approximating a common solution of monotone inclusion problems and variational inequality problems in reflexive Banach spaces.The strong convergence result for our method is established under some standard assumptions without any requirement of the knowledge of the Lipschitz constant of the mapping.Several numerical experiments are provided to verify the advantages and efficiency of proposed algorithms.
基金supported by the Natural Science Foundation of Hunan Province of China(2022JJ30369)the Education Department Important Foundation of Hunan Province in China(23A0095)。
文摘In this paper,we investigate sufficient and necessary conditions such that generalized Forelli-Rudin type operators T_(λ,τ,k),S_(λ,τ,k),Q_(λ,τ,k)and R_(λ,τ,k)are bounded between Lebesgue type spaces.In order to prove the main results,we first give some bidirectional estimates for several typical integrals.
基金supported by National Science Foundations of China(Grant No.11771340,12171373).
文摘Recently,Choe-Koo-Wang(J Funct Anal,2020,278)demonstrated the rigid phenomenon:The compact linear combination of composition operators under the Coefficient Non-cancellation Condition(CNC),implies that each difference is compact on the weighted Bergman space in the unit disk.Motivated by the subtle connection of composition operator theory on the weighted Bergman spaces,Korenblum spaces and bounded holomorphic function spaces,we first explore the rigid phenomenon which also holds on the Korenblum space over the unit ball.Furthermore,we discuss which difference of composition operators is compact when the compact combination of composition operators does not satisfy the condition(CNC)on Korenblum spaces and bounded holomorphic function spaces over the unit ball setting.
文摘Letϕbe a smooth radial weight that decays faster than the class Gaussian ones.We obtain certain estimates for the reproducing kernels and the Lp-estimates for solutions of theδ-equation on the weighted Fock spaces F_(ϕ)^(p)(1≤p≤∞),which extends the classical Hörmander Theorem.Furthermore,for a suitable f,we completely characterize the boundedness and compactness of the Hankel operator H_(f):F_(ϕ)^(p)→L^(q)(C,e^(qϕ(·))dm)for all possible 1≤p,q<∞and also characterize the Schatten-p class Hankel operator Hf from F_(ϕ)^(2)to L^(2)(C,E^(-2ϕ)dm) for all 0<p<∞. As an application, we give a complete characterization of the simultaneously bounded, compact and Schatten-p classes Hankel operators H_(f) and h_(f)^(-) on F_(ϕ)^(2).
基金Supported by the National Natural Science Foundation of China(Grant No.12161013)the School-Level Student Research Project of Guizhou University of Finance and Economics(Grant No.2024ZXSY231)。
文摘In this paper,we first introduce the notion of relative Rota-Baxter operators of nonzero weight on 3-Hom-Lie algebras and define a cohomology of relative Rota-Baxter operators of nonzero weight on 3-Hom-Lie algebras with coefficients in a suitable representation.Next,we introduce and study 3-Hom-post-Lie-algebras as the underlying structure of relative Rota-Baxter operators of nonzero weight on 3-Hom-Lie algebras.Finally,we investigate relative Rota-Baxter operators of nonzero weight on 3-Hom-Lie algebras induced by Hom-Lie algebras.
基金supported by the National Natural Science Foundation of China(12171075)the Science and Technology Research Project of Education Department of Jilin Province(JJKH20241406KJ)Zhan’s research was supported by the Doctoral Startup Fund of Liaoning University of Technology(XB2024029).
文摘In this paper,it is shown that the harmonic Bergman projection P_(ω)^(h),induced by a radial,induced by a radial weightω,is bounded and onto from L^(∞)(D)to the harmonic Bloch space B_(h)if and only ifω∈D,,which is a class of radial weights satisfying the two-sided doubling conditions.As an application,the bounded and compact positive Toeplitz operators T_(μ,ω)on the endpoint case weighted harmonic Bergman space L_(h,ω)^(1)(D)are characterized.
基金supported by the National Key Research and Development Program of China(22YFA10057001)the National Science Foundation of Guangdong Province(2023A1515012034)the National Natural Science Foundation of China(12371105,11971295).
文摘Let 0<p≤1<q<∞,andω1,ω2 E A1(Muckenhoupt-class).We study an oscillating multiplier operator Tγ,βand obtain that it is boundedon the homogeneous weighted Herz-type Hardy spaces HK_(q)^(α,p)(R^(n);ω1,ω2)whenγ=nβ/2,α=n(1-1/q).Also,for the unweighted case,we obtain the Hk_(q)^(α,p)(R^(n))boundedness of Tγ,βunder certain conditions on y.These results are substantial improvements and extensions of the main results in the papers by Li and Lu and by Cao and Sun.As an application,we prove the HK_(q)^(α,p)(R^(n))boundedness of the spherical average S_(t)^(δ)uniformly on t>0.
基金supported by the National Social Science Fund of China(No.20CZX048)。
文摘In modal logic,topological semantics is an intuitive and natural special case of neighbourhood semantics.This paper stems from the observation that the satisfaction relation of topological semantics applies to subset spaces which are more general than topological spaces.The minimal modal logic which is strongly sound and complete with respect to the class of subset spaces is found.Soundness and completeness results of some famous modal logics(e.g.S4,S5 and Tr)with respect to various important classes of subset spaces(eg intersection structures and complete fields of sets)are also proved.In the meantime,some known results,e.g.the soundness and completeness of Tr with respect to the class of discrete topological spaces,are proved directly using some modifications of the method of canonical mode1,without a detour via neighbourhood semantics or relational semantics.
基金supported by the National Natural Science Foundation of China(12271101)。
文摘In this article,we investigate the(big) Hankel operator H_(f) on the Hardy spaces of bounded strongly pseudoconvex domains Ω in C^(n).We observe that H_(f ) is bounded on H~p(Ω)(1 <p <∞) if f belongs to BMO and we obtain some characterizations for Hf on H^(2)(Ω) of other pseudoconvex domains.In these arguments,Amar's L^(p)-estimations and Berndtsson's L^(2)-estimations for solutions of the ■_(b)-equation play a crucial role.In addition,we solve Gleason's problem for Hardy spaces H^(p)(Ω)(1 ≤p≤∞) of bounded strongly pseudoconvex domains.
基金supported by the National Key Research and Development Program of China(2020YFA0712900)the National Natural Science Foundation of China(12371093,12071197,12122102 and 12071431)+2 种基金the Key Project of Gansu Provincial National Science Foundation(23JRRA1022)the Fundamental Research Funds for the Central Universities(2233300008 and lzujbky-2021-ey18)the Innovative Groups of Basic Research in Gansu Province(22JR5RA391).
文摘Assume that L is a non-negative self-adjoint operator on L^(2)(ℝ^(n))with its heat kernels satisfying the so-called Gaussian upper bound estimate and that X is a ball quasi-Banach function space onℝ^(n) satisfying some mild assumptions.Let HX,L(ℝ^(n))be the Hardy space associated with both X and L,which is defined by the Lusin area function related to the semigroup generated by L.In this article,the authors establish various maximal function characterizations of the Hardy space HX,L(ℝ^(n))and then apply these characterizations to obtain the solvability of the related Cauchy problem.These results have a wide range of generality and,in particular,the specific spaces X to which these results can be applied include the weighted space,the variable space,the mixed-norm space,the Orlicz space,the Orlicz-slice space,and the Morrey space.Moreover,the obtained maximal function characterizations of the mixed-norm Hardy space,the Orlicz-slice Hardy space,and the Morrey-Hardy space associated with L are completely new.
基金Supported by the National Natural Science Foundation of China(Grant No.11901269)the Educational Foundation of Liaoning Province(Grant No.JYTMS20231041)。
文摘In this paper,we study the necessary and sufficient condition that the Toeplitz operators with respect to the conjugations of one permutation are 2-complex symmetric.Firstly,we introduce a class of conjugations called the conjugations of one permutations on the classical Hardy space.Secondly,Toeplitz operators are completely characterized as 2-complex symmetric structure under this class of conjugations.The matrix representation of Toeplitz operators in the classical regular orthogonal basis on Hardy space is used to describe this class of 2-complex symmetric Toeplitz operators.Finally,we add two preconditions f_(n)=-f_(-n)and f_(n)=f_(-n)respectively to the Toeplitz operators,and we get more simplified results.Under the second condition,we study the 3-complex symmetry of Toeplitz operators,and we get the same result for T_(f)is a 3-CSO with the conjugation C_((i,j))and 2-CSO's.
文摘We consider plus-operators in Krein spaces and generated operator linear fractional relations of the following form: . We study some special type of factorization for plus-operators T, among them the following one: T = BU, where B is a lower triangular plus-operator, U is a J-unitary operator. We apply the above factorization to the study of basical properties of relations (1), in particular, convexity and compactness of their images with respect to the weak operator topology. Obtained results we apply to the known Koenigs embedding problem, the Krein-Phillips problem of existing of invariant semidefinite subspaces for some families of plus-operators and to some other fields.
文摘The paper is given the interpolation of operators between weighted Hardy spaces and weighted L p spaces when w∈A 1 by Calderon Zygmund decomposition.
基金supported by the NSFC(12271134,11771401)supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2019R1I1A3A01041943)。
文摘We consider dual Toeplitz operators on the orthogonal complements of the FockSobolev spaces of all nonnegative real orders.First,for symbols in a certain class containing all bounded functions,we study the problem of when an operator which is finite sums of the dual Toeplitz products is compact or zero.Next,for bounded symbols,we construct a symbol map and exhibit a short exact sequence associated with the C^(*)-algebra generated by all dual Toeplitz operators with bounded symbols.