The purpose of this review is to summarise the existing literature on the operational systems as to explain the current state of understanding on the coupled operational systems.The review only considers the linear op...The purpose of this review is to summarise the existing literature on the operational systems as to explain the current state of understanding on the coupled operational systems.The review only considers the linear optimisation of the operational systems.Traditionally,the operational systems are classified as decoupled,tightly coupled,and loosely coupled.Lately,the coupled operational systems were classified as systems of time-sensitive and time-insensitive operational cycle,systems employing one mix and different mixes of factors of production,and systems of single-linear,single-linear-fractional,and multi-linear objective.These new classifications extend the knowledge about the linear optimisation of the coupled operational systems and reveal new objective-improving models and new state-of-the-art methodologies never discussed before.Business areas affected by these extensions include product assembly lines,cooperative farming,gas/oil reservoir development,maintenance service throughout multiple facilities,construction via different locations,flights traffic control in aviation,game reserves,and tramp shipping in maritime cargo transport.展开更多
It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using...It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using an identical reference.In this study,three physically reasonable DLMs are implemented for the forecasting of the sea surface temperature(SST),sea level anomaly(SLA),and sea surface velocity in the South China Sea.The DLMs are validated against both the testing dataset and the“OceanPredict”Class 4 dataset.Results show that the DLMs'RMSEs against the latter increase by 44%,245%,302%,and 109%for SST,SLA,current speed,and direction,respectively,compared to those against the former.Therefore,different references have significant influences on the validation,and it is necessary to use an identical and independent reference to intercompare the DLMs and OFSs.Against the Class 4 dataset,the DLMs present significantly better performance for SLA than the OFSs,and slightly better performances for other variables.The error patterns of the DLMs and OFSs show a high degree of similarity,which is reasonable from the viewpoint of predictability,facilitating further applications of the DLMs.For extreme events,the DLMs and OFSs both present large but similar forecast errors for SLA and current speed,while the DLMs are likely to give larger errors for SST and current direction.This study provides an evaluation of the forecast skills of commonly used DLMs and provides an example to objectively intercompare different DLMs.展开更多
This paper proposed a new systematic approach-functional evidential reasoning model(FERM) for exploring hazardous chemical operational accidents under uncertainty. First, FERM was introduced to identify various causal...This paper proposed a new systematic approach-functional evidential reasoning model(FERM) for exploring hazardous chemical operational accidents under uncertainty. First, FERM was introduced to identify various causal factors and their performance changes in hazardous chemical operational accidents, along with determining the functional failure link relationships. Subsequently, FERM was employed to elucidate both qualitative and quantitative operational accident information within a unified framework, which could be regarded as the input of information fusion to obtain the fuzzy belief distribution of each cause factor. Finally, the derived risk values of the causal factors were ranked while constructing multi-level accident causation chains to unveil the weak links in system functionality and the primary roots of operational accidents. Using the specific case of the “1·15” major explosion and fire accident at Liaoning Panjin Haoye Chemical Co., Ltd., seven causal factors and their corresponding performance changes were identified. Additionally, five accident causation chains were uncovered based on the fuzzy joint distribution of the functional assessment level(FAL) and reliability distribution(RD),revealing an overall increase in risk along the accident evolution path. The research findings demonstrated that FERM enabled the effective characterization, rational quantification and accurate analysis of the inherent uncertainties in hazardous chemical operational accident risks from a systemic perspective.展开更多
The accurate selection of operational parameters is critical for ensuring the safety,efficiency,and automation of Tunnel Boring Machine(TBM)operations.This study proposes a similarity-based framework integrating model...The accurate selection of operational parameters is critical for ensuring the safety,efficiency,and automation of Tunnel Boring Machine(TBM)operations.This study proposes a similarity-based framework integrating model-based boring indexes(derived from rock fragmentation mechanisms)and Euclidean distance analysis to achieve real-time recommendations of TBM operational parameters.Key performance indicators-thrust(F),torque(T),and penetration(p)-were used to calculate three model-based boring indexes(a,b,k),which quantify dynamic rock fragmentation behavior.A dataset of 359 candidate samples,reflecting diverse geological conditions from the Yin-Chao water conveyance project in Inner Mongolia,China,was utilized to validate the framework.The system dynamically recommends parameters by matching real-time data with historical cases through standardized Euclidean distance,achieving high accuracy.Specifically,the mean absolute error(MAE)for rotation speed(n)was 0.10 r/min,corresponding to a mean absolute percentage error(MAPE)of 1.09%.For advance rate(v),the MAE was 3.4 mm/min,with a MAPE of 4.50%.The predicted thrust(F)and torque(T)values exhibited strong agreement with field measurements,with MAEs of 270 kN and 178 kN∙m,respectively.Field applications demonstrated a 30%reduction in parameter adjustment time compared to empirical methods.This work provides a robust solution for real-time TBM control,advancing intelligent tunneling in complex geological environments.展开更多
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe...Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.展开更多
Ground source heat pump systems demonstrate significant potential for northern rural heating applications;however,the effectiveness of these systems is often limited by challenging geological conditions.For instance,i...Ground source heat pump systems demonstrate significant potential for northern rural heating applications;however,the effectiveness of these systems is often limited by challenging geological conditions.For instance,in certain regions,the installation of buried pipes for heat exchangers may be complicated,and these pipes may not always serve as efficient low-temperature heat sources for the heat pumps of the system.To address this issue,the current study explored the use of solar-energy-collecting equipment to supplement buried pipes.In this design,both solar energy and geothermal energy provide low-temperature heat to the heat pump.First,a simulation model of a solar‒ground source heat pump coupling system was established using TRNSYS.The accuracy of this model was validated through experiments and simulations on various system configurations,including varying numbers of buried pipes,different areas of solar collectors,and varying volumes of water tanks.The simulations examined the coupling characteristics of these components and their influence on system performance.The results revealed that the operating parameters of the system remained consistent across the following configurations:three buried pipes,burial depth of 20 m,collector area of 6 m^(2),and water tank volume of 0.5 m^(3);four buried pipes,burial depth of 20 m,collector area of 3 m^(2),and water tank volume of 0.5 m^(3);and five buried pipes with a burial depth of 20 m.Furthermore,the heat collection capacity of the solar collectors spanning an area of 3 m^(2)was found to be equivalent to that of one buried pipe.Moreover,the findings revealed that the solar‒ground source heat pump coupling system demonstrated a lower annual cumulative energy consumption compared to the ground source heat pump system,presenting a reduction of 5.31%compared to the energy consumption of the latter.展开更多
In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy sys...In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy system(IIES).The upper level represents the integrated energy operator,and the lower level is the electricity-heatgas load aggregator.Owing to the benefit conflict between the upper and lower levels of the IIES,a dynamic pricing mechanism for coordinating the interests of the upper and lower levels is proposed,combined with factors such as the carbon emissions of the IIES,as well as the lower load interruption power.The price of selling energy can be dynamically adjusted to the lower LA in the mechanism,according to the information on carbon emissions and load interruption power.Mutual benefits and win-win situations are achieved between the upper and lower multistakeholders.Finally,CPLEX is used to iteratively solve the bilevel optimization model.The optimal solution is selected according to the joint optimal discrimination mechanism.Thesimulation results indicate that the sourceload coordinate operation can reduce the upper and lower operation costs.Using the proposed pricingmechanism,the carbon emissions and load interruption power of IEO-LA are reduced by 9.78%and 70.19%,respectively,and the capture power of the carbon capture equipment is improved by 36.24%.The validity of the proposed model and method is verified.展开更多
Effective forest regeneration is essential for sustainable forestry practices.In Sweden,mechanical site preparation and manual planting is the dominating method,but sourcing labour for the physically demanding work is...Effective forest regeneration is essential for sustainable forestry practices.In Sweden,mechanical site preparation and manual planting is the dominating method,but sourcing labour for the physically demanding work is difficult.An autonomous scarifying and planting system(Autoplant)could meet the requirements of the forest industry and,for this,a tool for regeneration planning and routing is needed.The tool,Pathfinder,plans the regeneration and routes based on the harvested production(hpr)files,soil moisture and parent material maps,no-go areas(for culture or nature conservation),digital elevation models(DEM),and machine data(e.g.,working width,critical slope,time taken for different turn angles).The overall planting solution is either a set of capacity constrained routes or a continuous route and could be used for any planting machine as well as for traditional scarifiers as disc trenchers or mounders pulled by forwarders.Pathfinder was tested on eleven regeneration areas throughout Sweden,both with continuous routes and routes based on a carrying capacity of 1500 seedlings.The net operation area,species and seedling density suggestions were deemed relevant by expert judgement in the field.The routes provided by Pathfinder were compared with solutions given by two experienced drivers and a third solution based on the actual soil scarification at the site.Total driving distance did not differ significantly between the suggestions,but Pathfinder included less side-slope driving on steep slopes(≥27%or 15°)and medium slopes(15–27%).The chosen threshold value for steep slopes(where side-slope driving should be avoided)affects the routing,and a lower threshold means more turning and longer driving distance.Pathfinder is not only a tool for routing of planting machines,but also helps in planning of traditional regeneration by providing a more correct net area and tree species suggestions based on the growth of the previous stand.It also diminishes the risk of severe soil disturbance by excluding the wettest area in the planning.展开更多
BACKGROUND Kidney transplantation is one of the most effective treatments for patients with end-stage renal disease.However,many regions face low deceased donor rates and limited ABO-compatible transplant availability...BACKGROUND Kidney transplantation is one of the most effective treatments for patients with end-stage renal disease.However,many regions face low deceased donor rates and limited ABO-compatible transplant availability,which increases reliance on living donors.These regional challenges necessitate the implementation of kidney paired donation(KPD)programs to overcome incompatibilities such as ABO mismatch or positive cross-matching,even when suitable and willing donors are available.AIM To evaluate the effectiveness of a single-center domino KPD model in both operational planning and clinical management processes and to assess its impact on clinical outcomes.METHODS Between April 2020 and January 2024,we retrospectively evaluated patients enrolled in our center’s domino kidney transplantation program.Donor-recipient pairs unable to proceed due to ABO incompatibility or positive cross-matching with their own living donors were included.Donors and recipients were assessed based on blood group compatibility,HLA tissue typing,and negative cross-match results.A specialized computer algorithm grouped patients into three-way,fourway,and five-way chains.All surgical procedures were performed on the same day at a single center.RESULTS A total of 169 kidney transplants were performed,forming 52 domino chains.These domino KPD transplants accounted for a notable proportion of our center’s overall transplant activity,which included both living donor kidney transplants and deceased donor transplants.Among these chains,the primary reasons for participation were ABO incompatibility(74%),positive cross-matching(10%),and the desire to improve HLA mismatch(16%).Improved HLA mismatch profiles and high graft survival(96%at 1 year,92%at 3 years)and patient survival(98%at 1 year,94%at 3 years)rates were observed,as well as low acute rejection episodes.CONCLUSION The single-center domino KPD model enhanced transplant opportunities for incompatible donor-recipient pairs while maintaining excellent clinical outcomes.By providing a framework that addresses regional challenges,improves operational efficiency,and optimizes clinical management,this model offers actionable insights to reduce waiting lists and improve patient outcomes.展开更多
To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartogra...To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning.展开更多
Rotor blade is one of the most significant components of helicopters. But due to its highspeed rotation characteristics, it is difficult to collect the vibration signals during the flight stage.Moreover, sensors are h...Rotor blade is one of the most significant components of helicopters. But due to its highspeed rotation characteristics, it is difficult to collect the vibration signals during the flight stage.Moreover, sensors are highly susceptible to damage resulting in the failure of the measurement.In order to make signal predictions for the damaged sensors, an operational modal analysis(OMA) together with the virtual sensing(VS) technology is proposed in this paper. This paper discusses two situations, i.e., mode shapes measured by all sensors(both normal and damaged) can be obtained using OMA, and mode shapes measured by some sensors(only including normal) can be obtained using OMA. For the second situation, it is necessary to use finite element(FE) analysis to supplement the missing mode shapes of damaged sensor. In order to improve the correlation between the FE model and the real structure, the FE mode shapes are corrected using the local correspondence(LC) principle and mode shapes measured by some sensors(only including normal).Then, based on the VS technology, the vibration signals of the damaged sensors during the flight stage can be accurately predicted using the identified mode shapes(obtained based on OMA and FE analysis) and the normal sensors signals. Given the high degrees of freedom(DOFs) in the FE mode shapes, this approach can also be used to predict vibration data at locations without sensors. The effectiveness and robustness of the proposed method is verified through finite element simulation, experiment as well as the actual flight test. The present work can be further used in the fault diagnosis and damage identification for rotor blade of helicopters.展开更多
The early involvement of test and evaluation can significantly reduce the cost of modifying issues and errors found in the later stages of aircraft development and design process.This paper presents a methodology for ...The early involvement of test and evaluation can significantly reduce the cost of modifying issues and errors found in the later stages of aircraft development and design process.This paper presents a methodology for aircraft mission effectiveness evaluation and design space exploration based on Virtual Operational Test(VOT),incorporating Virtual Open Scenario(VOS)and User in Scenarios(UIS)concepts.By employing modeling and simulation technologies in the early stages of aircraft development and design,a virtual environment can be constructed,allowing aircraft users to participate more closely and conveniently in the design process.Virtual tests conducted by users within the mission context provide data on mission effectiveness and critical user feedback.This paper outlines the main components of the virtual operational test process and related conceptual methods,and discusses an open support system framework that supports VOT.The effectiveness and adaptability of the method are demonstrated through two case studies:a beyond-visual-range air combat scenario and a helicopter ground attack scenario.These case studies demonstrate the evaluation of aircraft mission effectiveness and the sensitivity analysis and optimization of design and operational parameters based on VOT.展开更多
Grid-scale energy storage systems provide effective solutions to address challenges such as supply-load imbalances and voltage violations resulting from the non-coinciding nature of renewable energy generation and pea...Grid-scale energy storage systems provide effective solutions to address challenges such as supply-load imbalances and voltage violations resulting from the non-coinciding nature of renewable energy generation and peak demand incidents.While battery and hydrogen storage are commonly used for peak shaving,ice-based thermal energy storage systems(TESSs)offer a direct way to reduce cooling loads without electrical conversion.This paper presents a multi-objective planning framework that optimizes TESS dispatch,network topology,and photovoltaic(PV)inverter reactive power support to address operational issues in active distribution networks.The objectives of the proposed scheme include minimizing peak demand,voltage deviations,and PV inverter VAr dependency.The mixed-integer nonlinear programming problem is solved using a Pareto-based multi-objective particle swarm optimization(MOPSO)method.The MATLAB-OpenDSS simulations for a modified IEEE-123 bus system show a 7.1%reduction in peak demand,a 13%reduction in voltage deviation,and a 52%drop in PV inverter VAr usage.The obtained solutions confirm minimal operational stress on control devices such as switches and PV inverters.Thus,unlike earlier studies,this work combines all three strategies to offer an effective solution for the operational planning of the active distribution network.展开更多
Growing regulatory demands for industrial safety and environmental protection in the chemical sector necessitate robust operational risk assessment to enhance management efficacy.Here,the HS Chemical Company is evalua...Growing regulatory demands for industrial safety and environmental protection in the chemical sector necessitate robust operational risk assessment to enhance management efficacy.Here,the HS Chemical Company is evaluated through a multidimensional framework encompassing market dynamics,macroeconomic factors,financial stability,governance,supply chains,and production safety.By integrating the Analytic Hierarchy Process(AHP)with entropy weighting,a hybrid weighting model that mitigates the limitations of singular methods is established.The analysis of this study identifies financial risk(weight:0.347)and production safety(weight:0.298)as dominant risk drivers.These quantitative insights offer a basis for resource prioritization and targeted risk mitigation strategies in chemical enterprises.展开更多
This paper offers a comprehensive overview of the operational principles of current therapeutic devices for diabetic foot management and further analyzes technological innovations and developmental trends,aiming to pr...This paper offers a comprehensive overview of the operational principles of current therapeutic devices for diabetic foot management and further analyzes technological innovations and developmental trends,aiming to promote research and development in the field of technological convergence.The ultimate goal is to enhance the cure rate for diabetic foot conditions and to decrease the incidence of amputations.The paper discusses the novel applications of ultrasound and optical therapeutic devices within the field of physiotherapy,the numerous advantages of chitosan dressings in biotechnology,the ongoing advancements and broader combined use of vacuum sealing drainage techniques,and the distinctive effects and innovations associated with micro-oxygen diffusion techniques.It thoroughly examines various technological mechanisms that facilitate wound healing,highlighting the clinical applications of ultrasonic atomized medicinal solutions,novel dressing graft copolymerization,continuous hypoxia diffusion,and the functions of vacuum drainage.These advancements facilitate the integration of drainage and dressing changes,with the potential to enhance the therapeutic effects of diabetic foot treatment and provide valuable insights for clinical application.展开更多
With the intensifying global climate crisis,carbon emissions trading has emerged as a crucial market-based instrument for emissions reduction,attracting significant attention from government agencies and academia worl...With the intensifying global climate crisis,carbon emissions trading has emerged as a crucial market-based instrument for emissions reduction,attracting significant attention from government agencies and academia worldwide.As of January 2024,28 carbon trading markets have been established globally,encompassing approximately 17%of global greenhouse gas emissions and serving approximately 1/3 of the global population.With various nations setting carbon neutrality targets and delineating carbon reduction pathways,the con-struction,operation,and regulatory frameworks of carbon markets are becoming increasingly refined and comprehensive.This study elucidates the importance and necessity of establishing carbon markets from the perspective of energy system transformation and sus-tainable economic development.Second,it provides a comparative analysis of the operational mechanisms,trading scales,and emission reduction outcomes of major carbon markets in the European Union,United States,and New Zealand,systematically summarizing their development processes and recent advancements.Finally,this study addresses issues and challenges in the construction of China’s carbon market.Drawing on the successful experiences of leading global carbon markets in institutional design and market operations,we pro-pose development strategies and recommendations for a carbon market with Chinese characteristics.These strategies are intended to align with international standards while meeting China’s national conditions,thereby contributing insights into the global carbon market trading system.展开更多
Extracting typical operational scenarios is essential for making flexible decisions in the dispatch of a new power system.A novel deep time series aggregation scheme(DTSAs)is proposed to generate typical operational s...Extracting typical operational scenarios is essential for making flexible decisions in the dispatch of a new power system.A novel deep time series aggregation scheme(DTSAs)is proposed to generate typical operational scenarios,considering the large amount of historical operational snapshot data.Specifically,DTSAs analyse the intrinsic mechanisms of different scheduling operational scenario switching to mathematically represent typical operational scenarios.A Gramian angular summation field-based operational scenario image encoder was designed to convert operational scenario sequences into highdimensional spaces.This enables DTSAs to fully capture the spatiotemporal characteristics of new power systems using deep feature iterative aggregation models.The encoder also facilitates the generation of typical operational scenarios that conform to historical data distributions while ensuring the integrity of grid operational snapshots.Case studies demonstrate that the proposed method extracted new fine-grained power system dispatch schemes and outperformed the latest high-dimensional feature-screening methods.In addition,experiments with different new energy access ratios were conducted to verify the robustness of the proposed method.DTSAs enable dispatchers to master the operation experience of the power system in advance,and actively respond to the dynamic changes of the operation scenarios under the high access rate of new energy.展开更多
The Yangtze River Valley(YRV) of China experienced record-breaking heatwaves in July and August 2022. The characteristics, causes, and impacts of this extreme event have been widely explored, but its seasonal predicta...The Yangtze River Valley(YRV) of China experienced record-breaking heatwaves in July and August 2022. The characteristics, causes, and impacts of this extreme event have been widely explored, but its seasonal predictability remains elusive. This study assessed the real-time one-month-lead prediction skill of the summer 2022 YRV heatwaves using 12operational seasonal forecast systems. Results indicate that most individual forecast systems and their multi-model ensemble(MME) mean exhibited limited skill in predicting the 2022 YRV heatwaves. Notably, after the removal of the linear trend, the predicted 2-m air temperature anomalies were generally negative in the YRV, except for the Met Office Glo Sea6 system, which captured a moderate warm anomaly. While the models successfully simulated the influence of La Ni?a on the East Asian–western North Pacific atmospheric circulation and associated YRV temperature anomalies, only Glo Sea6 reasonably captured the observed relationship between the YRV heatwaves and an atmospheric teleconnection extending from the North Atlantic to the Eurasian mid-to-high latitudes. Such an atmospheric teleconnection plays a crucial role in intensifying the YRV heatwaves. In contrast, other seasonal forecast systems and the MME predicted a distinctly different atmospheric circulation pattern, particularly over the Eurasian mid-to-high latitudes, and failed to reproduce the observed relationship between the YRV heatwaves and Eurasian mid-to-high latitude atmospheric circulation anomalies.These findings underscore the importance of accurately representing the Eurasian mid-to-high latitude atmospheric teleconnection for successful YRV heatwave prediction.展开更多
Fractional calculus is widely used to deal with nonconservative dynamics because of its memorability and non-local properties.In this paper,the Herglotz principle with generalized operators is discussed,and the Herglo...Fractional calculus is widely used to deal with nonconservative dynamics because of its memorability and non-local properties.In this paper,the Herglotz principle with generalized operators is discussed,and the Herglotz type equations for nonholonomic systems are established.Then,the Noether symmetries are studied,and the conserved quantities are obtained.The results are extended to nonholonomic canonical systems,and the Herglotz type canonical equations and the Noether theorems are obtained.Two examples are provided to demonstrate the validity of the methods and results.展开更多
The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches...The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches between the parameters of the received amplitude modulation(AM) signals and the system's linear workspace and demodulation operating points can cause severe distortion in the demodulated signals. To address this, the article proposes a method for determining the operational parameters based on the mean square error(MSE) and total harmonic distortion(THD) assessments and presents strategies for optimizing the system's operational parameters focusing on linear response characteristics(LRC) and linear dynamic range(LDR). Specifically, we employ a method that minimizes the MSE to define the system's linear workspace, thereby ensuring the system has a good LRC while maximizing the LDR. To ensure that the signal always operates within the linear workspace, an appropriate carrier amplitude is set as the demodulation operating point. By calculating the THD at different operating points, the LRC performance within different regions of the linear workspace is evaluated, and corresponding optimization strategies based on the range of signal strengths are proposed. Moreover, to more accurately restore the baseband signal, we establish a mapping relationship between the carrier Rabi frequency and the transmitted power of the probe light, and optimize the slope of the linear demodulation function to reduce the MSE to less than 0.8×10^(-4). Finally, based on these methods for determining the operational parameters, we explore the effects of different laser Rabi frequencies on the system performance, and provide optimization recommendations. This research provides robust support for the design of high-performance Rydberg atom-based AM receivers.展开更多
文摘The purpose of this review is to summarise the existing literature on the operational systems as to explain the current state of understanding on the coupled operational systems.The review only considers the linear optimisation of the operational systems.Traditionally,the operational systems are classified as decoupled,tightly coupled,and loosely coupled.Lately,the coupled operational systems were classified as systems of time-sensitive and time-insensitive operational cycle,systems employing one mix and different mixes of factors of production,and systems of single-linear,single-linear-fractional,and multi-linear objective.These new classifications extend the knowledge about the linear optimisation of the coupled operational systems and reveal new objective-improving models and new state-of-the-art methodologies never discussed before.Business areas affected by these extensions include product assembly lines,cooperative farming,gas/oil reservoir development,maintenance service throughout multiple facilities,construction via different locations,flights traffic control in aviation,game reserves,and tramp shipping in maritime cargo transport.
基金supported by the National Natural Science Foundation of China(Grant Nos.42375062 and 42275158)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab)the Natural Science Foundation of Gansu Province(Grant No.22JR5RF1080)。
文摘It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using an identical reference.In this study,three physically reasonable DLMs are implemented for the forecasting of the sea surface temperature(SST),sea level anomaly(SLA),and sea surface velocity in the South China Sea.The DLMs are validated against both the testing dataset and the“OceanPredict”Class 4 dataset.Results show that the DLMs'RMSEs against the latter increase by 44%,245%,302%,and 109%for SST,SLA,current speed,and direction,respectively,compared to those against the former.Therefore,different references have significant influences on the validation,and it is necessary to use an identical and independent reference to intercompare the DLMs and OFSs.Against the Class 4 dataset,the DLMs present significantly better performance for SLA than the OFSs,and slightly better performances for other variables.The error patterns of the DLMs and OFSs show a high degree of similarity,which is reasonable from the viewpoint of predictability,facilitating further applications of the DLMs.For extreme events,the DLMs and OFSs both present large but similar forecast errors for SLA and current speed,while the DLMs are likely to give larger errors for SST and current direction.This study provides an evaluation of the forecast skills of commonly used DLMs and provides an example to objectively intercompare different DLMs.
基金supported by the National Key Research&Development Program of China(2021YFB3301100)the National Natural Science Foundation of China(52004014)the Fundamental Research Funds for the Central Universities(ZY2406).
文摘This paper proposed a new systematic approach-functional evidential reasoning model(FERM) for exploring hazardous chemical operational accidents under uncertainty. First, FERM was introduced to identify various causal factors and their performance changes in hazardous chemical operational accidents, along with determining the functional failure link relationships. Subsequently, FERM was employed to elucidate both qualitative and quantitative operational accident information within a unified framework, which could be regarded as the input of information fusion to obtain the fuzzy belief distribution of each cause factor. Finally, the derived risk values of the causal factors were ranked while constructing multi-level accident causation chains to unveil the weak links in system functionality and the primary roots of operational accidents. Using the specific case of the “1·15” major explosion and fire accident at Liaoning Panjin Haoye Chemical Co., Ltd., seven causal factors and their corresponding performance changes were identified. Additionally, five accident causation chains were uncovered based on the fuzzy joint distribution of the functional assessment level(FAL) and reliability distribution(RD),revealing an overall increase in risk along the accident evolution path. The research findings demonstrated that FERM enabled the effective characterization, rational quantification and accurate analysis of the inherent uncertainties in hazardous chemical operational accident risks from a systemic perspective.
基金supported by the National Key R&D Program of China(2022YFE0200400).
文摘The accurate selection of operational parameters is critical for ensuring the safety,efficiency,and automation of Tunnel Boring Machine(TBM)operations.This study proposes a similarity-based framework integrating model-based boring indexes(derived from rock fragmentation mechanisms)and Euclidean distance analysis to achieve real-time recommendations of TBM operational parameters.Key performance indicators-thrust(F),torque(T),and penetration(p)-were used to calculate three model-based boring indexes(a,b,k),which quantify dynamic rock fragmentation behavior.A dataset of 359 candidate samples,reflecting diverse geological conditions from the Yin-Chao water conveyance project in Inner Mongolia,China,was utilized to validate the framework.The system dynamically recommends parameters by matching real-time data with historical cases through standardized Euclidean distance,achieving high accuracy.Specifically,the mean absolute error(MAE)for rotation speed(n)was 0.10 r/min,corresponding to a mean absolute percentage error(MAPE)of 1.09%.For advance rate(v),the MAE was 3.4 mm/min,with a MAPE of 4.50%.The predicted thrust(F)and torque(T)values exhibited strong agreement with field measurements,with MAEs of 270 kN and 178 kN∙m,respectively.Field applications demonstrated a 30%reduction in parameter adjustment time compared to empirical methods.This work provides a robust solution for real-time TBM control,advancing intelligent tunneling in complex geological environments.
基金supported by a Horizontal Project on the Development of a Hybrid Energy Storage Simulation Model for Wind Power Based on an RT-LAB Simulation System(PH2023000190)the Inner Mongolia Natural Science Foundation Project and the Optimization of Exergy Efficiency of a Hybrid Energy Storage System with Crossover Control for Wind Power(2023JQ04).
文摘Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.
基金supported by 2024 Central Guidance Local Science and Technology Development Fund Project"Study on the mechanism and evaluation method of thermal pollution in water bodies,as well as research on thermal carrying capacity".(Grant 246Z4506G)Key Research and Development Project in Hebei Province:"Key Technologies and Equipment Research and Demonstration of Multiple Energy Complementary(Electricity,Heat,Cold System)for Solar Energy,Geothermal Energy,Phase Change Energy"(Grant 236Z4310G)the Hebei Academy of Sciences Key Research and Development Program"Research on Heat Transfer Mechanisms and Efficient Applications of Intermediate and Deep Geothermal Energy"(22702)。
文摘Ground source heat pump systems demonstrate significant potential for northern rural heating applications;however,the effectiveness of these systems is often limited by challenging geological conditions.For instance,in certain regions,the installation of buried pipes for heat exchangers may be complicated,and these pipes may not always serve as efficient low-temperature heat sources for the heat pumps of the system.To address this issue,the current study explored the use of solar-energy-collecting equipment to supplement buried pipes.In this design,both solar energy and geothermal energy provide low-temperature heat to the heat pump.First,a simulation model of a solar‒ground source heat pump coupling system was established using TRNSYS.The accuracy of this model was validated through experiments and simulations on various system configurations,including varying numbers of buried pipes,different areas of solar collectors,and varying volumes of water tanks.The simulations examined the coupling characteristics of these components and their influence on system performance.The results revealed that the operating parameters of the system remained consistent across the following configurations:three buried pipes,burial depth of 20 m,collector area of 6 m^(2),and water tank volume of 0.5 m^(3);four buried pipes,burial depth of 20 m,collector area of 3 m^(2),and water tank volume of 0.5 m^(3);and five buried pipes with a burial depth of 20 m.Furthermore,the heat collection capacity of the solar collectors spanning an area of 3 m^(2)was found to be equivalent to that of one buried pipe.Moreover,the findings revealed that the solar‒ground source heat pump coupling system demonstrated a lower annual cumulative energy consumption compared to the ground source heat pump system,presenting a reduction of 5.31%compared to the energy consumption of the latter.
基金supported by the Central Government Guides Local Science and Technology Development Fund Project(2023ZY0020)Key R&D and Achievement Transformation Project in InnerMongolia Autonomous Region(2022YFHH0019)+3 种基金the Fundamental Research Funds for Inner Mongolia University of Science&Technology(2022053)Natural Science Foundation of Inner Mongolia(2022LHQN05002)National Natural Science Foundation of China(52067018)Metallurgical Engineering First-Class Discipline Construction Project in Inner Mongolia University of Science and Technology,Control Science and Engineering Quality Improvement and Cultivation Discipline Project in Inner Mongolia University of Science and Technology。
文摘In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy system(IIES).The upper level represents the integrated energy operator,and the lower level is the electricity-heatgas load aggregator.Owing to the benefit conflict between the upper and lower levels of the IIES,a dynamic pricing mechanism for coordinating the interests of the upper and lower levels is proposed,combined with factors such as the carbon emissions of the IIES,as well as the lower load interruption power.The price of selling energy can be dynamically adjusted to the lower LA in the mechanism,according to the information on carbon emissions and load interruption power.Mutual benefits and win-win situations are achieved between the upper and lower multistakeholders.Finally,CPLEX is used to iteratively solve the bilevel optimization model.The optimal solution is selected according to the joint optimal discrimination mechanism.Thesimulation results indicate that the sourceload coordinate operation can reduce the upper and lower operation costs.Using the proposed pricingmechanism,the carbon emissions and load interruption power of IEO-LA are reduced by 9.78%and 70.19%,respectively,and the capture power of the carbon capture equipment is improved by 36.24%.The validity of the proposed model and method is verified.
基金funded by Vinnova,the Swedish Innovation Agency as a part of the Autoplant project(Dnr 2020-04202 and 2023-02747).
文摘Effective forest regeneration is essential for sustainable forestry practices.In Sweden,mechanical site preparation and manual planting is the dominating method,but sourcing labour for the physically demanding work is difficult.An autonomous scarifying and planting system(Autoplant)could meet the requirements of the forest industry and,for this,a tool for regeneration planning and routing is needed.The tool,Pathfinder,plans the regeneration and routes based on the harvested production(hpr)files,soil moisture and parent material maps,no-go areas(for culture or nature conservation),digital elevation models(DEM),and machine data(e.g.,working width,critical slope,time taken for different turn angles).The overall planting solution is either a set of capacity constrained routes or a continuous route and could be used for any planting machine as well as for traditional scarifiers as disc trenchers or mounders pulled by forwarders.Pathfinder was tested on eleven regeneration areas throughout Sweden,both with continuous routes and routes based on a carrying capacity of 1500 seedlings.The net operation area,species and seedling density suggestions were deemed relevant by expert judgement in the field.The routes provided by Pathfinder were compared with solutions given by two experienced drivers and a third solution based on the actual soil scarification at the site.Total driving distance did not differ significantly between the suggestions,but Pathfinder included less side-slope driving on steep slopes(≥27%or 15°)and medium slopes(15–27%).The chosen threshold value for steep slopes(where side-slope driving should be avoided)affects the routing,and a lower threshold means more turning and longer driving distance.Pathfinder is not only a tool for routing of planting machines,but also helps in planning of traditional regeneration by providing a more correct net area and tree species suggestions based on the growth of the previous stand.It also diminishes the risk of severe soil disturbance by excluding the wettest area in the planning.
文摘BACKGROUND Kidney transplantation is one of the most effective treatments for patients with end-stage renal disease.However,many regions face low deceased donor rates and limited ABO-compatible transplant availability,which increases reliance on living donors.These regional challenges necessitate the implementation of kidney paired donation(KPD)programs to overcome incompatibilities such as ABO mismatch or positive cross-matching,even when suitable and willing donors are available.AIM To evaluate the effectiveness of a single-center domino KPD model in both operational planning and clinical management processes and to assess its impact on clinical outcomes.METHODS Between April 2020 and January 2024,we retrospectively evaluated patients enrolled in our center’s domino kidney transplantation program.Donor-recipient pairs unable to proceed due to ABO incompatibility or positive cross-matching with their own living donors were included.Donors and recipients were assessed based on blood group compatibility,HLA tissue typing,and negative cross-match results.A specialized computer algorithm grouped patients into three-way,fourway,and five-way chains.All surgical procedures were performed on the same day at a single center.RESULTS A total of 169 kidney transplants were performed,forming 52 domino chains.These domino KPD transplants accounted for a notable proportion of our center’s overall transplant activity,which included both living donor kidney transplants and deceased donor transplants.Among these chains,the primary reasons for participation were ABO incompatibility(74%),positive cross-matching(10%),and the desire to improve HLA mismatch(16%).Improved HLA mismatch profiles and high graft survival(96%at 1 year,92%at 3 years)and patient survival(98%at 1 year,94%at 3 years)rates were observed,as well as low acute rejection episodes.CONCLUSION The single-center domino KPD model enhanced transplant opportunities for incompatible donor-recipient pairs while maintaining excellent clinical outcomes.By providing a framework that addresses regional challenges,improves operational efficiency,and optimizes clinical management,this model offers actionable insights to reduce waiting lists and improve patient outcomes.
文摘To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning.
基金supported by grants from the High-Level Oversea Talent Introduction Plan,Chinathe Special Fund for Basic Scientific Research in Central Universities of China-Doctoral Research and Innovation Fund Project,China(No.3072023CFJ0206).
文摘Rotor blade is one of the most significant components of helicopters. But due to its highspeed rotation characteristics, it is difficult to collect the vibration signals during the flight stage.Moreover, sensors are highly susceptible to damage resulting in the failure of the measurement.In order to make signal predictions for the damaged sensors, an operational modal analysis(OMA) together with the virtual sensing(VS) technology is proposed in this paper. This paper discusses two situations, i.e., mode shapes measured by all sensors(both normal and damaged) can be obtained using OMA, and mode shapes measured by some sensors(only including normal) can be obtained using OMA. For the second situation, it is necessary to use finite element(FE) analysis to supplement the missing mode shapes of damaged sensor. In order to improve the correlation between the FE model and the real structure, the FE mode shapes are corrected using the local correspondence(LC) principle and mode shapes measured by some sensors(only including normal).Then, based on the VS technology, the vibration signals of the damaged sensors during the flight stage can be accurately predicted using the identified mode shapes(obtained based on OMA and FE analysis) and the normal sensors signals. Given the high degrees of freedom(DOFs) in the FE mode shapes, this approach can also be used to predict vibration data at locations without sensors. The effectiveness and robustness of the proposed method is verified through finite element simulation, experiment as well as the actual flight test. The present work can be further used in the fault diagnosis and damage identification for rotor blade of helicopters.
文摘The early involvement of test and evaluation can significantly reduce the cost of modifying issues and errors found in the later stages of aircraft development and design process.This paper presents a methodology for aircraft mission effectiveness evaluation and design space exploration based on Virtual Operational Test(VOT),incorporating Virtual Open Scenario(VOS)and User in Scenarios(UIS)concepts.By employing modeling and simulation technologies in the early stages of aircraft development and design,a virtual environment can be constructed,allowing aircraft users to participate more closely and conveniently in the design process.Virtual tests conducted by users within the mission context provide data on mission effectiveness and critical user feedback.This paper outlines the main components of the virtual operational test process and related conceptual methods,and discusses an open support system framework that supports VOT.The effectiveness and adaptability of the method are demonstrated through two case studies:a beyond-visual-range air combat scenario and a helicopter ground attack scenario.These case studies demonstrate the evaluation of aircraft mission effectiveness and the sensitivity analysis and optimization of design and operational parameters based on VOT.
基金supported by the US Appalachian Regional Commission(ARC)under Grant MU-21579-23。
文摘Grid-scale energy storage systems provide effective solutions to address challenges such as supply-load imbalances and voltage violations resulting from the non-coinciding nature of renewable energy generation and peak demand incidents.While battery and hydrogen storage are commonly used for peak shaving,ice-based thermal energy storage systems(TESSs)offer a direct way to reduce cooling loads without electrical conversion.This paper presents a multi-objective planning framework that optimizes TESS dispatch,network topology,and photovoltaic(PV)inverter reactive power support to address operational issues in active distribution networks.The objectives of the proposed scheme include minimizing peak demand,voltage deviations,and PV inverter VAr dependency.The mixed-integer nonlinear programming problem is solved using a Pareto-based multi-objective particle swarm optimization(MOPSO)method.The MATLAB-OpenDSS simulations for a modified IEEE-123 bus system show a 7.1%reduction in peak demand,a 13%reduction in voltage deviation,and a 52%drop in PV inverter VAr usage.The obtained solutions confirm minimal operational stress on control devices such as switches and PV inverters.Thus,unlike earlier studies,this work combines all three strategies to offer an effective solution for the operational planning of the active distribution network.
文摘Growing regulatory demands for industrial safety and environmental protection in the chemical sector necessitate robust operational risk assessment to enhance management efficacy.Here,the HS Chemical Company is evaluated through a multidimensional framework encompassing market dynamics,macroeconomic factors,financial stability,governance,supply chains,and production safety.By integrating the Analytic Hierarchy Process(AHP)with entropy weighting,a hybrid weighting model that mitigates the limitations of singular methods is established.The analysis of this study identifies financial risk(weight:0.347)and production safety(weight:0.298)as dominant risk drivers.These quantitative insights offer a basis for resource prioritization and targeted risk mitigation strategies in chemical enterprises.
基金Supported by Undergraduate Innovation and Entrepreneurship Training Program(S202410599085).
文摘This paper offers a comprehensive overview of the operational principles of current therapeutic devices for diabetic foot management and further analyzes technological innovations and developmental trends,aiming to promote research and development in the field of technological convergence.The ultimate goal is to enhance the cure rate for diabetic foot conditions and to decrease the incidence of amputations.The paper discusses the novel applications of ultrasound and optical therapeutic devices within the field of physiotherapy,the numerous advantages of chitosan dressings in biotechnology,the ongoing advancements and broader combined use of vacuum sealing drainage techniques,and the distinctive effects and innovations associated with micro-oxygen diffusion techniques.It thoroughly examines various technological mechanisms that facilitate wound healing,highlighting the clinical applications of ultrasonic atomized medicinal solutions,novel dressing graft copolymerization,continuous hypoxia diffusion,and the functions of vacuum drainage.These advancements facilitate the integration of drainage and dressing changes,with the potential to enhance the therapeutic effects of diabetic foot treatment and provide valuable insights for clinical application.
基金support of the SGCC Science and Technology Project“Cost Analysis,Market Bidding Mechanism Research and Validation of New Power Sys-tem Transformation under a Diversified Value System”(1400-202357380A-2-3-XG)for this article.
文摘With the intensifying global climate crisis,carbon emissions trading has emerged as a crucial market-based instrument for emissions reduction,attracting significant attention from government agencies and academia worldwide.As of January 2024,28 carbon trading markets have been established globally,encompassing approximately 17%of global greenhouse gas emissions and serving approximately 1/3 of the global population.With various nations setting carbon neutrality targets and delineating carbon reduction pathways,the con-struction,operation,and regulatory frameworks of carbon markets are becoming increasingly refined and comprehensive.This study elucidates the importance and necessity of establishing carbon markets from the perspective of energy system transformation and sus-tainable economic development.Second,it provides a comparative analysis of the operational mechanisms,trading scales,and emission reduction outcomes of major carbon markets in the European Union,United States,and New Zealand,systematically summarizing their development processes and recent advancements.Finally,this study addresses issues and challenges in the construction of China’s carbon market.Drawing on the successful experiences of leading global carbon markets in institutional design and market operations,we pro-pose development strategies and recommendations for a carbon market with Chinese characteristics.These strategies are intended to align with international standards while meeting China’s national conditions,thereby contributing insights into the global carbon market trading system.
基金The Key R&D Project of Jilin Province,Grant/Award Number:20230201067GX。
文摘Extracting typical operational scenarios is essential for making flexible decisions in the dispatch of a new power system.A novel deep time series aggregation scheme(DTSAs)is proposed to generate typical operational scenarios,considering the large amount of historical operational snapshot data.Specifically,DTSAs analyse the intrinsic mechanisms of different scheduling operational scenario switching to mathematically represent typical operational scenarios.A Gramian angular summation field-based operational scenario image encoder was designed to convert operational scenario sequences into highdimensional spaces.This enables DTSAs to fully capture the spatiotemporal characteristics of new power systems using deep feature iterative aggregation models.The encoder also facilitates the generation of typical operational scenarios that conform to historical data distributions while ensuring the integrity of grid operational snapshots.Case studies demonstrate that the proposed method extracted new fine-grained power system dispatch schemes and outperformed the latest high-dimensional feature-screening methods.In addition,experiments with different new energy access ratios were conducted to verify the robustness of the proposed method.DTSAs enable dispatchers to master the operation experience of the power system in advance,and actively respond to the dynamic changes of the operation scenarios under the high access rate of new energy.
基金jointly supported by the National Key Research and Development Program of China (2023YFC3007503)the Joint Research Project for Meteorological Capacity Improvement (22NLTSZ002)+4 种基金the National Natural Science Foundations of China (Grant Nos.42375064, 41975102, 41730964, 42175047)the China Meteorological Administration Key Innovation Team for Climate Prediction (CMA2023ZD03)the Met Office Climate Science for Service Partnership (CSSP) China project under the International Science Partnerships Fund (ISPF)the Special Project of Innovation and Development of China Meteorological Administration (CXFZ2024J004)the China Yangtze Power Co.,Ltd.Research Project (Grant No.2423020054)。
文摘The Yangtze River Valley(YRV) of China experienced record-breaking heatwaves in July and August 2022. The characteristics, causes, and impacts of this extreme event have been widely explored, but its seasonal predictability remains elusive. This study assessed the real-time one-month-lead prediction skill of the summer 2022 YRV heatwaves using 12operational seasonal forecast systems. Results indicate that most individual forecast systems and their multi-model ensemble(MME) mean exhibited limited skill in predicting the 2022 YRV heatwaves. Notably, after the removal of the linear trend, the predicted 2-m air temperature anomalies were generally negative in the YRV, except for the Met Office Glo Sea6 system, which captured a moderate warm anomaly. While the models successfully simulated the influence of La Ni?a on the East Asian–western North Pacific atmospheric circulation and associated YRV temperature anomalies, only Glo Sea6 reasonably captured the observed relationship between the YRV heatwaves and an atmospheric teleconnection extending from the North Atlantic to the Eurasian mid-to-high latitudes. Such an atmospheric teleconnection plays a crucial role in intensifying the YRV heatwaves. In contrast, other seasonal forecast systems and the MME predicted a distinctly different atmospheric circulation pattern, particularly over the Eurasian mid-to-high latitudes, and failed to reproduce the observed relationship between the YRV heatwaves and Eurasian mid-to-high latitude atmospheric circulation anomalies.These findings underscore the importance of accurately representing the Eurasian mid-to-high latitude atmospheric teleconnection for successful YRV heatwave prediction.
基金supported by the National Natural Science Foundation of China(Grant No.12272248)the Postgraduate Research and Practice Innovation Program of Jiangsu Province of China(Grant No.KYCX23_3296).
文摘Fractional calculus is widely used to deal with nonconservative dynamics because of its memorability and non-local properties.In this paper,the Herglotz principle with generalized operators is discussed,and the Herglotz type equations for nonholonomic systems are established.Then,the Noether symmetries are studied,and the conserved quantities are obtained.The results are extended to nonholonomic canonical systems,and the Herglotz type canonical equations and the Noether theorems are obtained.Two examples are provided to demonstrate the validity of the methods and results.
基金Project supported by the National Natural Science Foundation of China (Grant No. U22B2095)the Civil Aerospace Technology Research Project (Grant No. D010103)。
文摘The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches between the parameters of the received amplitude modulation(AM) signals and the system's linear workspace and demodulation operating points can cause severe distortion in the demodulated signals. To address this, the article proposes a method for determining the operational parameters based on the mean square error(MSE) and total harmonic distortion(THD) assessments and presents strategies for optimizing the system's operational parameters focusing on linear response characteristics(LRC) and linear dynamic range(LDR). Specifically, we employ a method that minimizes the MSE to define the system's linear workspace, thereby ensuring the system has a good LRC while maximizing the LDR. To ensure that the signal always operates within the linear workspace, an appropriate carrier amplitude is set as the demodulation operating point. By calculating the THD at different operating points, the LRC performance within different regions of the linear workspace is evaluated, and corresponding optimization strategies based on the range of signal strengths are proposed. Moreover, to more accurately restore the baseband signal, we establish a mapping relationship between the carrier Rabi frequency and the transmitted power of the probe light, and optimize the slope of the linear demodulation function to reduce the MSE to less than 0.8×10^(-4). Finally, based on these methods for determining the operational parameters, we explore the effects of different laser Rabi frequencies on the system performance, and provide optimization recommendations. This research provides robust support for the design of high-performance Rydberg atom-based AM receivers.