期刊文献+
共找到85篇文章
< 1 2 5 >
每页显示 20 50 100
Effects of preparation and operation conditions on precipitated iron nickel catalysts for Fischer-Tropsch synthesis 被引量:4
1
作者 Mostafa Feyzi Ali Akbar Mirzaei Hamid Reza Bozorgzadeh 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第3期341-353,共13页
Iron nickel oxide catalysts were prepared using co-precipitation procedure and studied for the conversion of synthesis gas to light olefins.In particular,the effects of a range of preparation variables such as Fe/Ni m... Iron nickel oxide catalysts were prepared using co-precipitation procedure and studied for the conversion of synthesis gas to light olefins.In particular,the effects of a range of preparation variables such as Fe/Ni molar ratios of the precipitation solution,precipitate aging times,calcination conditions,different supports and loading of optimum support on the structure of catalysts and their catalytic performance for the tested reaction were investigated.It was found that the catalyst containing 40%Fe/60%Ni/40wt%Al 2O3 ,which was aged for 180 min and calcined at 600 ℃ for 6 h was the optimum modified catalyst.The catalytic performance of optimal catalyst has been studied in different operation conditions such as reaction temperatures,H2 /CO molar feed ratios and reaction total pressure.Characterization of both precursors and calcined catalysts was carried out by powder X-ray diffraction(XRD),scanning electron microscopy(SEM),Brunauer-Emmett-Teller(BET) surface area measurements,thermal analysis methods such as thermal gravimetric analysis(TGA) and differential scanning calorimetry(DSC). 展开更多
关键词 iron nickel light olefins FISCHER-TROPSCH operation conditions
在线阅读 下载PDF
Lifetime Evaluating and the Effects of Operation Conditions on Automotive Fuel Cells 被引量:3
2
作者 PEI Pucheng YUAN Xing +2 位作者 LI Pengcheng CHAO Pengxiang CHANG Qianfei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第1期66-71,共6页
Lifetime isone of the important indicators of automotive proton exchange membrane fuel cells. People used to evaluate the lifetime of vehicular fuel cells by laboratory tests or road tests that usually take thousands ... Lifetime isone of the important indicators of automotive proton exchange membrane fuel cells. People used to evaluate the lifetime of vehicular fuel cells by laboratory tests or road tests that usually take thousands hours even years. In order to achieve a rapid evaluation technique and to seek lifetime extension methods, a lifetime calculation formation was drawn out in consideration of the vehicle driving cycle and the working condition factors. Bench experiments were individually carried out on two fuel-cell stacks same as ones applied on vehicle, and the performance decay rates of the two stacks were obtained under four operation conditions of changing load cycle, start-stop cycle, idling and heavy load. As a result, the predicted lifetimes rather conform to the actual running status in road test. And the research on the fuel cell performance decay rates under different load conditions was also done. Consequently, an unexpected finding was discovered that operating under micro-current has an effect on recovering fuel cell performance. The vehicle fuel cell rapid assessment method only requires four laboratory tests of driving cycle, load cycle, idle operating conditions and heavy load conditions, and the whole process merely lasts less than 250 h. These experimental results can be used to predict the vehicular fuel cell lifetimes on various utility models or driving cycles, therefore to optimize the application model to prolong the fuel cell lifetime. Actually in the experiment, it has already been proved successfully that the fuel cell lifetime could be extended from 1 100 h to 2 600 h by optimizing operating mode. The quick evaluation method is helpful to develop extended life fuel cell and to deplete fuel cell for a longer time. 展开更多
关键词 Proton exchange membrane fuel cell fuel cell durability lifetime evaluating method operation conditions melioration.
在线阅读 下载PDF
Effects of Operation Conditions on Service Life of Ladle Lining
3
作者 TIAN Shouxin YU Yanwen 《China's Refractories》 CAS 2013年第1期12-16,共5页
Effects of operation conditions such as ladle temperature, remining time of molten steel, slag basicity, slag oxidation, slag viscosity , vacuum treatment, ultra-high temperature, gas blowing and stirring, intermitten... Effects of operation conditions such as ladle temperature, remining time of molten steel, slag basicity, slag oxidation, slag viscosity , vacuum treatment, ultra-high temperature, gas blowing and stirring, intermittent operation, and different refining equipment on service life of ladle lining refractories were researched. The following conclusions are drawn : (1) molten steel temperature rising, remaiaing time prolonging, slag oxidation ability enhancing, slag viscosity and basicity decreasing can aecelerate the corrosion of ladle lining ; (2) ultra-high temperature and vacuum treatment of ladle not only acceler- ate the fusion corrasion of ladle lining, but also make the carbon containing refractories react forming gases leading to more corrosion, so carbon containing refractories are not stdtable.for the smelting conditions of long term vacuum treatment and ultra-high temperature, especially carbon containing refractories added with conventional additives such as A1 and Si powders ; ( 3 ) argon blowing does not accelerate the corrosion of ladle lining obvioasly, but oxygen blowing does; (4) the corrosion degree of refractories varies with the refining equipment, and the service life of ladle lining decreases according to a certain proportion with the refining ratio increasing. 展开更多
关键词 operation condition service life ladle lining
在线阅读 下载PDF
Experimental study on operating conditions and bubble behavior of bubbling fluidized bed in stable operation state
4
作者 Kui-song Zhu Zhong Zheng +2 位作者 Si-ling Jian Li Cao Jian Yang 《Journal of Iron and Steel Research International》 2025年第11期3709-3721,共13页
From the perspective of facilitating the design of fluidized hydrogen reduction reactors for iron ore powder and maintaining stable operation,the operational conditions and bubble behavior in stable state fluidization... From the perspective of facilitating the design of fluidized hydrogen reduction reactors for iron ore powder and maintaining stable operation,the operational conditions and bubble behavior in stable state fluidization of multi-particle size systems were investigated through cold-state experiments.To facilitate the identification of bubble behavior,a two-dimensional bubbling bed cold-state experiment was carried out using iron ore powder with a narrow particle size distribution and glass beads.Initially,the multi-stage fluidization characteristics of iron ore powder were examined.Then,using Geldart B-type glass beads to simulate a multi-particle size composition system,the particle size range and superficial gas velocity range for stable operation of the multi-particle composition system were explored.When the mass percentage of 150-μm glass beads was 15%,the stable fluidization operational gas velocity range was found to be(1.05-1.21)umf,where umf is the minimum fluidization velocity;when the content was 20%,the stable fluidized superficial gas velocity range was(1.09-1.26)umf.Under stable fluidization operating conditions,the dynamic behavior of bubbles(average equivalent diameter,rising velocity,and lateral migration velocity)was studied,and the quantitative relationship between the average equivalent diameter of bubbles and bed height in multi-particle size systems under stable fluidization conditions was also corrected.Additionally,the correlation between bubble rising velocity and bubble average equivalent diameter was established. 展开更多
关键词 Low carbon ironmaking Bubbling fluidized bed Iron ore powder Stable operating condition Operating parameter Bubble behavior
原文传递
Molecular transformation of heavy oil during slurry phase hydrocracking process:Influences of operational conditions
5
作者 Jing-Man Lu Yuan-Feng Wang +6 位作者 Zhi-Yuan Zhou Jian-Xun Wu Ya-He Zhang Lin-Zhou Zhang Quan Shi Sheng-Bao He Chun-Ming Xu 《Petroleum Science》 2025年第2期884-893,共10页
The influences of reaction temperature,duration,pressure,and catalyst concentration on the molecular transformation of residual slurry phase hydrocracking process were investigated.The molecular composition of the het... The influences of reaction temperature,duration,pressure,and catalyst concentration on the molecular transformation of residual slurry phase hydrocracking process were investigated.The molecular composition of the heteroatom compounds in the residue feedstock and its upgrading products were characterized using high-resolution Orbitrap mass spectrometry coupled with multiple ionization methods.The simultaneous promotion of cracking and hydrogenation reactions was observed with increasing of the reaction temperature and time.Specifically,there was a significant increase in the cracking degree of alkyl side chain,while the removal of low-condensation sulfur compounds such as sulfides and benzothiophenes was enhanced.In particular,the cracking reactions were more significantly facilitated by high temperatures,while an appropriately extended reaction time can result in the complete elimination of the aforementioned sulfur compounds with a lower degree of condensation.Under conditions of low hydrogen pressure and catalyst concentration,the products still exhibit a high relative abundance of easily convertible compounds such as sulfoxides,indicating a significant deficiency in the effectiveness of hydrogenation.The hydrogen pressure exhibits an optimal value,beyond which further increments have no effect on the composition and performance of the liquid product but can increase the yield of the liquid product.At significantly high catalyst concentration,the effect of desulfurization and deoxidation slightly diminishes,while the aromatic saturation of highly condensed compounds was notably enhanced.This hydrogenation saturation effect cannot be attained through manipulation of other operational parameters,thereby potentially benefiting subsequent product processing and utilization.This present study demonstrates a profound comprehension of the molecular-level residue slurry phase hydrocracking process,offering not only specific guide for process design and optimization but also valuable fundamental data for constructing reaction models at the molecular level. 展开更多
关键词 Slurry phase hydrocracking Operating condition Orbitrap MS Molecular composition
原文传递
A hybrid deep neural network based prediction of 300 MW coalfired boiler combustion operation condition 被引量:5
6
作者 HAN ZheZhe HUANG YiZhi +3 位作者 LI Jian ZHANG Biao HOSSAIN Md.Moinul XU ChuanLong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第10期2300-2311,共12页
In power generation industries,boilers are required to be operated under a range of different conditions to accommodate demands for fuel randomness and energy fluctuation.Reliable prediction of the combustion operatio... In power generation industries,boilers are required to be operated under a range of different conditions to accommodate demands for fuel randomness and energy fluctuation.Reliable prediction of the combustion operation condition is crucial for an in-depth understanding of boiler performance and maintaining high combustion efficiency.However,it is difficult to establish an accurate prediction model based on traditional data-driven methods,which requires prior expert knowledge and a large number of labeled data.To overcome these limitations,a novel prediction method for the combustion operation condition based on flame imaging and a hybrid deep neural network is proposed.The proposed hybrid model is a combination of convolutional sparse autoencoder(CSAE)and least support vector machine(LSSVM),i.e.,CSAE-LSSVM,where the convolutional sparse autoencoder with deep architectures is utilized to extract the essential features of flame image,and then essential features are input into the least support vector machine for operation condition prediction.A comprehensive investigation of optimal hyper-parameter and dropout technique is carried out to improve the performance of the CSAE-LSSVM.The effectiveness of the proposed model is evaluated by 300 MW tangential coal-fired boiler flame images.The prediction accuracy of the proposed hybrid model reaches 98.06%,and its prediction time is 3.06 ms/image.It is observed that the proposed model could present a superior performance in comparison to other existing neural network models. 展开更多
关键词 coal-fired power plant combustion operation condition prediction flame image convolutional sparse autoencoder least support vector machine
原文传递
In-situ study of the hydrogen peroxide photoproduction in seawater on carbon dot-based metal-free catalyst under operation condition 被引量:1
7
作者 Jiaxuan Wang Jiacheng Li +10 位作者 Zenan Li Jie Wu Honglin Si Yangbo Wu Zhiyong Guo Xuepeng Wang Fan Liao Hui Huang Mingwang Shao Yang Liu Zhenhui Kang 《Nano Research》 SCIE EI CSCD 2024年第7期5956-5964,共9页
Hydrogen peroxide(H_(2)O_(2))photoproduction in seawater with metal-free photocatalysts derived from biomass materials is a green,sustainable,and ultra environmentally friendly way.However,most photocatalysts are alwa... Hydrogen peroxide(H_(2)O_(2))photoproduction in seawater with metal-free photocatalysts derived from biomass materials is a green,sustainable,and ultra environmentally friendly way.However,most photocatalysts are always corroded or poisoned in seawater,resulting in a significantly reduced catalytic performance.Here,we report the metal-free photocatalysts(RUT-1 to RUT-5)with in-situ generated carbon dots(CDs)from biomass materials(Rutin)by a simple microwave-assisted pyrolysis method.Under visible light(λ≥420 nm,81.6 mW/cm^(2)),the optimized catalyst of RUT-4 is stable and can achieve a high H_(2)O_(2)yield of 330.36μmol/L in seawater,1.78 times higher than that in normal water.New transient potential scanning(TPS)tests are developed and operated to in-situ study the H_(2)O_(2)photoproduction of RUT-4 under operation condition.RUT-4 has strong oxygen(O_(2))absorption capacity,and the O_(2)reduction rate in seawater is higher than that in water.Metal cations in seawater further promote the photo-charge separation and facilitate the photo-reduction reaction.For RUT-4,the conduction band level under operating conditions only satisfies the requirement of O_(2)reduction but not for hydrogen(H2)evolution.This work provides new insights for the in-situ study of photocatalyst under operation condition,and gives a green and sustainable path for the H_(2)O_(2)photoproduction with metal-free catalysts in seawater. 展开更多
关键词 carbon dots hydrogen peroxide photocatalysis transient potential scanning in-situ study operation condition
原文传递
Research on the Operational Conditions of Artificial Precipitation Enhancement in Liaoning Province 被引量:1
8
作者 田广元 《Meteorological and Environmental Research》 CAS 2010年第11期97-100,共4页
Taking precipitation process during May 17-18,2009 as an example,this paper analyzed and summarized the operational conditions of artificial precipitation enhancement in Liaoning Province.Operational conditions can be... Taking precipitation process during May 17-18,2009 as an example,this paper analyzed and summarized the operational conditions of artificial precipitation enhancement in Liaoning Province.Operational conditions can be divided into two categories,namely,macro-weather and cloud micro-physical operational conditions,this paper described their respective indexes and criterions as well as their effect and application in formulation and command of artificial precipitation enhancement plan real-timely. 展开更多
关键词 operational condition Zone of ice-water transformation Water vapor conveying zone Saturation zone China
在线阅读 下载PDF
Health risk of whole body vibration in mining trucks during various operational conditions
9
作者 Rahimdel M.J Mirzaei M +1 位作者 Sattarvand J Hoseinie S.H 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1808-1816,共9页
Mining machineries are generally exposed to intensive vibrations in harsh mining environment. If vibrations are beyond the tolerable limit, the machine and its operator health will be under the risk. In this work, the... Mining machineries are generally exposed to intensive vibrations in harsh mining environment. If vibrations are beyond the tolerable limit, the machine and its operator health will be under the risk. In this work, the vibration of a mining truck at different operational conditions are simulated and discussed. To achieve this aim, three haul roads with low, medium and poor qualities are considered based on the ISO standard. Accordingly, the vibration of a mining truck in different speeds, payload and distribution qualities of materials in the dump body are evaluated in each haul road quality using Trucksim software. The simulation results with statistical discussions indicate that the truck speed and the materials distribution quality have significant effects on the root mean square(RMS) of vertical vibrations. However, the effect of the payload is not considerable on the RMS. Moreover, the accumulation of materials on the rear side of the truck dump body is efficient on the vibrational health risk. 展开更多
关键词 mining trucks operational conditions health risk whole body vibration
在线阅读 下载PDF
A novel mechanism-based HF for offline and online capacity estimation of lithium-ion batteries under unknown dynamic operating conditions
10
作者 Ting Tang Yi Ren +2 位作者 Quan Xia Cheng Qian Dezhen Yang 《Journal of Energy Chemistry》 2025年第11期944-961,I0021,共19页
When estimating the capacity of lithium-ion batteries offline or online,it is essential to extract a health feature(HF)that can effectively characterize capacity degradation under both conventional ideal and complex d... When estimating the capacity of lithium-ion batteries offline or online,it is essential to extract a health feature(HF)that can effectively characterize capacity degradation under both conventional ideal and complex dynamic operating conditions.However,the extraction of most HFs relies on complete charge-discharge cycle data,making them less adaptable to complex dynamic operating conditions.Existing mechanism HFs,while capable of characterizing capacity degradation from a mechanism perspective,suffer from limitations such as insufficient physical model expressiveness,high dimension,and redundancy of the mechanism HF.These issues increase the complexity of subsequent modeling of the relationship between HFs and capacity,thereby restricting their promotion in engineering practice.To meet this gap,this paper proposes a novel mechanism-based HF.Firstly,a multi-physical fields coupling model is developed to describe the interactions between electrochemical,thermal,and aging behaviors of the battery.Secondly,based on the aging mechanism,the accumulated charge of lithium lost during the formation of the solid electrolyte interphase(SEI)film is extracted as HF to provide a more intuitive representation of capacity degradation.Then,to reduce estimation errors caused by considering only a single aging mechanism,multiple representative regression models are employed to establish the mapping relationship between the mechanism HF and capacity,further enhancing the accuracy of final results.Finally,the proposed method is implemented and validated using real battery data under three different types of operating conditions.Experimental results demonstrate that,compared to other commonly used HFs,the proposed HF exhibits significant competitive advantages in handling incomplete cycle data,unknown operating conditions,and capacity estimation models.The minimum estimation error under ideal conditions is 0.0074,and the minimum estimation error under complex dynamic conditions is 0.0268. 展开更多
关键词 Lithium-ion battery SEI film formation Mechanism health feature Capacity estimation Dynamic operating conditions Offline estimation Online estimation
在线阅读 下载PDF
Hybrid Attention-Driven Transfer Learning with DSCNN for Cross-Domain Bearing Fault Diagnosis under Variable Operating Conditions
11
作者 Qiang Ma Zepeng Li +2 位作者 Kai Yang Shaofeng Zhang Zhuopei Wei 《Structural Durability & Health Monitoring》 2025年第6期1607-1634,共28页
Effective fault identification is crucial for bearings, which are critical components of mechanical systems and play a pivotal role in ensuring overall safety and operational efficiency. Bearings operate under variabl... Effective fault identification is crucial for bearings, which are critical components of mechanical systems and play a pivotal role in ensuring overall safety and operational efficiency. Bearings operate under variable service conditions, and their diagnostic environments are complex and dynamic. In the process of bearing diagnosis, fault datasets are relatively scarce compared with datasets representing normal operating conditions. These challenges frequently cause the practicality of fault detection to decline, the extraction of fault features to be incomplete, and the diagnostic accuracy of many existing models to decrease. In this work, a transfer-learning framework, designated DSCNN-HA-TL, is introduced to address the enduring challenge of cross-condition diagnosis in rolling-bearing fault detection. The framework integrates a window global mixed attention mechanism with a deep separable convolutional network, thereby enabling adaptation to fault detection tasks under diverse operating conditions. First, a Convolutional Neural Network (CNN) is employed as the foundational architecture, where the original convolutional layers are enhanced through the incorporation of depthwise separable convolutions, resulting in a Depthwise Separable Convolutional Neural Network (DSCNN) architecture. Subsequently, the extraction of fault characteristics is further refined through a dual-branch network that integrates hybrid attention mechanisms, specifically windowed and global attention mechanisms. This approach enables the acquisition of multi-level feature fusion information, thereby enhancing the accuracy of fault classification. The integration of these features not only optimizes the characteristic extraction process but also yields improvements in accuracy, representational capacity, and robustness in fault feature recognition. In conclusion, the proposed method achieved average precisions of 99.93% and 99.55% in transfer learning tasks, as demonstrated by the experimental results obtained from the CWRU public dataset and the bearing fault detection platform dataset. The experimental findings further provided a detailed comparison between the diagnostic models before and after the enhancement, thereby substantiating the pronounced advantages of the DSCNN-HA-TL approach in accurately identifying faults in critical mechanical components under diverse operating conditions. 展开更多
关键词 Bearing fault diagnosis transfer learning hybrid attention mechanism DSCNN variable operating condition
在线阅读 下载PDF
Performance Analysis of sCO_(2)Centrifugal Compressor under Variable Operating Conditions
12
作者 Jiangbo Wu Siyi Sun Xiaoze Du 《Fluid Dynamics & Materials Processing》 2025年第8期1789-1807,共19页
This study explores the aerodynamic performance and flow field characteristics of supercritical carbon dioxide(sCO_(2))centrifugal compressors under varying operating conditions.In particular,the Sandia main compresso... This study explores the aerodynamic performance and flow field characteristics of supercritical carbon dioxide(sCO_(2))centrifugal compressors under varying operating conditions.In particular,the Sandia main compressor impeller model is used as a reference system.Through three-dimensional numerical simulations,we examine the Mach number distribution,temperature field,blade pressure pulsation spectra,and velocity field evolution,and identify accordingly the operating boundaries ensuring stability and the mechanisms responsible for performance degradation.Findings indicate a stable operating range for mass flow rate between 0.74 and 3.74 kg/s.At the lower limit(0.74 kg/s),the maximum Mach number within the compressor decreases by 28%,while the temperature gradient sharpens,entropy rises notably,and fluid density varies significantly.The maximum pressure near the blades increases by 6%,yet flow velocity near the blades and outlet declines,with a 19%reduction in peak speed.Consequently,isentropic efficiency falls by 13%.Conversely,at 3.74 kg/s,the maximum Mach number increases by 23.7%,with diminished temperature gradients and minor fluid density variations.However,insufficient enthalpy gain and intensified pressure pulsations near the blades result in a 12%pressure drop.Peak velocity within the impeller channel surges by 23%,amplifying velocity gradients,inducing flow separation,and ultimately reducing the pressure ratio from 1.47 to 1.34. 展开更多
关键词 Supercritical carbon dioxide centrifugal compressor variable operating condition analysis aerodynamic characteristics flow field analysis
在线阅读 下载PDF
Identification of working conditions and prediction of NO_(x) emissions in iron ore fines sintering process
13
作者 Bao-rong Wang Xiao-ming Li +3 位作者 Zhi-heng Yu Xu-hui Lin Yi-ze Ren Xiang-dong Xing 《Journal of Iron and Steel Research International》 2025年第8期2277-2285,共9页
Predicting NO_(x)in the sintering process of iron ore powder in advance was helpful to adjust the denitrification process in time.Taking NO_(x)in the sintering process of iron ore powder as the object,the boxplot,empi... Predicting NO_(x)in the sintering process of iron ore powder in advance was helpful to adjust the denitrification process in time.Taking NO_(x)in the sintering process of iron ore powder as the object,the boxplot,empirical mode decomposition algorithm,Pearson correlation coefficient,maximum information coefficient and other methods were used to preprocess the sintering data and naive Bayes classification algorithm was used to identify the sintering conditions.The regression prediction model with high accuracy and good stability was selected as the sub-model for different sintering conditions,and the sub-models were combined into an integrated prediction model.Based on actual operational data,the approach proved the superiority and effectiveness of the developed model in predicting NO_(x),yielding an accuracy of 96.17%and an absolute error of 5.56,and thereby providing valuable foresight for on-site sintering operations. 展开更多
关键词 Iron ore fines sintering Operating condition recognition NO_(x)emission Data preprocessing Integrated prediction model
原文传递
Advances in component and operation optimization of solid oxide electrolysis cell 被引量:4
14
作者 Xiaoxin Zhang Bo Liu +5 位作者 Yanling Yang Jianhui Li Jian Li Yingru Zhao Lichao Jia Yifei Sun 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第5期155-164,共10页
Considering the earth powered by intermittent renewable energy in the coming future,solid oxide electrolysis cell(SOEC)will play an indispensable role in efficient energy conversion and storage on demand.The thermolyt... Considering the earth powered by intermittent renewable energy in the coming future,solid oxide electrolysis cell(SOEC)will play an indispensable role in efficient energy conversion and storage on demand.The thermolytic and kinetic merits grant SOEC a bright potential to be directly integrated with electrical grid and downstream chemical synthesis process.Meanwhile,the scientific community are still endeavoring to pursue the SOEC assembled with better materials and operated at a more energy-efficient way.In this review article,at cell level,we focus on the recent development of electrolyte,cathode,anode and buffer layer materials for both steam and CO_(2)electrolysis.On the other hand,we also discuss the next generation SOEC operated with the assistant of other fuels to further reduce the energy consumption and enhance the productivity of the electrolyzer.And stack level,the sealant,interconnect and stack operation strategies are collectively covered.Finally,the challenges and future research direction in SOECs are included. 展开更多
关键词 Solid oxide electrolysis cell Fuel assistant STACK operation condition ANODE CATHODE
原文传递
Feature Extraction Method Based on Pseudo-Wigner-Ville Distribution for Rotational Machinery in Variable Operating Conditions 被引量:9
15
作者 WANG Huaqing LIKe +1 位作者 SUN Hao CHEN Peng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第4期661-668,共8页
In the case of fault diagnosis for roller bearings, the conventional diagnosis approaches by using the time interval of energy impacts in time-frequency distribution or the pass-frequencies are based on the assumption... In the case of fault diagnosis for roller bearings, the conventional diagnosis approaches by using the time interval of energy impacts in time-frequency distribution or the pass-frequencies are based on the assumption that machinery operates under a constant rotational speed. However, when the rotational speed varies in the broader range, the pass-frequencies vary with the change of rotational speed and bearing faults cannot be identified by the interval of impacts. Researches related to automatic diagnosis for rotational machinery in variable operating conditions were quite few. A novel automatic feature extraction method is proposed based on a pseudo-Wigner-Ville distribution (PWVD) and an extraction of symptom parameter (SP). An extraction method for instantaneous feature spectrum is presented using the relative crossing information (RCI) and sequential inference approach, by which the feature spectrum from time-frequency distribution can be automatically, sequentially extracted. The SPs are considered in the frequency domain using the extracted feature spectrum to identify among the conditions of a machine. A method to obtain the synthetic symptom parameter is also proposed by the least squares mapping (LSM) technique for increasing the diagnosis sensitivity of SP. Practical examples of diagnosis for bearings are given in order to verify the effectiveness of the proposed method. The verification results show that the features of bearing faults, such as the outer-race, inner-race and roller element defects have been effectively extracted, and the proposed method can be used for condition diagnosis of a machine under the variable rotational speed. 展开更多
关键词 feature extraction pseudo-wigner-ville distribution variable operating condition sequential diagnosis
在线阅读 下载PDF
Optimal reaction conditions for pyridine synthesis in riser reactor 被引量:3
16
作者 Shuaishuai Zhou Zelong Liu +4 位作者 Xiao Yan Qin Di Mengxi Liu Chunxi Lu Guangzhou Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第7期1499-1507,共9页
Pjridine has been generally synthesized by aldehydes and ammonia in a turbulent fluidized-bed reactor. In this paper, a novel riser reactor was proposed for pyridine synthesis. Experiment result showed that the yield ... Pjridine has been generally synthesized by aldehydes and ammonia in a turbulent fluidized-bed reactor. In this paper, a novel riser reactor was proposed for pyridine synthesis. Experiment result showed that the yield of pyridine and 3-picoline decreased, but the selectivity of pyridine over 3-picoline increased compared to turbulent fluidized-bed reactor. Based on experimental data, a modified kinetic model was used for the determination of optimal operating condition for riser reactor. The optimal operating condition of riser reactor given by this modified model was as follows: The reaction temperature of 755 K, catalyst to feedstock ratio (CTFR) of 87, residence timeof3.8sandinitialacetaldehydesconcentrationof0.0029mol.L-1 (acetaldehydes to formaldehydes ratio by mole (ATFR) of 0.65 and ammonia to aldehydes ratio by mole (ATAR) of 0.9, water contention of 63wt% (formaldehyde solution)). 展开更多
关键词 Pyridine synthesis Riser reactor Optimal operating condition
在线阅读 下载PDF
Influences of fluid physical properties,solid particles,and operating conditions on the hydrodynamics in slurry reactors 被引量:2
17
作者 He Yang Aqiang Chen +4 位作者 Shujun Geng Jingcai Cheng Fei Gao Qingshan Huang Chao Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期51-71,共21页
Slurry reactors are popular in many industrial processes,involved with numerous chemical and biological mixtures,solid particles with different concentrations and properties,and a wide range of operating conditions.Th... Slurry reactors are popular in many industrial processes,involved with numerous chemical and biological mixtures,solid particles with different concentrations and properties,and a wide range of operating conditions.These factors can significantly affect the hydrodynamic in the slurry reactors,having remarkable effects on the design,scale-up,and operation of the slurry reactors.This article reviews the influences of fluid physical properties,solid particles,and operating conditions on the hydrodynamics in slurry reactors.Firstly,the influence of fluid properties,including the density and viscosity of the individual liquid and gas phases and the interfacial tension,has been reviewed.Secondly,the solid particle properties(i.e.,concentration,density,size,wettability,and shape)on the hydrodynamics have been discussed in detail,and some vital but often ignored features,especially the influences of particle wettability and shape,as well as the variation of surface tension because of solid concentration alteration,are highlighted in this work.Thirdly,the variations of physical properties of fluids,hydrodynamics,and bubble behavior resulted from the temperature and pressure variations are also summarized,and the indirect influences of pressure on viscosity and surface tension are addressed systematically.Finally,conclusions and perspectives of these notable influences on the design and scale-up of industrial slurry reactors are presented. 展开更多
关键词 Multiphase reactors Fluid physical properties PARTICLE Operating conditions Bubble column Airlift loop reactor
在线阅读 下载PDF
Boosting lithium batteries under harsh operating conditions by a resilient ionogel with liquid-like ionic conductivity 被引量:2
18
作者 Le Yu Qing Liu +6 位作者 Libin Wang Songtao Guo Qiaomei Hu Yaqian Li Xiwei Lan Zhifang Liu Xianluo Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期408-414,I0009,共8页
New chemistries are being developed to increase the capacity and power of rechargeable batteries. However, the risk of safety issues increases when high-energy batteries using highly active materials encounter harsh o... New chemistries are being developed to increase the capacity and power of rechargeable batteries. However, the risk of safety issues increases when high-energy batteries using highly active materials encounter harsh operating conditions. Here we report on the synthesis of a unique ionogel electrolyte for abuse-tolerant lithium batteries. A hierarchically architected silica/polymer scaffold is designed and fabricated through a facile soft chemistry route, which is competent to confine ionic liquids with superior uptake ability (92.4 wt%). The monolithic ionogel exhibits high conductivity and thermal/mechanical stability, featuring high-temperature elastic modulus and dendrite-free lithium cycling. The Li/LiFePO_(4) pouch cells achieve outstanding cyclability at different temperatures up to 150 ℃, and can sustain cutting, crumpling, and even coupled thermal–mechanical abuses. Moreover, the solid-state lithium batteries with LiNi_(0.60)Co_(0.20)Mn_(0.20)O_(2), LiNi_(0.80)Co_(0.15)Al_(0.05)O_(2), and Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2) cathodes demonstrate excellent cycle performances at 60 ℃. These results indicate that the resilient and high-conductivity ionogel electrolyte is promising to realize high-performance lithium batteries with high energy density and safety. 展开更多
关键词 Ionogel electrolytes Lithium batteries SAFETY Harsh operating conditions CYCLABILITY
在线阅读 下载PDF
An Experimental Study on Optimization of Large-volume Airgun Source Excitation Conditions in a Reservoir 被引量:4
19
作者 Chen Huifang Lin Binhua +2 位作者 Jin Xing Wu Lihua Cai Huiteng 《Earthquake Research in China》 CSCD 2016年第3期355-363,共9页
Through manual pickup of seismic phases,the number of recording stations,the farthest observation distance of station and received energy are determined,then optimal operating condition processing software is develope... Through manual pickup of seismic phases,the number of recording stations,the farthest observation distance of station and received energy are determined,then optimal operating condition processing software is developed to evaluate the excitation effect of operating conditions. The optimal operating conditions in the Mianhuatan Reservoir are determined using this software. They are: optimal water depth 25 m,airgun array sink depth 9m and airgun array size 7m × 7m. At the same time,accumulative stacking results for every 10 times are analyzed for 300 fixed-point excitations. It is concluded that the excitation effect shows a rapidly rising trend at 10 to 90 times stacking,a slowly rising trend at 100 to 150 times stacking,a rapidly rising trend at 160 to 240 times stacking,and a slowly rising trend at 250 to 300 times stacking. As the number of stacking increases,the propagation distance and the number of recording stations also increase gradually. 展开更多
关键词 Optimum operating condition Stacking analysis Excitation effect Observation distance
在线阅读 下载PDF
Liquid Metal-Based Self-Healable and Elastic Conductive Fiber in Complex Operating Conditions 被引量:2
20
作者 Yin Zhou Yingying Zhu +4 位作者 Zuan Hu Xiaoying Yang Pengkun Yang Lu Huang Yingpeng Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期297-304,共8页
Flexible conductive fibers are essential for wearable electronics and smart electronic textiles.However,in complex operating conditions,conductive fibers will inevitably fracture or damage.Herein,we have developed an ... Flexible conductive fibers are essential for wearable electronics and smart electronic textiles.However,in complex operating conditions,conductive fibers will inevitably fracture or damage.Herein,we have developed an elastic conductive self-healable fiber(C-SHF),of which the electrical and mechanical properties can efficiently heal in a wide operating range,including room temperature,underwater,and low temperature.This advantage can be owed to the combination of reversible covalent imine bond and disulfide bond,as well as the instantaneous self-healing ability of liquid metal.The C-SHF,with stretchability,conductivity stability,and universal self-healing properties,can be used as an electrical signal transmission line at high strain and under different operating conditions.Besides,C-SHF was assembled into a double-layer capacitor structure to construct a self-healable sensor,which can effectively respond to pressure as a wearable motion detector. 展开更多
关键词 complex operating conditions elastic conductive fiber liquid metal SELF-HEALING
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部