Accurate recognition of flight deck operations for carrier-based aircraft, based on operation trajectories, is critical for optimizing carrier-based aircraft performance. This recognition involves understanding short-...Accurate recognition of flight deck operations for carrier-based aircraft, based on operation trajectories, is critical for optimizing carrier-based aircraft performance. This recognition involves understanding short-term and long-term spatial collaborative relationships among support agents and positions from long spatial–temporal trajectories. While the existing methods excel at recognizing collaborative behaviors from short trajectories, they often struggle with long spatial–temporal trajectories. To address this challenge, this paper introduces a dynamic graph method to enhance flight deck operation recognition. First, spatial–temporal collaborative relationships are modeled as a dynamic graph. Second, a discretized and compressed method is proposed to assign values to the states of this dynamic graph. To extract features that represent diverse collaborative relationships among agents and account for the duration of these relationships, a biased random walk is then conducted. Subsequently, the Swin Transformer is employed to comprehend spatial–temporal collaborative relationships, and a fully connected layer is applied to deck operation recognition. Finally, to address the scarcity of real datasets, a simulation pipeline is introduced to generate deck operations in virtual flight deck scenarios. Experimental results on the simulation dataset demonstrate the superior performance of the proposed method.展开更多
Our concern is to investigate controlled remote implementation of partially unknown operations with multiple layers.We first propose a scheme to realize the remote implementation of singlequbit operations belonging to...Our concern is to investigate controlled remote implementation of partially unknown operations with multiple layers.We first propose a scheme to realize the remote implementation of singlequbit operations belonging to the restricted sets.Then,the proposed scheme is extended to the case of single-qudit operations.As long as the controller and the higher-layer senders consent,the receiver can restore the desired state remotely operated by the sender.It is worth mentioning that the recovery operation is deduced by general formulas which clearly reveal the relationship with the measurement outcomes.For the sake of clarity,two specific examples with two levels are given respectively.In addition,we discuss the influence of amplitude-damping noise and utilize weak measurement and measurement reversal to effectively resist noise.展开更多
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe...Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.展开更多
Although phase-change random-access memory(PCRAM)is a promising next-generation nonvolatile memory technology,challenges remain in terms of reducing energy consumption.This is primarily be-cause the high thermal condu...Although phase-change random-access memory(PCRAM)is a promising next-generation nonvolatile memory technology,challenges remain in terms of reducing energy consumption.This is primarily be-cause the high thermal conductivities of phase-change materials(PCMs)promote Joule heating dissi-pation.Repeated phase transitions also induce long-range atomic diffusion,limiting the durability.To address these challenges,phase-change heterostructure(PCH)devices that incorporate confinement sub-layers based on transition-metal dichalcogenide materials have been developed.In this study,we engi-neered a PCH device by integrating HfTe_(2),which has low thermal conductivity and excellent stability,into the PCM to realize PCRAM with enhanced thermal efficiency and structural stability.HEAT sim-ulations were conducted to validate the superior heat confinement in the programming region of the HfTe_(2)-based PCH device.Moreover,electrical measurements of the device demonstrated its outstanding performance,which was characterized by a low RESET current(∼1.6 mA),stable two-order ON/OFF ratio,and exceptional cycling endurance(∼2×10^(7)).The structural integrity of the HfTe_(2)confinement sub-layer was confirmed using X-ray photoelectron spectroscopy and transmission electron microscopy.The material properties,including electrical conductivity,cohesive energy,and electronegativity,substantiated these findings.Collectively,these results revealed that the HfTe_(2)-based PCH device can achieve significant improvements in performance and reliability compared with conventional PCRAM devices.展开更多
BACKGROUND A total of 100 patients diagnosed with mixed hemorrhoids from October 2022 to September 2023 in our hospital were randomly divided into groups by dice rolling and compared with the efficacy of different tre...BACKGROUND A total of 100 patients diagnosed with mixed hemorrhoids from October 2022 to September 2023 in our hospital were randomly divided into groups by dice rolling and compared with the efficacy of different treatment options.AIM To analyze the clinical effect and prognosis of mixed hemorrhoids treated with polidocanol injection combined with automatic elastic thread ligation operation(RPH).METHODS A total of 100 patients with mixed hemorrhoids who visited our hospital from October 2022 to September 2023 were selected and randomly divided into the control group(n=50)and the treatment group(n=50)by rolling the dice.The procedure for prolapse and hemorrhoids(PPH)was adopted in the control group,while polidocanol foam injection+RPH was adopted in the treatment group.The therapeutic effects,operation time,wound healing time,hospital stay,pain situation(24 hours post-operative pain score,first defecation pain score),quality of life(QOL),incidence of complications(post-operative hemorrhage,edema,infection),incidence of anal stenosis 3 months post-operatively and recurrence rate 1 year post-operatively of the two groups were compared.RESULTS Compared with the control group,the total effective rate of treatment group was higher,and the difference was significant(P<0.05).The operation time/wound healing time/hospital stay in the treatment group were shorter than those in the control group(P<0.05).The pain scores at 24 hours after operation/first defecation pain score of the treatment group was significantly lower than those in the control group(P<0.05).After surgery,the QOL scores of the two groups decreased,with the treatment group having higher scores than that of the control group(P<0.05).Compared with the control group,the incidence of postoperative complications in the treatment group was lower,and the difference was significant(P<0.05);However,there was no significant difference in the incidence of postoperative bleeding between the two groups(P>0.05);There was no significant difference in the incidence of anal stenosis 3 months after operation and the recurrence rate 1 year after operation between the two groups(P>0.05).CONCLUSION For patients with mixed hemorrhoids,the therapeutic effect achieved by using polidocanol injection combined with RPH was better.The wounds of the patients healed faster,the postoperative pain was milder,QOL improved,and the incidence of complications was lower,and the short-term and long-term prognosis was good.展开更多
Accurate capture and presentation of the interactive feedback relationships among various objectives in multi-objective reservoir operation is essential for maximizing operational benefits.In this study,the niche theo...Accurate capture and presentation of the interactive feedback relationships among various objectives in multi-objective reservoir operation is essential for maximizing operational benefits.In this study,the niche theory of ecology was innovatively applied to the field of reservoir operation,and a novel state-relationship(S-R)measurement analysis method was developed for multi-objective reservoir operation.This method enables the study of interaction among multiple objectives.This method was used to investigate the relationship among the objectives of power generation,water supply,and ecological protection for cascade reservoir operation in the Wujiang River Basin in China.The results indicated that the ecological protection objective was the most competitive in acquiring and capturing resources like flow and water level,while the water supply objective was the weakest.Power generation competed most strongly with ecological protection and relatively weakly with water supply.These findings facilitate decision-making throughout the reservoir operation process in the region.The S-R method based on the niche theory is convenient,efficient,and intuitive,allowing for the quantification of feedback relationships among objectives without requiring the solution of the Pareto frontier of a multi-objective problem in advance.This method provides a novel and feasible idea for studying multi-objective interactions.展开更多
Orbital disorders include conditions originating from the orbital bones,surrounding tissues,and post-orbital septum.They also include systemic ailments affecting the orbit.Different clinical symptoms make up the compl...Orbital disorders include conditions originating from the orbital bones,surrounding tissues,and post-orbital septum.They also include systemic ailments affecting the orbit.Different clinical symptoms make up the complex range of orbital disorders.Because these disorders mostly impact the orbital area instead of the intraocular compartment,there is little diagnostic usefulness for typical ophthalmic visual tests.As such,the vital instruments for diagnosing and evaluating orbital illnesses have become ophthalmic imaging modalities,including ocular ultrasonography(B-scan),computed tomography(CT),and magnetic resonance imaging(MRI).One way to improve the precision and promptness of diagnosing orbital diseases is to standardize the functioning of widely used imaging equipment and define the radiological features of orbital abnormalities.Such programs are crucial for the care of patients with orbital disorders since they considerably reduce the number of misdiagnoses and missed diagnoses in these individuals.The underlying concepts,operational techniques,and normal and pathological imaging findings associated with common diagnostic tools for orbital illnesses are all thoroughly reviewed in this guideline.The objective is to improve primary healthcare settings’diagnostic competence in the field of orbital pathology and to standardize procedures for diagnosing orbital disorders.展开更多
Since the beginning of this year,the international environment has been complex and volatile,the international economic and trade order has suffered severe setbacks,and instability and uncertainty have increased signi...Since the beginning of this year,the international environment has been complex and volatile,the international economic and trade order has suffered severe setbacks,and instability and uncertainty have increased significantly.Faced with this complex situation,China's textile industry has adhered to the general principle of seeking progress while maintaining stability,steadily advancing the optimization and adjustment of its industrial structure,and deepening the transformation and upgrading of foreign trade.Supported by the country's more proactive and effective macroeconomic policies,the economy remained generally stable in the first half of the year,with exports maintaining growth despite significant pressure,and its resilience being consolidated and unleashed.Looking ahead to the second half of 2025,the textile industry will continue to face numerous challenges while consolidating its stable and positive development foundation.展开更多
With the severe challenges brought by global climate change,exploring and developing clean and renewable energy systems to upgrade the energy structure has become an inevitable trend in related research.The comprehens...With the severe challenges brought by global climate change,exploring and developing clean and renewable energy systems to upgrade the energy structure has become an inevitable trend in related research.The comprehensive park systems integrated with photovoltaic,energy storage,direct current,and flexible loads(PEDF)is able to play an important role in promoting energy transformation and achieving sustainable development.In order to fully understand the advantages of PEDF parks in energy conservation and carbon reduction,this paper summarizes existing studies and prospects future research directions on the low-carbon operation of the PEDF park.This paper first introduces carbon emission monitoring and evaluation methods,and then analyzes bi-level optimal dispatch strategies for flexible loads.Meanwhile,the paper provides a prospective analysis of the innovations that can be brought by advanced technologies to the PEDF park.Finally,this paper puts forward the challenges faced by current research and provides prospects for future research directions.This paper emphasizes that related research should focus on collaborating key technologies of PEDF systems and integrating advanced innovations to address challenges and fully leverage the advantages of PEDF technology in energy saving and carbon reduction.This paper aims to provide systematic theoretical guidance and supplements for the research and practice of the PEDF technology.展开更多
BACKGROUND Cerebrospinal fluid(CSF)leaks in the temporal bone arise from osteodural defects,resulting in an abnormal connection between the subarachnoid space and the adjacent tympanomastoid cavity,which often manifes...BACKGROUND Cerebrospinal fluid(CSF)leaks in the temporal bone arise from osteodural defects,resulting in an abnormal connection between the subarachnoid space and the adjacent tympanomastoid cavity,which often manifests as otorrhea.Patients typically exhibit symptoms such as headache,unilateral hearing impairment,aural fullness,or even meningitis.Imaging studies are critical for identifying and differentiating the location and characteristics of CSF leaks.However,when the leak's origin remains ambiguous,diagnostic surgery may be warranted to both confirm the diagnosis and facilitate treatment.This report discusses an uncommon case while reviewing relevant literature,focusing on the surgical diagnostic intervention in a 58-year-old male with spontaneous temporal bone CSF leaks.CASE SUMMARY The patient,a 58-year-old man,was admitted for evaluation of left ear fullness,hearing loss,and nasal discharge.Notably,when supine,clear fluid drained from the left nasal cavity,with improvement noted upon sitting.A nasal examination did not reveal significant findings,while the otologic evaluation indicated an intact periosteum;however,considerable fluid accumulation was identified within the left middle ear.Despite undergoing multiple periosteal punctures and conservative medical management,the middle ear effusion persisted.Imaging studies,including magnetic resonance imaging(MRI)and computed tomography,confirmed the presence of left-sided CSF otorrhea,and the head MRI indicated potential CSF rhinorrhea.This raised challenges in determining whether the CSF leak originated from the sphenoid sinus or the temporal bone.Given that CSF otorrhea may drain through the external auditory canal and CSF rhinorrhea from the sellar region can present as nasal leakage,differentiation proved complex.In this case,with an intact external auditory canal,CSF from the middle ear was observed to flow into the nasal cavity via the Eustachian tube.Therefore,leakage from both sites could be misconstrued as CSF rhinorrhea,complicating the diagnostic process.Consequently,an exploratory surgical procedure was performed,revealing an incomplete dura mater on the temporal aspect of the petrous bone,which was subsequently repaired.CONCLUSION Benign intracranial hypertension can result in meningeal protrusion or meningoencephalocele,which may lead to CSF leakage that generally responds favorably to mucosal repair.In instances where imaging fails to identify the source of the leak or when diagnostic options are limited,proactive exploratory surgery is advisable.Although surgical interventions carry inherent risks,the application of endoscopic techniques by experienced surgeons renders this approach a feasible choice for addressing both diagnostic and therapeutic challenges.展开更多
Phase reconstruction plays a pivotal role in biology, medical imaging, and wavefront sensing. However, multiple measurements and adjustments are usually required for conventional schemes, which inevitably reduces the ...Phase reconstruction plays a pivotal role in biology, medical imaging, and wavefront sensing. However, multiple measurements and adjustments are usually required for conventional schemes, which inevitably reduces the quality of phase imaging. Here, based on multi-channel metasurface and quantum entanglement source, a simple and integrated quantum analog operation system is proposed to realize quantitative phase reconstruction with a high signal-to-noise ratio (SNR) under a low signal photon level. Without additional measurements and adjustments, four differential images necessary for the phase reconstruction are captured simultaneously. The non-local correlation of entangled photon pairs enables to remotely manipulate working modes of the system. Besides, the consistency of entangled photon pairs in time domain makes it possible to achieve a high SNR imaging by trigger detection. The results may potentially empower the application of metasurfaces in optical chip, wave function reconstruction, and label-free biology imaging.展开更多
Purpose–This study is dedicated to systematically collating the distribution and utilization circumstances of geothermal resources in China.Moreover,it endeavors to formulate a comprehensive utilization scheme for ge...Purpose–This study is dedicated to systematically collating the distribution and utilization circumstances of geothermal resources in China.Moreover,it endeavors to formulate a comprehensive utilization scheme for geothermal resources during the construction and operation phases of the railway,thereby furnishing robust support and valuable reference for the holistic utilization of geothermal resources along the railway corridor.Design/methodology/approach–Through an in-depth analysis of the extant utilization of geothermal resources in China,it is discerned that the current utilization modalities are relatively rudimentary,bereft of rational planning and characterized by a low utilization rate.Concurrently,by integrating the practical requisites of railway construction and operation and conducting theoretical dissections,a comprehensive utilization plan for the construction and operation periods of railway is proffered.Findings–In light of the railway’s construction and operation characteristics,geothermal utilization models are categorized.During construction,comprehensive modalities include tunnel illumination power generation,construction area heating,tunnel antifreeze using shallow geothermal energy,tunnel pavement antifreeze and construction concrete maintenance.During operation,they comprise operation tunnel antifreeze,railway roadbed antifreeze,railway switch snow melting and deicing,geothermal power station establishment and railway hot spring health tourism planning.Originality/value–According to the characteristics and actual needs of railway construction and operation,it is of great significance to rationally utilize geothermal resources to promote the construction and operation of green railways.展开更多
In the context of energy structure transformation,digital and intelligent technologies have been introduced into the field of hydropower,which has accelerated the technological and equipment innovation of hydropower p...In the context of energy structure transformation,digital and intelligent technologies have been introduced into the field of hydropower,which has accelerated the technological and equipment innovation of hydropower plants.However,it has also brought severe challenges to the operation and maintenance of hydropower plants.Traditional hydropower plant operation and maintenance suffer from problems such as low efficiency,equipment aging,and high labor costs,which seriously hinder the innovation and upgrading of hydropower plant operation and maintenance.Therefore,this article focuses on the operation and maintenance of hydropower plants,summarizes a series of innovative strategies,and applies them in practice to effectively improve the operation and maintenance level of hydropower plants.展开更多
In order to improve the competitiveness of smart tourist attractions in the tourism market,this paper selects a scenic spot in Shenyang and uses big data technology to predict the passenger flow of the scenic spot.Fir...In order to improve the competitiveness of smart tourist attractions in the tourism market,this paper selects a scenic spot in Shenyang and uses big data technology to predict the passenger flow of the scenic spot.Firstly,this paper introduces the big data-driven forecast model of scenic spot passenger flow.Based on the traditional autoregressive integral moving average model and artificial neural network model,it builds a big data analysis and forecast model.Through the analysis of data source,model building,scenic spot passenger flow accuracy,and modeling time comparison,it affirms the advantages of big data analysis in forecasting scenic spot passenger flow.Finally,it puts forward four commercial operation optimization strategies:adjusting the ticket pricing of scenic spots,upgrading the catering and accommodation services in scenic spots,planning and designing play projects,and formulating accurate scenic spot marketing strategies,in order to provide references for the optimization and upgrading of smart tourist attractions in the future.展开更多
Microgrids (MGs) and active distribution networks (ADNs) are important platforms for distributed energy resource (DER) consumption. The increasing penetration of DERs has motivated the development ADNs coupled with MG...Microgrids (MGs) and active distribution networks (ADNs) are important platforms for distributed energy resource (DER) consumption. The increasing penetration of DERs has motivated the development ADNs coupled with MGs. This paper proposes a distributedco-optimization method for peer-to-peer (P2P) energy trading and network operation for an ADN integrated with multiple microgrids(MMGs). A framework that optimizes P2P energy trading among MMGs and ADN operations was first established. Subsequently, anenergy management model that aims to minimize the operation and energy trading costs was constructed for each MG. Accordingly, theMMGs’ cooperative game model was established based on Nash bargaining theory to incentivize each stakeholder to participate in P2Penergy trading, and a distributed solution method based on the alternating direction method of multipliers was developed. Moreover, analgorithm that adjusts the amount of energy trading between the ADN and MG is proposed to ensure safe operation of the distributionnetwork. With the communication between the MG and ADN, the MMGs’ P2P trading and ADN operations are optimized in a coordinated manner. Finally, numerical simulations were conducted to verify the accuracy and effectiveness of the proposed method.展开更多
Digital twin shows broad application prospects in the aerospace field.This paper introduces a generalized satellite digital twin system in detail.With the innovative design concepts of modularization,generalization an...Digital twin shows broad application prospects in the aerospace field.This paper introduces a generalized satellite digital twin system in detail.With the innovative design concepts of modularization,generalization and modeling,on the one hand,the system has successfully achieved the reuse of software modules among different satellite models;on the other hand,it has achieved the reuse of software modules between the digital twin and the testing system,significantly improving the development efficiency of the digital twin system.The paper elaborates on the technical architecture and application fields of this digital twin system,and further prospects its future development.At the same time,through a real inorbit case,the engineering value of the digital twin system is strongly demonstrated.展开更多
In the energy industry landscape,thermal power generation stands as a critical energy supply method,and the safety of its construction and operation is paramount.Currently,all stages of the life cycle of construction ...In the energy industry landscape,thermal power generation stands as a critical energy supply method,and the safety of its construction and operation is paramount.Currently,all stages of the life cycle of construction projects have garnered widespread attention.Among these,the infrastructure construction and operation phases of thermal power generation enterprises pose numerous issues worthy of in-depth study in terms of safety production management.This article starts by examining safety production management during these two phases,analyzing characteristics such as management models,legal bases,and responsible entities.It explores the reasons behind these characteristics and elaborates on key management priorities,providing a comprehensive and insightful reference for safety production management in thermal power generation enterprises.展开更多
In the digital age,digital operation management has become a key strategy for enterprises to enhance their core competitiveness.This paper explores in depth the implementation strategy of digital operation management ...In the digital age,digital operation management has become a key strategy for enterprises to enhance their core competitiveness.This paper explores in depth the implementation strategy of digital operation management based on the concept of financial integration.First,it analyzes the connotation and mutual relationship between financial integration and digital operation management and points out that financial integration provides the basis for data and business collaboration for digital operation management,and digital operation management is an important means to further promote financial integration.Then,from building a unified data platform,strengthening real-time data sharing and analysis,optimizing resource allocation models,strengthening cost control,and improving enterprise incentive mechanisms,it provides reference and reference for enterprises to realize efficient operation management based on the concept of financial integration in the process of digital transformation.展开更多
Chile,a pioneer and benchmark partner for China's free trade.cooperation in Latin America,holds a special position in China-Latin America economic and trade relations.It was the first Latin American country to sig...Chile,a pioneer and benchmark partner for China's free trade.cooperation in Latin America,holds a special position in China-Latin America economic and trade relations.It was the first Latin American country to sign a bilateral free trade agreement with China and the first to reach an upgraded protocol.Chile also established mutual recognition of Authorized Economic Operators(AEO)with China,the first country in South America to do so.展开更多
Capacitor-less 2T0C dynamic random-access memory(DRAM)employing oxide semiconductors(OSs)as a channel has great potential in the development of highly scaled three dimensional(3D)-structured devices.However,the use of...Capacitor-less 2T0C dynamic random-access memory(DRAM)employing oxide semiconductors(OSs)as a channel has great potential in the development of highly scaled three dimensional(3D)-structured devices.However,the use of OS and such device structures presents certain challenges,including the trade-off relationship between the field-effect mobility and stability of OSs.Conventional 4-line-based operation of the 2T0C enlarges the entire cell volume and complicates the peripheral circuit.Herein,we proposed an IGO(In-Ga-O)channel 2-line-based 2T0C cell design and operating sequences comparable to those of the conventional Si-channel 1 T1C DRAM.IGO was adopted to achieve high thermal stability above 800℃,and the process conditions were optimized to simultaneously obtain a high μFE of 90.7 cm^(2)·V^(-)1·s^(-1),positive Vth of 0.34 V,superior reliability,and uniformity.The proposed 2-line-based 2T0C DRAM cell successfully exhibited multi-bit operation,with the stored voltage varying from 0 V to 1 V at 0.1 V intervals.Furthermore,for stored voltage intervals of 0.1 V and 0.5 V,the refresh time was 10 s and 1000 s in multi-bit operation;these values were more than 150 and 15000 times longer than those of the conventional Si channel 1T1C DRAM,respectively.A monolithic stacked 2-line-based 2T0C DRAM was fabricated,and a multi-bit operation was confirmed.展开更多
基金co-supported by the National Key Research and Development Program of China(No. 2021YFB3301504)the National Natural Science Foundation of China (Nos. 62072415, 62036010, 42301526, 62372416 and 62472389)the National Natural Science Foundation of Henan Province, China (No. 242300421215)
文摘Accurate recognition of flight deck operations for carrier-based aircraft, based on operation trajectories, is critical for optimizing carrier-based aircraft performance. This recognition involves understanding short-term and long-term spatial collaborative relationships among support agents and positions from long spatial–temporal trajectories. While the existing methods excel at recognizing collaborative behaviors from short trajectories, they often struggle with long spatial–temporal trajectories. To address this challenge, this paper introduces a dynamic graph method to enhance flight deck operation recognition. First, spatial–temporal collaborative relationships are modeled as a dynamic graph. Second, a discretized and compressed method is proposed to assign values to the states of this dynamic graph. To extract features that represent diverse collaborative relationships among agents and account for the duration of these relationships, a biased random walk is then conducted. Subsequently, the Swin Transformer is employed to comprehend spatial–temporal collaborative relationships, and a fully connected layer is applied to deck operation recognition. Finally, to address the scarcity of real datasets, a simulation pipeline is introduced to generate deck operations in virtual flight deck scenarios. Experimental results on the simulation dataset demonstrate the superior performance of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant Nos.62172341,12071132)the Natural Science Foundation of Henan Province of China(Grant No.242300420276)the Joint Fund of Henan Province Science and Technology R&D Program(Grant No.225200810032)。
文摘Our concern is to investigate controlled remote implementation of partially unknown operations with multiple layers.We first propose a scheme to realize the remote implementation of singlequbit operations belonging to the restricted sets.Then,the proposed scheme is extended to the case of single-qudit operations.As long as the controller and the higher-layer senders consent,the receiver can restore the desired state remotely operated by the sender.It is worth mentioning that the recovery operation is deduced by general formulas which clearly reveal the relationship with the measurement outcomes.For the sake of clarity,two specific examples with two levels are given respectively.In addition,we discuss the influence of amplitude-damping noise and utilize weak measurement and measurement reversal to effectively resist noise.
基金supported by a Horizontal Project on the Development of a Hybrid Energy Storage Simulation Model for Wind Power Based on an RT-LAB Simulation System(PH2023000190)the Inner Mongolia Natural Science Foundation Project and the Optimization of Exergy Efficiency of a Hybrid Energy Storage System with Crossover Control for Wind Power(2023JQ04).
文摘Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.
基金financially supported by a National Research Foundation of Korea(NRF)grant funded by the Korean government(No.2016R1A3B1908249,RS202400407199).
文摘Although phase-change random-access memory(PCRAM)is a promising next-generation nonvolatile memory technology,challenges remain in terms of reducing energy consumption.This is primarily be-cause the high thermal conductivities of phase-change materials(PCMs)promote Joule heating dissi-pation.Repeated phase transitions also induce long-range atomic diffusion,limiting the durability.To address these challenges,phase-change heterostructure(PCH)devices that incorporate confinement sub-layers based on transition-metal dichalcogenide materials have been developed.In this study,we engi-neered a PCH device by integrating HfTe_(2),which has low thermal conductivity and excellent stability,into the PCM to realize PCRAM with enhanced thermal efficiency and structural stability.HEAT sim-ulations were conducted to validate the superior heat confinement in the programming region of the HfTe_(2)-based PCH device.Moreover,electrical measurements of the device demonstrated its outstanding performance,which was characterized by a low RESET current(∼1.6 mA),stable two-order ON/OFF ratio,and exceptional cycling endurance(∼2×10^(7)).The structural integrity of the HfTe_(2)confinement sub-layer was confirmed using X-ray photoelectron spectroscopy and transmission electron microscopy.The material properties,including electrical conductivity,cohesive energy,and electronegativity,substantiated these findings.Collectively,these results revealed that the HfTe_(2)-based PCH device can achieve significant improvements in performance and reliability compared with conventional PCRAM devices.
文摘BACKGROUND A total of 100 patients diagnosed with mixed hemorrhoids from October 2022 to September 2023 in our hospital were randomly divided into groups by dice rolling and compared with the efficacy of different treatment options.AIM To analyze the clinical effect and prognosis of mixed hemorrhoids treated with polidocanol injection combined with automatic elastic thread ligation operation(RPH).METHODS A total of 100 patients with mixed hemorrhoids who visited our hospital from October 2022 to September 2023 were selected and randomly divided into the control group(n=50)and the treatment group(n=50)by rolling the dice.The procedure for prolapse and hemorrhoids(PPH)was adopted in the control group,while polidocanol foam injection+RPH was adopted in the treatment group.The therapeutic effects,operation time,wound healing time,hospital stay,pain situation(24 hours post-operative pain score,first defecation pain score),quality of life(QOL),incidence of complications(post-operative hemorrhage,edema,infection),incidence of anal stenosis 3 months post-operatively and recurrence rate 1 year post-operatively of the two groups were compared.RESULTS Compared with the control group,the total effective rate of treatment group was higher,and the difference was significant(P<0.05).The operation time/wound healing time/hospital stay in the treatment group were shorter than those in the control group(P<0.05).The pain scores at 24 hours after operation/first defecation pain score of the treatment group was significantly lower than those in the control group(P<0.05).After surgery,the QOL scores of the two groups decreased,with the treatment group having higher scores than that of the control group(P<0.05).Compared with the control group,the incidence of postoperative complications in the treatment group was lower,and the difference was significant(P<0.05);However,there was no significant difference in the incidence of postoperative bleeding between the two groups(P>0.05);There was no significant difference in the incidence of anal stenosis 3 months after operation and the recurrence rate 1 year after operation between the two groups(P>0.05).CONCLUSION For patients with mixed hemorrhoids,the therapeutic effect achieved by using polidocanol injection combined with RPH was better.The wounds of the patients healed faster,the postoperative pain was milder,QOL improved,and the incidence of complications was lower,and the short-term and long-term prognosis was good.
基金supported by the National Key Research&Development Project of China(Grant No.2016YFC0402209)and the China Scholarship Council.
文摘Accurate capture and presentation of the interactive feedback relationships among various objectives in multi-objective reservoir operation is essential for maximizing operational benefits.In this study,the niche theory of ecology was innovatively applied to the field of reservoir operation,and a novel state-relationship(S-R)measurement analysis method was developed for multi-objective reservoir operation.This method enables the study of interaction among multiple objectives.This method was used to investigate the relationship among the objectives of power generation,water supply,and ecological protection for cascade reservoir operation in the Wujiang River Basin in China.The results indicated that the ecological protection objective was the most competitive in acquiring and capturing resources like flow and water level,while the water supply objective was the weakest.Power generation competed most strongly with ecological protection and relatively weakly with water supply.These findings facilitate decision-making throughout the reservoir operation process in the region.The S-R method based on the niche theory is convenient,efficient,and intuitive,allowing for the quantification of feedback relationships among objectives without requiring the solution of the Pareto frontier of a multi-objective problem in advance.This method provides a novel and feasible idea for studying multi-objective interactions.
基金Supported by National Natural Science Foundation of China(No.82160195)Key R&D Program of Jiangxi Province(No.20223BBH80014).
文摘Orbital disorders include conditions originating from the orbital bones,surrounding tissues,and post-orbital septum.They also include systemic ailments affecting the orbit.Different clinical symptoms make up the complex range of orbital disorders.Because these disorders mostly impact the orbital area instead of the intraocular compartment,there is little diagnostic usefulness for typical ophthalmic visual tests.As such,the vital instruments for diagnosing and evaluating orbital illnesses have become ophthalmic imaging modalities,including ocular ultrasonography(B-scan),computed tomography(CT),and magnetic resonance imaging(MRI).One way to improve the precision and promptness of diagnosing orbital diseases is to standardize the functioning of widely used imaging equipment and define the radiological features of orbital abnormalities.Such programs are crucial for the care of patients with orbital disorders since they considerably reduce the number of misdiagnoses and missed diagnoses in these individuals.The underlying concepts,operational techniques,and normal and pathological imaging findings associated with common diagnostic tools for orbital illnesses are all thoroughly reviewed in this guideline.The objective is to improve primary healthcare settings’diagnostic competence in the field of orbital pathology and to standardize procedures for diagnosing orbital disorders.
文摘Since the beginning of this year,the international environment has been complex and volatile,the international economic and trade order has suffered severe setbacks,and instability and uncertainty have increased significantly.Faced with this complex situation,China's textile industry has adhered to the general principle of seeking progress while maintaining stability,steadily advancing the optimization and adjustment of its industrial structure,and deepening the transformation and upgrading of foreign trade.Supported by the country's more proactive and effective macroeconomic policies,the economy remained generally stable in the first half of the year,with exports maintaining growth despite significant pressure,and its resilience being consolidated and unleashed.Looking ahead to the second half of 2025,the textile industry will continue to face numerous challenges while consolidating its stable and positive development foundation.
基金This work was supported by National Key R&D Program of China for International S&T Cooperation Projects(Grant No.2019YFE0118700)which was provided by the Ministry of Science and Technology of the People’s Republic of China(https://www.most.gov.cn/(accessed on 1 January 2025))+2 种基金the grant was received by Yun Zhao.This work was supported by Science and Technology Project of CSG Electric Power Research Institute(Grant No.SEPRIK23B052)which was provided by CSG Electric Power Research Institute(http://www.sepri.csg.cn/(accessed on 1 January 2025))the grant was received by Ziwen Cai.
文摘With the severe challenges brought by global climate change,exploring and developing clean and renewable energy systems to upgrade the energy structure has become an inevitable trend in related research.The comprehensive park systems integrated with photovoltaic,energy storage,direct current,and flexible loads(PEDF)is able to play an important role in promoting energy transformation and achieving sustainable development.In order to fully understand the advantages of PEDF parks in energy conservation and carbon reduction,this paper summarizes existing studies and prospects future research directions on the low-carbon operation of the PEDF park.This paper first introduces carbon emission monitoring and evaluation methods,and then analyzes bi-level optimal dispatch strategies for flexible loads.Meanwhile,the paper provides a prospective analysis of the innovations that can be brought by advanced technologies to the PEDF park.Finally,this paper puts forward the challenges faced by current research and provides prospects for future research directions.This paper emphasizes that related research should focus on collaborating key technologies of PEDF systems and integrating advanced innovations to address challenges and fully leverage the advantages of PEDF technology in energy saving and carbon reduction.This paper aims to provide systematic theoretical guidance and supplements for the research and practice of the PEDF technology.
文摘BACKGROUND Cerebrospinal fluid(CSF)leaks in the temporal bone arise from osteodural defects,resulting in an abnormal connection between the subarachnoid space and the adjacent tympanomastoid cavity,which often manifests as otorrhea.Patients typically exhibit symptoms such as headache,unilateral hearing impairment,aural fullness,or even meningitis.Imaging studies are critical for identifying and differentiating the location and characteristics of CSF leaks.However,when the leak's origin remains ambiguous,diagnostic surgery may be warranted to both confirm the diagnosis and facilitate treatment.This report discusses an uncommon case while reviewing relevant literature,focusing on the surgical diagnostic intervention in a 58-year-old male with spontaneous temporal bone CSF leaks.CASE SUMMARY The patient,a 58-year-old man,was admitted for evaluation of left ear fullness,hearing loss,and nasal discharge.Notably,when supine,clear fluid drained from the left nasal cavity,with improvement noted upon sitting.A nasal examination did not reveal significant findings,while the otologic evaluation indicated an intact periosteum;however,considerable fluid accumulation was identified within the left middle ear.Despite undergoing multiple periosteal punctures and conservative medical management,the middle ear effusion persisted.Imaging studies,including magnetic resonance imaging(MRI)and computed tomography,confirmed the presence of left-sided CSF otorrhea,and the head MRI indicated potential CSF rhinorrhea.This raised challenges in determining whether the CSF leak originated from the sphenoid sinus or the temporal bone.Given that CSF otorrhea may drain through the external auditory canal and CSF rhinorrhea from the sellar region can present as nasal leakage,differentiation proved complex.In this case,with an intact external auditory canal,CSF from the middle ear was observed to flow into the nasal cavity via the Eustachian tube.Therefore,leakage from both sites could be misconstrued as CSF rhinorrhea,complicating the diagnostic process.Consequently,an exploratory surgical procedure was performed,revealing an incomplete dura mater on the temporal aspect of the petrous bone,which was subsequently repaired.CONCLUSION Benign intracranial hypertension can result in meningeal protrusion or meningoencephalocele,which may lead to CSF leakage that generally responds favorably to mucosal repair.In instances where imaging fails to identify the source of the leak or when diagnostic options are limited,proactive exploratory surgery is advisable.Although surgical interventions carry inherent risks,the application of endoscopic techniques by experienced surgeons renders this approach a feasible choice for addressing both diagnostic and therapeutic challenges.
基金supported by the National Natural Science Foundation of China(Grants No.62221002,Grants No.12174097).
文摘Phase reconstruction plays a pivotal role in biology, medical imaging, and wavefront sensing. However, multiple measurements and adjustments are usually required for conventional schemes, which inevitably reduces the quality of phase imaging. Here, based on multi-channel metasurface and quantum entanglement source, a simple and integrated quantum analog operation system is proposed to realize quantitative phase reconstruction with a high signal-to-noise ratio (SNR) under a low signal photon level. Without additional measurements and adjustments, four differential images necessary for the phase reconstruction are captured simultaneously. The non-local correlation of entangled photon pairs enables to remotely manipulate working modes of the system. Besides, the consistency of entangled photon pairs in time domain makes it possible to achieve a high SNR imaging by trigger detection. The results may potentially empower the application of metasurfaces in optical chip, wave function reconstruction, and label-free biology imaging.
文摘Purpose–This study is dedicated to systematically collating the distribution and utilization circumstances of geothermal resources in China.Moreover,it endeavors to formulate a comprehensive utilization scheme for geothermal resources during the construction and operation phases of the railway,thereby furnishing robust support and valuable reference for the holistic utilization of geothermal resources along the railway corridor.Design/methodology/approach–Through an in-depth analysis of the extant utilization of geothermal resources in China,it is discerned that the current utilization modalities are relatively rudimentary,bereft of rational planning and characterized by a low utilization rate.Concurrently,by integrating the practical requisites of railway construction and operation and conducting theoretical dissections,a comprehensive utilization plan for the construction and operation periods of railway is proffered.Findings–In light of the railway’s construction and operation characteristics,geothermal utilization models are categorized.During construction,comprehensive modalities include tunnel illumination power generation,construction area heating,tunnel antifreeze using shallow geothermal energy,tunnel pavement antifreeze and construction concrete maintenance.During operation,they comprise operation tunnel antifreeze,railway roadbed antifreeze,railway switch snow melting and deicing,geothermal power station establishment and railway hot spring health tourism planning.Originality/value–According to the characteristics and actual needs of railway construction and operation,it is of great significance to rationally utilize geothermal resources to promote the construction and operation of green railways.
文摘In the context of energy structure transformation,digital and intelligent technologies have been introduced into the field of hydropower,which has accelerated the technological and equipment innovation of hydropower plants.However,it has also brought severe challenges to the operation and maintenance of hydropower plants.Traditional hydropower plant operation and maintenance suffer from problems such as low efficiency,equipment aging,and high labor costs,which seriously hinder the innovation and upgrading of hydropower plant operation and maintenance.Therefore,this article focuses on the operation and maintenance of hydropower plants,summarizes a series of innovative strategies,and applies them in practice to effectively improve the operation and maintenance level of hydropower plants.
文摘In order to improve the competitiveness of smart tourist attractions in the tourism market,this paper selects a scenic spot in Shenyang and uses big data technology to predict the passenger flow of the scenic spot.Firstly,this paper introduces the big data-driven forecast model of scenic spot passenger flow.Based on the traditional autoregressive integral moving average model and artificial neural network model,it builds a big data analysis and forecast model.Through the analysis of data source,model building,scenic spot passenger flow accuracy,and modeling time comparison,it affirms the advantages of big data analysis in forecasting scenic spot passenger flow.Finally,it puts forward four commercial operation optimization strategies:adjusting the ticket pricing of scenic spots,upgrading the catering and accommodation services in scenic spots,planning and designing play projects,and formulating accurate scenic spot marketing strategies,in order to provide references for the optimization and upgrading of smart tourist attractions in the future.
基金supported by the State Key Laboratory of Technology and Equipment for Defense against Power System Operational Risks Program(grant number SGNR0000KJJS2302139).
文摘Microgrids (MGs) and active distribution networks (ADNs) are important platforms for distributed energy resource (DER) consumption. The increasing penetration of DERs has motivated the development ADNs coupled with MGs. This paper proposes a distributedco-optimization method for peer-to-peer (P2P) energy trading and network operation for an ADN integrated with multiple microgrids(MMGs). A framework that optimizes P2P energy trading among MMGs and ADN operations was first established. Subsequently, anenergy management model that aims to minimize the operation and energy trading costs was constructed for each MG. Accordingly, theMMGs’ cooperative game model was established based on Nash bargaining theory to incentivize each stakeholder to participate in P2Penergy trading, and a distributed solution method based on the alternating direction method of multipliers was developed. Moreover, analgorithm that adjusts the amount of energy trading between the ADN and MG is proposed to ensure safe operation of the distributionnetwork. With the communication between the MG and ADN, the MMGs’ P2P trading and ADN operations are optimized in a coordinated manner. Finally, numerical simulations were conducted to verify the accuracy and effectiveness of the proposed method.
文摘Digital twin shows broad application prospects in the aerospace field.This paper introduces a generalized satellite digital twin system in detail.With the innovative design concepts of modularization,generalization and modeling,on the one hand,the system has successfully achieved the reuse of software modules among different satellite models;on the other hand,it has achieved the reuse of software modules between the digital twin and the testing system,significantly improving the development efficiency of the digital twin system.The paper elaborates on the technical architecture and application fields of this digital twin system,and further prospects its future development.At the same time,through a real inorbit case,the engineering value of the digital twin system is strongly demonstrated.
文摘In the energy industry landscape,thermal power generation stands as a critical energy supply method,and the safety of its construction and operation is paramount.Currently,all stages of the life cycle of construction projects have garnered widespread attention.Among these,the infrastructure construction and operation phases of thermal power generation enterprises pose numerous issues worthy of in-depth study in terms of safety production management.This article starts by examining safety production management during these two phases,analyzing characteristics such as management models,legal bases,and responsible entities.It explores the reasons behind these characteristics and elaborates on key management priorities,providing a comprehensive and insightful reference for safety production management in thermal power generation enterprises.
文摘In the digital age,digital operation management has become a key strategy for enterprises to enhance their core competitiveness.This paper explores in depth the implementation strategy of digital operation management based on the concept of financial integration.First,it analyzes the connotation and mutual relationship between financial integration and digital operation management and points out that financial integration provides the basis for data and business collaboration for digital operation management,and digital operation management is an important means to further promote financial integration.Then,from building a unified data platform,strengthening real-time data sharing and analysis,optimizing resource allocation models,strengthening cost control,and improving enterprise incentive mechanisms,it provides reference and reference for enterprises to realize efficient operation management based on the concept of financial integration in the process of digital transformation.
文摘Chile,a pioneer and benchmark partner for China's free trade.cooperation in Latin America,holds a special position in China-Latin America economic and trade relations.It was the first Latin American country to sign a bilateral free trade agreement with China and the first to reach an upgraded protocol.Chile also established mutual recognition of Authorized Economic Operators(AEO)with China,the first country in South America to do so.
基金supported by the Technology Innovation Program(Grant Nos.20017382 and 20023023)funded by the Ministry of Trade,Industry&Energy(MOTIE,Republic of Korea)supported by a National Research Foundation of Korea(NRF)grant funded by the Korean Government(MSIT)(Grant No.RS-2023-00260527).
文摘Capacitor-less 2T0C dynamic random-access memory(DRAM)employing oxide semiconductors(OSs)as a channel has great potential in the development of highly scaled three dimensional(3D)-structured devices.However,the use of OS and such device structures presents certain challenges,including the trade-off relationship between the field-effect mobility and stability of OSs.Conventional 4-line-based operation of the 2T0C enlarges the entire cell volume and complicates the peripheral circuit.Herein,we proposed an IGO(In-Ga-O)channel 2-line-based 2T0C cell design and operating sequences comparable to those of the conventional Si-channel 1 T1C DRAM.IGO was adopted to achieve high thermal stability above 800℃,and the process conditions were optimized to simultaneously obtain a high μFE of 90.7 cm^(2)·V^(-)1·s^(-1),positive Vth of 0.34 V,superior reliability,and uniformity.The proposed 2-line-based 2T0C DRAM cell successfully exhibited multi-bit operation,with the stored voltage varying from 0 V to 1 V at 0.1 V intervals.Furthermore,for stored voltage intervals of 0.1 V and 0.5 V,the refresh time was 10 s and 1000 s in multi-bit operation;these values were more than 150 and 15000 times longer than those of the conventional Si channel 1T1C DRAM,respectively.A monolithic stacked 2-line-based 2T0C DRAM was fabricated,and a multi-bit operation was confirmed.