Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe...Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.展开更多
Ground source heat pump systems demonstrate significant potential for northern rural heating applications;however,the effectiveness of these systems is often limited by challenging geological conditions.For instance,i...Ground source heat pump systems demonstrate significant potential for northern rural heating applications;however,the effectiveness of these systems is often limited by challenging geological conditions.For instance,in certain regions,the installation of buried pipes for heat exchangers may be complicated,and these pipes may not always serve as efficient low-temperature heat sources for the heat pumps of the system.To address this issue,the current study explored the use of solar-energy-collecting equipment to supplement buried pipes.In this design,both solar energy and geothermal energy provide low-temperature heat to the heat pump.First,a simulation model of a solar‒ground source heat pump coupling system was established using TRNSYS.The accuracy of this model was validated through experiments and simulations on various system configurations,including varying numbers of buried pipes,different areas of solar collectors,and varying volumes of water tanks.The simulations examined the coupling characteristics of these components and their influence on system performance.The results revealed that the operating parameters of the system remained consistent across the following configurations:three buried pipes,burial depth of 20 m,collector area of 6 m^(2),and water tank volume of 0.5 m^(3);four buried pipes,burial depth of 20 m,collector area of 3 m^(2),and water tank volume of 0.5 m^(3);and five buried pipes with a burial depth of 20 m.Furthermore,the heat collection capacity of the solar collectors spanning an area of 3 m^(2)was found to be equivalent to that of one buried pipe.Moreover,the findings revealed that the solar‒ground source heat pump coupling system demonstrated a lower annual cumulative energy consumption compared to the ground source heat pump system,presenting a reduction of 5.31%compared to the energy consumption of the latter.展开更多
In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy sys...In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy system(IIES).The upper level represents the integrated energy operator,and the lower level is the electricity-heatgas load aggregator.Owing to the benefit conflict between the upper and lower levels of the IIES,a dynamic pricing mechanism for coordinating the interests of the upper and lower levels is proposed,combined with factors such as the carbon emissions of the IIES,as well as the lower load interruption power.The price of selling energy can be dynamically adjusted to the lower LA in the mechanism,according to the information on carbon emissions and load interruption power.Mutual benefits and win-win situations are achieved between the upper and lower multistakeholders.Finally,CPLEX is used to iteratively solve the bilevel optimization model.The optimal solution is selected according to the joint optimal discrimination mechanism.Thesimulation results indicate that the sourceload coordinate operation can reduce the upper and lower operation costs.Using the proposed pricingmechanism,the carbon emissions and load interruption power of IEO-LA are reduced by 9.78%and 70.19%,respectively,and the capture power of the carbon capture equipment is improved by 36.24%.The validity of the proposed model and method is verified.展开更多
Extracting typical operational scenarios is essential for making flexible decisions in the dispatch of a new power system.A novel deep time series aggregation scheme(DTSAs)is proposed to generate typical operational s...Extracting typical operational scenarios is essential for making flexible decisions in the dispatch of a new power system.A novel deep time series aggregation scheme(DTSAs)is proposed to generate typical operational scenarios,considering the large amount of historical operational snapshot data.Specifically,DTSAs analyse the intrinsic mechanisms of different scheduling operational scenario switching to mathematically represent typical operational scenarios.A Gramian angular summation field-based operational scenario image encoder was designed to convert operational scenario sequences into highdimensional spaces.This enables DTSAs to fully capture the spatiotemporal characteristics of new power systems using deep feature iterative aggregation models.The encoder also facilitates the generation of typical operational scenarios that conform to historical data distributions while ensuring the integrity of grid operational snapshots.Case studies demonstrate that the proposed method extracted new fine-grained power system dispatch schemes and outperformed the latest high-dimensional feature-screening methods.In addition,experiments with different new energy access ratios were conducted to verify the robustness of the proposed method.DTSAs enable dispatchers to master the operation experience of the power system in advance,and actively respond to the dynamic changes of the operation scenarios under the high access rate of new energy.展开更多
Fractional calculus is widely used to deal with nonconservative dynamics because of its memorability and non-local properties.In this paper,the Herglotz principle with generalized operators is discussed,and the Herglo...Fractional calculus is widely used to deal with nonconservative dynamics because of its memorability and non-local properties.In this paper,the Herglotz principle with generalized operators is discussed,and the Herglotz type equations for nonholonomic systems are established.Then,the Noether symmetries are studied,and the conserved quantities are obtained.The results are extended to nonholonomic canonical systems,and the Herglotz type canonical equations and the Noether theorems are obtained.Two examples are provided to demonstrate the validity of the methods and results.展开更多
The multi-stage development strategy is often adopted in the gas field.However,when the productivity decline occurs,many large processing stations will be severely idle and underutilized,significantly reducing operati...The multi-stage development strategy is often adopted in the gas field.However,when the productivity decline occurs,many large processing stations will be severely idle and underutilized,significantly reducing operating efficiency and revenue.This study proposes a novel operation mode of multiple gathering production systems for gas field multi-stage development,integrating the decisions about processing capacity allocation and infrastructure construction to share processing stations and improve multi-system operating efficiency.A multi-period mixed integer linear programming model for multisystem operation optimization is established to optimize the net present value(NPV),considering the production of gas wells,time-varying gas prices,and the capacity of processing stations.The decision of processing capacity,location,construction timing,and capacity expansion of processing stations,as well as transmission capacity of pipelines and processing capacity allocation schemes,can be obtained to meet long-term production demand.Furthermore,a real case study indicates that the proposed processing capacity allocation approach not only has a shorter payback period and increases NPV by 4.8%,but also increases the utilization efficiency of processing stations from 27.37% to 48.94%.This work demonstrates that the synergy between the processing capacity allocation and infrastructure construction can hedge against production fluctuations and increase potential profits.展开更多
Nonlinear science is a fundamental area of physics research that investigates complex dynamical systems which are often characterized by high sensitivity and nonlinear behaviors.Numerical simulations play a pivotal ro...Nonlinear science is a fundamental area of physics research that investigates complex dynamical systems which are often characterized by high sensitivity and nonlinear behaviors.Numerical simulations play a pivotal role in nonlinear science,serving as a critical tool for revealing the underlying principles governing these systems.In addition,they play a crucial role in accelerating progress across various fields,such as climate modeling,weather forecasting,and fluid dynamics.However,their high computational cost limits their application in high-precision or long-duration simulations.In this study,we propose a novel data-driven approach for simulating complex physical systems,particularly turbulent phenomena.Specifically,we develop an efficient surrogate model based on the wavelet neural operator(WNO).Experimental results demonstrate that the enhanced WNO model can accurately simulate small-scale turbulent flows while using lower computational costs.In simulations of complex physical fields,the improved WNO model outperforms established deep learning models,such as U-Net,Res Net,and the Fourier neural operator(FNO),in terms of accuracy.Notably,the improved WNO model exhibits exceptional generalization capabilities,maintaining stable performance across a wide range of initial conditions and high-resolution scenarios without retraining.This study highlights the significant potential of the enhanced WNO model for simulating complex physical systems,providing strong evidence to support the development of more efficient,scalable,and high-precision simulation techniques.展开更多
Digital twin shows broad application prospects in the aerospace field.This paper introduces a generalized satellite digital twin system in detail.With the innovative design concepts of modularization,generalization an...Digital twin shows broad application prospects in the aerospace field.This paper introduces a generalized satellite digital twin system in detail.With the innovative design concepts of modularization,generalization and modeling,on the one hand,the system has successfully achieved the reuse of software modules among different satellite models;on the other hand,it has achieved the reuse of software modules between the digital twin and the testing system,significantly improving the development efficiency of the digital twin system.The paper elaborates on the technical architecture and application fields of this digital twin system,and further prospects its future development.At the same time,through a real inorbit case,the engineering value of the digital twin system is strongly demonstrated.展开更多
It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using...It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using an identical reference.In this study,three physically reasonable DLMs are implemented for the forecasting of the sea surface temperature(SST),sea level anomaly(SLA),and sea surface velocity in the South China Sea.The DLMs are validated against both the testing dataset and the“OceanPredict”Class 4 dataset.Results show that the DLMs'RMSEs against the latter increase by 44%,245%,302%,and 109%for SST,SLA,current speed,and direction,respectively,compared to those against the former.Therefore,different references have significant influences on the validation,and it is necessary to use an identical and independent reference to intercompare the DLMs and OFSs.Against the Class 4 dataset,the DLMs present significantly better performance for SLA than the OFSs,and slightly better performances for other variables.The error patterns of the DLMs and OFSs show a high degree of similarity,which is reasonable from the viewpoint of predictability,facilitating further applications of the DLMs.For extreme events,the DLMs and OFSs both present large but similar forecast errors for SLA and current speed,while the DLMs are likely to give larger errors for SST and current direction.This study provides an evaluation of the forecast skills of commonly used DLMs and provides an example to objectively intercompare different DLMs.展开更多
For any country,the availability of electricity is crucial to the development of the national economy and society.As a result,decision-makers and policy-makers can improve the sustainability and security of the energy...For any country,the availability of electricity is crucial to the development of the national economy and society.As a result,decision-makers and policy-makers can improve the sustainability and security of the energy supply by implementing a variety of actions by using the evaluation of these factors as an early warning system.This research aims to provide a multi-criterion decision-making(MCDM)method for assessing the sustainability and security of the electrical supply.The weights of criteria,which indicate their relative relevance in the assessment of the sustainability and security of the energy supply,the MCDM method allow users to express their opinions.To overcome the impact of uncertainty and vagueness of expert opinion,we explore the notion of picture fuzzy theory,which is a more efficient and dominant mathematical model.Recently,the theory of Aczel-Alsina operations has attained a lot of attraction and has an extensive capability to acquire smooth approximated results during the aggregation process.However,Choquet integral operators are more flexible and are used to express correlation among different attributes.This article diagnoses an innovative theory of picture fuzzy set to derive robust mathematical methodologies of picture fuzzy Choquet Integral Aczel-Alsina aggregation operators.To prove the intensity and validity of invented approaches,some dominant properties and special cases are also discussed.An intelligent decision algorithm for the MCDM problem is designed to resolve complicated real-life applications under multiple conflicting criteria.Additionally,we discussed a numerical example to investigate a suitable electric transformer under consideration of different beneficial key criteria.A comparative study is established to capture the superiority and effectiveness of pioneered mathematical approaches with existing methodologies.展开更多
Irrigation service defines the responsibilities and rights of irrigation system management agencies,water users,and other parties involved in the irrigation service contract.As a result,the irrigation service must be ...Irrigation service defines the responsibilities and rights of irrigation system management agencies,water users,and other parties involved in the irrigation service contract.As a result,the irrigation service must be clearly specified and updated by crop seasons and by all partners.Given the inherent complexity of the service,this article presents and discusses the development and application of a computer model designed to support the specification of public service levels in rice-based irrigation systems.Applied to the Tu Mai irrigation system,the model has enabled all involved parties to define irrigation service levels through systematic analysis and a thorough consideration of constraints such as water resource characteristics,hydraulic structures,and the operational plans of the irrigation system.The research findings have also helped relevant agencies reach agreements on irrigation service levels for the particular irrigation season of spring 2023,which included one irrigation period for land preparation and five subsequent irrigation periods for rice crops corresponding with a specific schedule for operating the system(discharges and duration)that met the farmers’requests for their farming practices and reduced the loss due to rice crop yield decline at the irrigation system as a whole.Additionally,recommendations for improving irrigation services in the Tu Mai system have been made,including upgrading the head pumping station to accommodate lower water levels in the Cau River,aligning the irrigation schedules of the Water User Associations(WUAs)more flexibly,and strictly supervising water deliveries to ensure safety and fairness.展开更多
With the development of marine resources,a dual-platform joint operation has been paid more attention.In this paper,the mooring layout space and relative motion limitation of the dual-platform berthing operation were ...With the development of marine resources,a dual-platform joint operation has been paid more attention.In this paper,the mooring layout space and relative motion limitation of the dual-platform berthing operation were fully considered.A new hybrid mooring system with“X+buoy”combination was designed based on the characteristics of catenary and tension mooring.The hydrodynamic characteristics of the new mooring system were analyzed by combining numerical simulation with model experiment.Under the regular and freak waves with different wave heights and periods,the time-domain full-coupling analysis method was used to study the hydrodynamic characteristics of the mooring system.It can be found that the arrangement of dual-platform under 0◦wave direction is optimal,and the“X+buoy”combined mooring system designed in this paper has a good follow-up between the two platforms under different regular and freak waves.The relative motion response between the two platforms can be effectively controlled,and finally the positioning of the dual-platform joint operation is realized.Research results of this paper provide a theoretical basis and technical support for the hydrodynamic performance analysis and safety assessment of deep-sea offshore platforms in China.展开更多
The accurate selection of operational parameters is critical for ensuring the safety,efficiency,and automation of Tunnel Boring Machine(TBM)operations.This study proposes a similarity-based framework integrating model...The accurate selection of operational parameters is critical for ensuring the safety,efficiency,and automation of Tunnel Boring Machine(TBM)operations.This study proposes a similarity-based framework integrating model-based boring indexes(derived from rock fragmentation mechanisms)and Euclidean distance analysis to achieve real-time recommendations of TBM operational parameters.Key performance indicators-thrust(F),torque(T),and penetration(p)-were used to calculate three model-based boring indexes(a,b,k),which quantify dynamic rock fragmentation behavior.A dataset of 359 candidate samples,reflecting diverse geological conditions from the Yin-Chao water conveyance project in Inner Mongolia,China,was utilized to validate the framework.The system dynamically recommends parameters by matching real-time data with historical cases through standardized Euclidean distance,achieving high accuracy.Specifically,the mean absolute error(MAE)for rotation speed(n)was 0.10 r/min,corresponding to a mean absolute percentage error(MAPE)of 1.09%.For advance rate(v),the MAE was 3.4 mm/min,with a MAPE of 4.50%.The predicted thrust(F)and torque(T)values exhibited strong agreement with field measurements,with MAEs of 270 kN and 178 kN∙m,respectively.Field applications demonstrated a 30%reduction in parameter adjustment time compared to empirical methods.This work provides a robust solution for real-time TBM control,advancing intelligent tunneling in complex geological environments.展开更多
Introduction: Head injuries constitute a public health problem in Cameroon and everywhere else in the world. They represent 23% of admissions to the Yaounde emergency center (CURY), which is a center exclusively dedic...Introduction: Head injuries constitute a public health problem in Cameroon and everywhere else in the world. They represent 23% of admissions to the Yaounde emergency center (CURY), which is a center exclusively dedicated, since 2014, to emergency care in Yaounde. In the management of trauma brain injuries at CURY, several are operated on. However, to date, no evaluation of these operated patients has yet been made. Goals: The objective of this study was to highlight the prognostic factors in patients operated for TBI at CURY. Methodology: We conducted a descriptive study whose data collection was done retrospectively over 2 years (01 January 2021 to 31 December 2022) at CURY. Data was collected from the registers of operative reports. Results: We enrolled 105 medical reports of patients who were victims of TBI operated on. The male gender predominated with a sex ratio of 3/1. The average age of the patients was 37.5 ± 18.83 years. Public road accidents were the leading cause of TBI in 75.2% of cases. The means of transport of the victims were mostly non-medical 97.1%. 45.7% of patients were admitted in less than 6 hours following injury. The initial clinical evaluation found 45.8% of patients with a Glasgow Coma Score (GCS) between [14, 15], and 13.2% of patients had a GCS 8. The indications for surgery were extradural hematoma (30%), followed by acute subdural hematoma (24%). The major complication was postoperative infection (25%). The mortality rate of the series was 7.9%. Poor prognostic factors were the depth of the coma on admission, advanced age and postoperative complications. Conclusion: The results of this study suggest that most patients operated on for TBI at CURY had a favorable outcome. The poor prognostic factors were the depth of the coma on admission, advanced age, postoperative complications and comorbidities.展开更多
The operation furnace profile for the high heat load zone was one of the important factors affecting the stable and high-quality production of the blast furnace,but it was difficult to monitor directly.To address this...The operation furnace profile for the high heat load zone was one of the important factors affecting the stable and high-quality production of the blast furnace,but it was difficult to monitor directly.To address this issue,an online calculation model for the operation furnace profile was proposed based on a dual-driven approach combining data and mechanisms,by integrating mechanism experiment,numerical simulation,and machine learning.The experimentally determined slag layer hanging temperature was 1130℃,and the thermal conductivity ranged from 1.32 to 1.96 m^(2)℃^(-1).Based on the 3D slag-hanging numerical simulation model,a database was constructed,containing 2294 sets of mechanism cases for the slag layer.The fusion of data modeling,heat transfer theory,and expert experience enabled the online calculation of key input variables for the operation furnace profile,particularly the quantification of the“black-box”variable of gas temperature.Simulated data were used as inputs,and light gradient boosting machine was applied to construct the online calculation model for the operation furnace profile.This model facilitated the online calculation of the slag layer thickness and other key indices.The coefficient of determination of the model exceeded 0.98,indicating high accuracy.A slag layer state judgment model was constructed,categorizing states as shedding,too thin,normal,and too thick.Real-time data were applied,and the average slag thickness in the high heat load area of the test data ranged from 40 to 80 mm,which was consistent with field experience.The absolute value of the Pearson correlation coefficient between slag layer thickness,thermocouple temperature,and heat load data was above 0.85,indicating that the calculated results closely aligned with the actual trends.A 3D visual online monitoring system for the operation furnace profile was created,and it has been successfully implemented at the blast furnace site.展开更多
Safe and just operating spaces(SJOS)are influenced by complex cross-scale interactions and cascading effects spanning global,regional,and local landscape scales.However,existing SJOS research has often focused on sing...Safe and just operating spaces(SJOS)are influenced by complex cross-scale interactions and cascading effects spanning global,regional,and local landscape scales.However,existing SJOS research has often focused on single-scale assessments,overlooking the impacts of multiscale interactions and within-region heterogeneity on urban SJOS.To address this gap,we developed a cross-scale framework for assessing urban SJOS,explicitly incorporating top-down influences from upper-level constraints and bottom-up effects from lower-level heterogeneity.This approach was applied to China's five major metropolises to examine the states and cross-scale dynamics influencing urban SJOS between 1990 and 2020.Our findings reveal that the SJOS of China's metropolises were primarily influenced by factors at national and local landscape scales,with weaker influences from the global and continental scales.A persistent trade-off between social justice and environmental safety was identified across spatiotemporal scales.For instance,Chongqing in southwestern China lagged behind the eastern four metropolises in social performance but exhibited stronger environmental safety due to its extensive natural landscapes,which mitigated the anthropogenic impacts of urban centers.Regional issues,such as the overshoot of PM_(2.5)and ecological footprints(EF),were primarily driven by the bottom-up accumulation of localized pressures,while the overshoot of CO_(2)was attributed to national policy constraints and the universal exceedance of safe thresholds across scales.Addressing urban sustainability requires avoiding adverse cascading effects from other levels by emphasizing landscape heterogeneity within metropolises and fostering coordinated collaboration across scales,particularly at the regional landscape and national levels.展开更多
This paper proposed a new systematic approach-functional evidential reasoning model(FERM) for exploring hazardous chemical operational accidents under uncertainty. First, FERM was introduced to identify various causal...This paper proposed a new systematic approach-functional evidential reasoning model(FERM) for exploring hazardous chemical operational accidents under uncertainty. First, FERM was introduced to identify various causal factors and their performance changes in hazardous chemical operational accidents, along with determining the functional failure link relationships. Subsequently, FERM was employed to elucidate both qualitative and quantitative operational accident information within a unified framework, which could be regarded as the input of information fusion to obtain the fuzzy belief distribution of each cause factor. Finally, the derived risk values of the causal factors were ranked while constructing multi-level accident causation chains to unveil the weak links in system functionality and the primary roots of operational accidents. Using the specific case of the “1·15” major explosion and fire accident at Liaoning Panjin Haoye Chemical Co., Ltd., seven causal factors and their corresponding performance changes were identified. Additionally, five accident causation chains were uncovered based on the fuzzy joint distribution of the functional assessment level(FAL) and reliability distribution(RD),revealing an overall increase in risk along the accident evolution path. The research findings demonstrated that FERM enabled the effective characterization, rational quantification and accurate analysis of the inherent uncertainties in hazardous chemical operational accident risks from a systemic perspective.展开更多
To enhance energy interaction among low-voltage stations(LVSs)and reduce the line loss of the distribution network,a novel operation mode of the micro-pumped storage system(mPSS)has been proposed based on the common r...To enhance energy interaction among low-voltage stations(LVSs)and reduce the line loss of the distribution network,a novel operation mode of the micro-pumped storage system(mPSS)has been proposed based on the common reservoir.First,some operation modes of mPSS are analyzed,which include the separated reservoir mode(SRM)and common reservoir mode(CRM).Then,based on the SRM,and CRM,an energy mutual assistance control model between LVSs has been built to optimize energy loss.Finally,in the simulation,compared to the model without pumped storage in the LVS,the SRMand CLRMcan decrease the total energy loss by 294.377 and 432.578 kWh,respectively.The configuration of mPSS can improve the utilization rate of the new energy source generation system,and relieve the pressure of transformer capacity in the LVS.Compared with the SRM,the proposed CRM has reduced the total energy loss by 138.201 kWh,increased the new energy consumption by 161.642 kWh,and decreased the line loss by 7.271 kWh.With the efficiency of the mPSS improving,the total energy loss reduction of CRM will be 3.5 times that of SRM.Further,the CRMcan significantly reduce the reservoir capacity construction of mPSS and ismore suitable for scenarios where the capacity configuration of mPSS is limited.展开更多
In this article,we study the approximate controllability of neutral partial differential equations with Hilfer fractional derivative and not instantaneous impulses effects.By using the Sadovskii's fixed point theo...In this article,we study the approximate controllability of neutral partial differential equations with Hilfer fractional derivative and not instantaneous impulses effects.By using the Sadovskii's fixed point theorem,fractional calculus and resolvent operator functions,we prove the approximate controllability of the considered system.展开更多
The rapid expansion of photovoltaic(PV)deployment poses new challenges for large-scale and distributed maintenance,particularly in fishery-PV complementary plants where panels are deployed over water surfaces.This pap...The rapid expansion of photovoltaic(PV)deployment poses new challenges for large-scale and distributed maintenance,particularly in fishery-PV complementary plants where panels are deployed over water surfaces.This paper presents the design and implementation of an intelligent operation and maintenance(O&M)system that integrates a 3D holographic digital twin cloud platform with UAV-assisted inspection and localized cleaning.The proposed system supports multi-source data acquisition,including UAV imagery,infrared sensing,and DustIQ-based soiling monitoring,and provides real-time visualization of the PV plant through 1:13D reconstruction.UAVs are employed for both autonomous inspections,covering defects such as soiling,bird droppings,bypass diode faults,and panel disconnections and targeted cleaning in small water-covered areas.Field trials were conducted at Riyue and Chebu PV plants,with small-scale UAV cleaning validation in Chebu fish ponds.Results demonstrated that the system achieves efficient task scheduling,fault detection,and localized cleaning,thereby improving O&M efficiency,reducing costs,and enabling digitalized and intelligent management for large-scale PV stations.展开更多
基金supported by a Horizontal Project on the Development of a Hybrid Energy Storage Simulation Model for Wind Power Based on an RT-LAB Simulation System(PH2023000190)the Inner Mongolia Natural Science Foundation Project and the Optimization of Exergy Efficiency of a Hybrid Energy Storage System with Crossover Control for Wind Power(2023JQ04).
文摘Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.
基金supported by 2024 Central Guidance Local Science and Technology Development Fund Project"Study on the mechanism and evaluation method of thermal pollution in water bodies,as well as research on thermal carrying capacity".(Grant 246Z4506G)Key Research and Development Project in Hebei Province:"Key Technologies and Equipment Research and Demonstration of Multiple Energy Complementary(Electricity,Heat,Cold System)for Solar Energy,Geothermal Energy,Phase Change Energy"(Grant 236Z4310G)the Hebei Academy of Sciences Key Research and Development Program"Research on Heat Transfer Mechanisms and Efficient Applications of Intermediate and Deep Geothermal Energy"(22702)。
文摘Ground source heat pump systems demonstrate significant potential for northern rural heating applications;however,the effectiveness of these systems is often limited by challenging geological conditions.For instance,in certain regions,the installation of buried pipes for heat exchangers may be complicated,and these pipes may not always serve as efficient low-temperature heat sources for the heat pumps of the system.To address this issue,the current study explored the use of solar-energy-collecting equipment to supplement buried pipes.In this design,both solar energy and geothermal energy provide low-temperature heat to the heat pump.First,a simulation model of a solar‒ground source heat pump coupling system was established using TRNSYS.The accuracy of this model was validated through experiments and simulations on various system configurations,including varying numbers of buried pipes,different areas of solar collectors,and varying volumes of water tanks.The simulations examined the coupling characteristics of these components and their influence on system performance.The results revealed that the operating parameters of the system remained consistent across the following configurations:three buried pipes,burial depth of 20 m,collector area of 6 m^(2),and water tank volume of 0.5 m^(3);four buried pipes,burial depth of 20 m,collector area of 3 m^(2),and water tank volume of 0.5 m^(3);and five buried pipes with a burial depth of 20 m.Furthermore,the heat collection capacity of the solar collectors spanning an area of 3 m^(2)was found to be equivalent to that of one buried pipe.Moreover,the findings revealed that the solar‒ground source heat pump coupling system demonstrated a lower annual cumulative energy consumption compared to the ground source heat pump system,presenting a reduction of 5.31%compared to the energy consumption of the latter.
基金supported by the Central Government Guides Local Science and Technology Development Fund Project(2023ZY0020)Key R&D and Achievement Transformation Project in InnerMongolia Autonomous Region(2022YFHH0019)+3 种基金the Fundamental Research Funds for Inner Mongolia University of Science&Technology(2022053)Natural Science Foundation of Inner Mongolia(2022LHQN05002)National Natural Science Foundation of China(52067018)Metallurgical Engineering First-Class Discipline Construction Project in Inner Mongolia University of Science and Technology,Control Science and Engineering Quality Improvement and Cultivation Discipline Project in Inner Mongolia University of Science and Technology。
文摘In this paper,a bilevel optimization model of an integrated energy operator(IEO)–load aggregator(LA)is constructed to address the coordinate optimization challenge of multiple stakeholder island integrated energy system(IIES).The upper level represents the integrated energy operator,and the lower level is the electricity-heatgas load aggregator.Owing to the benefit conflict between the upper and lower levels of the IIES,a dynamic pricing mechanism for coordinating the interests of the upper and lower levels is proposed,combined with factors such as the carbon emissions of the IIES,as well as the lower load interruption power.The price of selling energy can be dynamically adjusted to the lower LA in the mechanism,according to the information on carbon emissions and load interruption power.Mutual benefits and win-win situations are achieved between the upper and lower multistakeholders.Finally,CPLEX is used to iteratively solve the bilevel optimization model.The optimal solution is selected according to the joint optimal discrimination mechanism.Thesimulation results indicate that the sourceload coordinate operation can reduce the upper and lower operation costs.Using the proposed pricingmechanism,the carbon emissions and load interruption power of IEO-LA are reduced by 9.78%and 70.19%,respectively,and the capture power of the carbon capture equipment is improved by 36.24%.The validity of the proposed model and method is verified.
基金The Key R&D Project of Jilin Province,Grant/Award Number:20230201067GX。
文摘Extracting typical operational scenarios is essential for making flexible decisions in the dispatch of a new power system.A novel deep time series aggregation scheme(DTSAs)is proposed to generate typical operational scenarios,considering the large amount of historical operational snapshot data.Specifically,DTSAs analyse the intrinsic mechanisms of different scheduling operational scenario switching to mathematically represent typical operational scenarios.A Gramian angular summation field-based operational scenario image encoder was designed to convert operational scenario sequences into highdimensional spaces.This enables DTSAs to fully capture the spatiotemporal characteristics of new power systems using deep feature iterative aggregation models.The encoder also facilitates the generation of typical operational scenarios that conform to historical data distributions while ensuring the integrity of grid operational snapshots.Case studies demonstrate that the proposed method extracted new fine-grained power system dispatch schemes and outperformed the latest high-dimensional feature-screening methods.In addition,experiments with different new energy access ratios were conducted to verify the robustness of the proposed method.DTSAs enable dispatchers to master the operation experience of the power system in advance,and actively respond to the dynamic changes of the operation scenarios under the high access rate of new energy.
基金supported by the National Natural Science Foundation of China(Grant No.12272248)the Postgraduate Research and Practice Innovation Program of Jiangsu Province of China(Grant No.KYCX23_3296).
文摘Fractional calculus is widely used to deal with nonconservative dynamics because of its memorability and non-local properties.In this paper,the Herglotz principle with generalized operators is discussed,and the Herglotz type equations for nonholonomic systems are established.Then,the Noether symmetries are studied,and the conserved quantities are obtained.The results are extended to nonholonomic canonical systems,and the Herglotz type canonical equations and the Noether theorems are obtained.Two examples are provided to demonstrate the validity of the methods and results.
基金supported by Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ23E040004。
文摘The multi-stage development strategy is often adopted in the gas field.However,when the productivity decline occurs,many large processing stations will be severely idle and underutilized,significantly reducing operating efficiency and revenue.This study proposes a novel operation mode of multiple gathering production systems for gas field multi-stage development,integrating the decisions about processing capacity allocation and infrastructure construction to share processing stations and improve multi-system operating efficiency.A multi-period mixed integer linear programming model for multisystem operation optimization is established to optimize the net present value(NPV),considering the production of gas wells,time-varying gas prices,and the capacity of processing stations.The decision of processing capacity,location,construction timing,and capacity expansion of processing stations,as well as transmission capacity of pipelines and processing capacity allocation schemes,can be obtained to meet long-term production demand.Furthermore,a real case study indicates that the proposed processing capacity allocation approach not only has a shorter payback period and increases NPV by 4.8%,but also increases the utilization efficiency of processing stations from 27.37% to 48.94%.This work demonstrates that the synergy between the processing capacity allocation and infrastructure construction can hedge against production fluctuations and increase potential profits.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.42005003 and 41475094)。
文摘Nonlinear science is a fundamental area of physics research that investigates complex dynamical systems which are often characterized by high sensitivity and nonlinear behaviors.Numerical simulations play a pivotal role in nonlinear science,serving as a critical tool for revealing the underlying principles governing these systems.In addition,they play a crucial role in accelerating progress across various fields,such as climate modeling,weather forecasting,and fluid dynamics.However,their high computational cost limits their application in high-precision or long-duration simulations.In this study,we propose a novel data-driven approach for simulating complex physical systems,particularly turbulent phenomena.Specifically,we develop an efficient surrogate model based on the wavelet neural operator(WNO).Experimental results demonstrate that the enhanced WNO model can accurately simulate small-scale turbulent flows while using lower computational costs.In simulations of complex physical fields,the improved WNO model outperforms established deep learning models,such as U-Net,Res Net,and the Fourier neural operator(FNO),in terms of accuracy.Notably,the improved WNO model exhibits exceptional generalization capabilities,maintaining stable performance across a wide range of initial conditions and high-resolution scenarios without retraining.This study highlights the significant potential of the enhanced WNO model for simulating complex physical systems,providing strong evidence to support the development of more efficient,scalable,and high-precision simulation techniques.
文摘Digital twin shows broad application prospects in the aerospace field.This paper introduces a generalized satellite digital twin system in detail.With the innovative design concepts of modularization,generalization and modeling,on the one hand,the system has successfully achieved the reuse of software modules among different satellite models;on the other hand,it has achieved the reuse of software modules between the digital twin and the testing system,significantly improving the development efficiency of the digital twin system.The paper elaborates on the technical architecture and application fields of this digital twin system,and further prospects its future development.At the same time,through a real inorbit case,the engineering value of the digital twin system is strongly demonstrated.
基金supported by the National Natural Science Foundation of China(Grant Nos.42375062 and 42275158)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab)the Natural Science Foundation of Gansu Province(Grant No.22JR5RF1080)。
文摘It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using an identical reference.In this study,three physically reasonable DLMs are implemented for the forecasting of the sea surface temperature(SST),sea level anomaly(SLA),and sea surface velocity in the South China Sea.The DLMs are validated against both the testing dataset and the“OceanPredict”Class 4 dataset.Results show that the DLMs'RMSEs against the latter increase by 44%,245%,302%,and 109%for SST,SLA,current speed,and direction,respectively,compared to those against the former.Therefore,different references have significant influences on the validation,and it is necessary to use an identical and independent reference to intercompare the DLMs and OFSs.Against the Class 4 dataset,the DLMs present significantly better performance for SLA than the OFSs,and slightly better performances for other variables.The error patterns of the DLMs and OFSs show a high degree of similarity,which is reasonable from the viewpoint of predictability,facilitating further applications of the DLMs.For extreme events,the DLMs and OFSs both present large but similar forecast errors for SLA and current speed,while the DLMs are likely to give larger errors for SST and current direction.This study provides an evaluation of the forecast skills of commonly used DLMs and provides an example to objectively intercompare different DLMs.
文摘For any country,the availability of electricity is crucial to the development of the national economy and society.As a result,decision-makers and policy-makers can improve the sustainability and security of the energy supply by implementing a variety of actions by using the evaluation of these factors as an early warning system.This research aims to provide a multi-criterion decision-making(MCDM)method for assessing the sustainability and security of the electrical supply.The weights of criteria,which indicate their relative relevance in the assessment of the sustainability and security of the energy supply,the MCDM method allow users to express their opinions.To overcome the impact of uncertainty and vagueness of expert opinion,we explore the notion of picture fuzzy theory,which is a more efficient and dominant mathematical model.Recently,the theory of Aczel-Alsina operations has attained a lot of attraction and has an extensive capability to acquire smooth approximated results during the aggregation process.However,Choquet integral operators are more flexible and are used to express correlation among different attributes.This article diagnoses an innovative theory of picture fuzzy set to derive robust mathematical methodologies of picture fuzzy Choquet Integral Aczel-Alsina aggregation operators.To prove the intensity and validity of invented approaches,some dominant properties and special cases are also discussed.An intelligent decision algorithm for the MCDM problem is designed to resolve complicated real-life applications under multiple conflicting criteria.Additionally,we discussed a numerical example to investigate a suitable electric transformer under consideration of different beneficial key criteria.A comparative study is established to capture the superiority and effectiveness of pioneered mathematical approaches with existing methodologies.
文摘Irrigation service defines the responsibilities and rights of irrigation system management agencies,water users,and other parties involved in the irrigation service contract.As a result,the irrigation service must be clearly specified and updated by crop seasons and by all partners.Given the inherent complexity of the service,this article presents and discusses the development and application of a computer model designed to support the specification of public service levels in rice-based irrigation systems.Applied to the Tu Mai irrigation system,the model has enabled all involved parties to define irrigation service levels through systematic analysis and a thorough consideration of constraints such as water resource characteristics,hydraulic structures,and the operational plans of the irrigation system.The research findings have also helped relevant agencies reach agreements on irrigation service levels for the particular irrigation season of spring 2023,which included one irrigation period for land preparation and five subsequent irrigation periods for rice crops corresponding with a specific schedule for operating the system(discharges and duration)that met the farmers’requests for their farming practices and reduced the loss due to rice crop yield decline at the irrigation system as a whole.Additionally,recommendations for improving irrigation services in the Tu Mai system have been made,including upgrading the head pumping station to accommodate lower water levels in the Cau River,aligning the irrigation schedules of the Water User Associations(WUAs)more flexibly,and strictly supervising water deliveries to ensure safety and fairness.
基金the National Natural Science Foundation of China(No.52071161)。
文摘With the development of marine resources,a dual-platform joint operation has been paid more attention.In this paper,the mooring layout space and relative motion limitation of the dual-platform berthing operation were fully considered.A new hybrid mooring system with“X+buoy”combination was designed based on the characteristics of catenary and tension mooring.The hydrodynamic characteristics of the new mooring system were analyzed by combining numerical simulation with model experiment.Under the regular and freak waves with different wave heights and periods,the time-domain full-coupling analysis method was used to study the hydrodynamic characteristics of the mooring system.It can be found that the arrangement of dual-platform under 0◦wave direction is optimal,and the“X+buoy”combined mooring system designed in this paper has a good follow-up between the two platforms under different regular and freak waves.The relative motion response between the two platforms can be effectively controlled,and finally the positioning of the dual-platform joint operation is realized.Research results of this paper provide a theoretical basis and technical support for the hydrodynamic performance analysis and safety assessment of deep-sea offshore platforms in China.
基金supported by the National Key R&D Program of China(2022YFE0200400).
文摘The accurate selection of operational parameters is critical for ensuring the safety,efficiency,and automation of Tunnel Boring Machine(TBM)operations.This study proposes a similarity-based framework integrating model-based boring indexes(derived from rock fragmentation mechanisms)and Euclidean distance analysis to achieve real-time recommendations of TBM operational parameters.Key performance indicators-thrust(F),torque(T),and penetration(p)-were used to calculate three model-based boring indexes(a,b,k),which quantify dynamic rock fragmentation behavior.A dataset of 359 candidate samples,reflecting diverse geological conditions from the Yin-Chao water conveyance project in Inner Mongolia,China,was utilized to validate the framework.The system dynamically recommends parameters by matching real-time data with historical cases through standardized Euclidean distance,achieving high accuracy.Specifically,the mean absolute error(MAE)for rotation speed(n)was 0.10 r/min,corresponding to a mean absolute percentage error(MAPE)of 1.09%.For advance rate(v),the MAE was 3.4 mm/min,with a MAPE of 4.50%.The predicted thrust(F)and torque(T)values exhibited strong agreement with field measurements,with MAEs of 270 kN and 178 kN∙m,respectively.Field applications demonstrated a 30%reduction in parameter adjustment time compared to empirical methods.This work provides a robust solution for real-time TBM control,advancing intelligent tunneling in complex geological environments.
文摘Introduction: Head injuries constitute a public health problem in Cameroon and everywhere else in the world. They represent 23% of admissions to the Yaounde emergency center (CURY), which is a center exclusively dedicated, since 2014, to emergency care in Yaounde. In the management of trauma brain injuries at CURY, several are operated on. However, to date, no evaluation of these operated patients has yet been made. Goals: The objective of this study was to highlight the prognostic factors in patients operated for TBI at CURY. Methodology: We conducted a descriptive study whose data collection was done retrospectively over 2 years (01 January 2021 to 31 December 2022) at CURY. Data was collected from the registers of operative reports. Results: We enrolled 105 medical reports of patients who were victims of TBI operated on. The male gender predominated with a sex ratio of 3/1. The average age of the patients was 37.5 ± 18.83 years. Public road accidents were the leading cause of TBI in 75.2% of cases. The means of transport of the victims were mostly non-medical 97.1%. 45.7% of patients were admitted in less than 6 hours following injury. The initial clinical evaluation found 45.8% of patients with a Glasgow Coma Score (GCS) between [14, 15], and 13.2% of patients had a GCS 8. The indications for surgery were extradural hematoma (30%), followed by acute subdural hematoma (24%). The major complication was postoperative infection (25%). The mortality rate of the series was 7.9%. Poor prognostic factors were the depth of the coma on admission, advanced age and postoperative complications. Conclusion: The results of this study suggest that most patients operated on for TBI at CURY had a favorable outcome. The poor prognostic factors were the depth of the coma on admission, advanced age, postoperative complications and comorbidities.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52404343 and 52274326)the Fundamental Research Funds for the Central Universities(Grant Nos.N2425031 and N25BJD007)+1 种基金the China Postdoctoral Science Foundation(Grant No.2024M760370)the Liaoning Province Science and Technology Plan Joint Program(Key Research and Development Program Project)(Grant No.2023JH2/101800058).
文摘The operation furnace profile for the high heat load zone was one of the important factors affecting the stable and high-quality production of the blast furnace,but it was difficult to monitor directly.To address this issue,an online calculation model for the operation furnace profile was proposed based on a dual-driven approach combining data and mechanisms,by integrating mechanism experiment,numerical simulation,and machine learning.The experimentally determined slag layer hanging temperature was 1130℃,and the thermal conductivity ranged from 1.32 to 1.96 m^(2)℃^(-1).Based on the 3D slag-hanging numerical simulation model,a database was constructed,containing 2294 sets of mechanism cases for the slag layer.The fusion of data modeling,heat transfer theory,and expert experience enabled the online calculation of key input variables for the operation furnace profile,particularly the quantification of the“black-box”variable of gas temperature.Simulated data were used as inputs,and light gradient boosting machine was applied to construct the online calculation model for the operation furnace profile.This model facilitated the online calculation of the slag layer thickness and other key indices.The coefficient of determination of the model exceeded 0.98,indicating high accuracy.A slag layer state judgment model was constructed,categorizing states as shedding,too thin,normal,and too thick.Real-time data were applied,and the average slag thickness in the high heat load area of the test data ranged from 40 to 80 mm,which was consistent with field experience.The absolute value of the Pearson correlation coefficient between slag layer thickness,thermocouple temperature,and heat load data was above 0.85,indicating that the calculated results closely aligned with the actual trends.A 3D visual online monitoring system for the operation furnace profile was created,and it has been successfully implemented at the blast furnace site.
基金supported by the National Natural Science Foundation of China(Grant No.42101296)the Natural Science Foundation of Chongqing(Grant No.CSTB2023NSCQ-MSX0041)Chongqing Municipal Training Program of Innovation and Entrepreneurship Project(Grants No.S202410635155 and X202410635116)。
文摘Safe and just operating spaces(SJOS)are influenced by complex cross-scale interactions and cascading effects spanning global,regional,and local landscape scales.However,existing SJOS research has often focused on single-scale assessments,overlooking the impacts of multiscale interactions and within-region heterogeneity on urban SJOS.To address this gap,we developed a cross-scale framework for assessing urban SJOS,explicitly incorporating top-down influences from upper-level constraints and bottom-up effects from lower-level heterogeneity.This approach was applied to China's five major metropolises to examine the states and cross-scale dynamics influencing urban SJOS between 1990 and 2020.Our findings reveal that the SJOS of China's metropolises were primarily influenced by factors at national and local landscape scales,with weaker influences from the global and continental scales.A persistent trade-off between social justice and environmental safety was identified across spatiotemporal scales.For instance,Chongqing in southwestern China lagged behind the eastern four metropolises in social performance but exhibited stronger environmental safety due to its extensive natural landscapes,which mitigated the anthropogenic impacts of urban centers.Regional issues,such as the overshoot of PM_(2.5)and ecological footprints(EF),were primarily driven by the bottom-up accumulation of localized pressures,while the overshoot of CO_(2)was attributed to national policy constraints and the universal exceedance of safe thresholds across scales.Addressing urban sustainability requires avoiding adverse cascading effects from other levels by emphasizing landscape heterogeneity within metropolises and fostering coordinated collaboration across scales,particularly at the regional landscape and national levels.
基金supported by the National Key Research&Development Program of China(2021YFB3301100)the National Natural Science Foundation of China(52004014)the Fundamental Research Funds for the Central Universities(ZY2406).
文摘This paper proposed a new systematic approach-functional evidential reasoning model(FERM) for exploring hazardous chemical operational accidents under uncertainty. First, FERM was introduced to identify various causal factors and their performance changes in hazardous chemical operational accidents, along with determining the functional failure link relationships. Subsequently, FERM was employed to elucidate both qualitative and quantitative operational accident information within a unified framework, which could be regarded as the input of information fusion to obtain the fuzzy belief distribution of each cause factor. Finally, the derived risk values of the causal factors were ranked while constructing multi-level accident causation chains to unveil the weak links in system functionality and the primary roots of operational accidents. Using the specific case of the “1·15” major explosion and fire accident at Liaoning Panjin Haoye Chemical Co., Ltd., seven causal factors and their corresponding performance changes were identified. Additionally, five accident causation chains were uncovered based on the fuzzy joint distribution of the functional assessment level(FAL) and reliability distribution(RD),revealing an overall increase in risk along the accident evolution path. The research findings demonstrated that FERM enabled the effective characterization, rational quantification and accurate analysis of the inherent uncertainties in hazardous chemical operational accident risks from a systemic perspective.
基金sponsored by the State Grid Corporation of China Technology Project(Research on Key Technologies and Equipment Development of Micro Pumped Storage for Distributed New Energy Consumption in Distribution Networks,5400-202324196A-1-1-ZN).
文摘To enhance energy interaction among low-voltage stations(LVSs)and reduce the line loss of the distribution network,a novel operation mode of the micro-pumped storage system(mPSS)has been proposed based on the common reservoir.First,some operation modes of mPSS are analyzed,which include the separated reservoir mode(SRM)and common reservoir mode(CRM).Then,based on the SRM,and CRM,an energy mutual assistance control model between LVSs has been built to optimize energy loss.Finally,in the simulation,compared to the model without pumped storage in the LVS,the SRMand CLRMcan decrease the total energy loss by 294.377 and 432.578 kWh,respectively.The configuration of mPSS can improve the utilization rate of the new energy source generation system,and relieve the pressure of transformer capacity in the LVS.Compared with the SRM,the proposed CRM has reduced the total energy loss by 138.201 kWh,increased the new energy consumption by 161.642 kWh,and decreased the line loss by 7.271 kWh.With the efficiency of the mPSS improving,the total energy loss reduction of CRM will be 3.5 times that of SRM.Further,the CRMcan significantly reduce the reservoir capacity construction of mPSS and ismore suitable for scenarios where the capacity configuration of mPSS is limited.
基金Supported by Shandong University of Finance and Economics 2023 International Collaborative Projectsthe National Natural Science Foundation of China(Grant No.62073190)。
文摘In this article,we study the approximate controllability of neutral partial differential equations with Hilfer fractional derivative and not instantaneous impulses effects.By using the Sadovskii's fixed point theorem,fractional calculus and resolvent operator functions,we prove the approximate controllability of the considered system.
基金Joint Innovation Program of Guangdong(Project No.:2023A0505020003)。
文摘The rapid expansion of photovoltaic(PV)deployment poses new challenges for large-scale and distributed maintenance,particularly in fishery-PV complementary plants where panels are deployed over water surfaces.This paper presents the design and implementation of an intelligent operation and maintenance(O&M)system that integrates a 3D holographic digital twin cloud platform with UAV-assisted inspection and localized cleaning.The proposed system supports multi-source data acquisition,including UAV imagery,infrared sensing,and DustIQ-based soiling monitoring,and provides real-time visualization of the PV plant through 1:13D reconstruction.UAVs are employed for both autonomous inspections,covering defects such as soiling,bird droppings,bypass diode faults,and panel disconnections and targeted cleaning in small water-covered areas.Field trials were conducted at Riyue and Chebu PV plants,with small-scale UAV cleaning validation in Chebu fish ponds.Results demonstrated that the system achieves efficient task scheduling,fault detection,and localized cleaning,thereby improving O&M efficiency,reducing costs,and enabling digitalized and intelligent management for large-scale PV stations.