An effective energy management strategy(EMS)is essential to optimize the energy efficiency of electric vehicles(EVs).With the advent of advanced machine learning techniques,the focus on developing sophisticated EMS fo...An effective energy management strategy(EMS)is essential to optimize the energy efficiency of electric vehicles(EVs).With the advent of advanced machine learning techniques,the focus on developing sophisticated EMS for EVs is increasing.Here,we introduce LearningEMS:a unified framework and open-source benchmark designed to facilitate rapid development and assessment of EMS.LearningEMS is distinguished by its ability to support a variety of EV configurations,including hybrid EVs,fuel cell EVs,and plug-in EVs,offering a general platform for the development of EMS.The framework enables detailed comparisons of several EMS algorithms,encompassing imitation learning,deep reinforcement learning(RL),offline RL,model predictive control,and dynamic programming.We rigorously evaluated these algorithms across multiple perspectives:energy efficiency,consistency,adaptability,and practicability.Furthermore,we discuss state,reward,and action settings for RL in EV energy management,introduce a policy extraction and reconstruction method for learning-based EMS deployment,and conduct hardware-in-the-loop experiments.In summary,we offer a unified and comprehensive framework that comes with three distinct EV platforms,over 10000 km of EMS policy data set,ten state-of-the-art algorithms,and over 160 benchmark tasks,along with three learning libraries.Its flexible design allows easy expansion for additional tasks and applications.The open-source algorithms,models,data sets,and deployment processes foster additional research and innovation in EV and broader engineering domains.展开更多
Under hydrothermal and solvothermal conditions,two novel cobalt-based complexes,{[Co_(2)(CIA)(OH)(1,4-dtb)]·3.2H_(2)O}n(HU23)and{[Co_(2)(CIA)(OH)(1,4-dib)]·3.5H2O·DMF}n(HU24),were successfully construct...Under hydrothermal and solvothermal conditions,two novel cobalt-based complexes,{[Co_(2)(CIA)(OH)(1,4-dtb)]·3.2H_(2)O}n(HU23)and{[Co_(2)(CIA)(OH)(1,4-dib)]·3.5H2O·DMF}n(HU24),were successfully constructed by coordinatively assembling the semi-rigid multidentate ligand 5-(1-carboxyethoxy)isophthalic acid(H₃CIA)with the Nheterocyclic ligands 1,4-di(4H-1,2,4-triazol-4-yl)benzene(1,4-dtb)and 1,4-di(1H-imidazol-1-yl)benzene(1,4-dib),respectively,around Co^(2+)ions.Single-crystal X-ray diffraction analysis revealed that in both complexes HU23 and HU24,the CIA^(3-)anions adopt aκ^(7)-coordination mode,bridging six Co^(2+)ions via their five carboxylate oxygen atoms and one ether oxygen atom.This linkage forms tetranuclear[Co4(μ3-OH)2]^(6+)units.These Co-oxo cluster units were interconnected by CIA^(3-)anions to assemble into 2D kgd-type structures featuring a 3,6-connected topology.The 2D layers were further connected by 1,4-dtb and 1,4-dib,resulting in 3D pillar-layered frameworks for HU23 and HU24.Notably,despite the similar configurations of 1,4-dtb and 1,4-dib,differences in their coordination spatial orientations lead to topological divergence in the 3D frameworks of HU23 and HU24.Topological analysis indicates that the frameworks of HU23 and HU24 can be simplified into a 3,10-connected net(point symbol:(4^(10).6^(3).8^(2))(4^(3))_(2))and a 3,8-connected tfz-d net(point symbol:(4^(3))_(2)((4^(6).6^(18).8^(4)))),respectively.This structural differentiation confirms the precise regulatory role of ligands on the topology of metal-organic frameworks.Moreover,the ultraviolet-visible absorption spectra confirmed that HU23 and HU24 have strong absorption capabilities for ultraviolet and visible light.According to the Kubelka-Munk method,their bandwidths were 2.15 and 2.08 eV,respectively,which are consistent with those of typical semiconductor materials.Variable-temperature magnetic susceptibility measurements(2-300 K)revealed significant antiferromagnetic coupling in both complexes,with their effective magnetic moments decreasing markedly as the temperature lowered.CCDC:2457554,HU23;2457553,HU24.展开更多
Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature.Conventional biomass-derived cellulose frameworks face a fund...Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature.Conventional biomass-derived cellulose frameworks face a fundamental trade-off between haze and transparency,coupled with impractical thicknesses(≥1 mm).Inspired by squid’s skin-peeling mechanism,this work develops a peroxyformic acid(HCOOOH)-enabled precision peeling strategy to isolate intact 10-μm-thick bamboo green(BG)frameworks—100×thinner than wood-based counterparts while achieving an unprecedented optical performance(88%haze with 80%transparency).This performance surpasses delignified biomass(transparency<40%at 1 mm)and matches engineered cellulose composites,yet requires no energy-intensive nanofibrillation.The preserved native cellulose I crystalline structure(64.76%crystallinity)and wax-coated uniaxial fibril alignment(Hermans factor:0.23)contribute to high mechanical strength(903 MPa modulus)and broadband light scattering.As a light-management layer in polycrystalline silicon solar cells,the BG framework boosts photoelectric conversion efficiency by 0.41%absolute(18.74%→19.15%),outperforming synthetic anti-reflective coatings.The work establishes a scalable,waste-to-wealth route for optical-grade cellulose materials in next-generation optoelectronics.展开更多
The intrinsic pressure framework,which treats self-propelling force as an external force,provides a convenient and consistent description of mechanical equilibrium in active matter.However,direct experimental evidence...The intrinsic pressure framework,which treats self-propelling force as an external force,provides a convenient and consistent description of mechanical equilibrium in active matter.However,direct experimental evidence is still lacking.To validate this framework,here we employ a programmable robotic platform,where a single light-controlled wheeled robot travels in an activity landscape.Our experiments quantitatively demonstrate that the intrinsic pressure difference across the activity interface is balanced by the emerged polarization force.This result unambiguously confirms the theoretical predictions,thus validating the intrinsic pressure framework and laying the experimental foundation for the intrinsic pressure-based mechanical description of dry active matter.展开更多
The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often...The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often advanced one dimension—such as Internet of Things(IoT)-based data acquisition,Artificial Intelligence(AI)-driven analytics,or digital twin visualization—without fully integrating these strands into a single operational loop.As a result,many existing solutions encounter bottlenecks in responsiveness,interoperability,and scalability,while also leaving concerns about data privacy unresolved.This research introduces a hybrid AI–IoT–Digital Twin framework that combines continuous sensing,distributed intelligence,and simulation-based decision support.The design incorporates multi-source sensor data,lightweight edge inference through Convolutional Neural Networks(CNN)and Long ShortTerm Memory(LSTM)models,and federated learning enhanced with secure aggregation and differential privacy to maintain confidentiality.A digital twin layer extends these capabilities by simulating city assets such as traffic flows and water networks,generating what-if scenarios,and issuing actionable control signals.Complementary modules,including model compression and synchronization protocols,are embedded to ensure reliability in bandwidth-constrained and heterogeneous urban environments.The framework is validated in two urban domains:traffic management,where it adapts signal cycles based on real-time congestion patterns,and pipeline monitoring,where it anticipates leaks through pressure and vibration data.Experimental results show a 28%reduction in response time,a 35%decrease in maintenance costs,and a marked reduction in false positives relative to conventional baselines.The architecture also demonstrates stability across 50+edge devices under federated training and resilience to uneven node participation.The proposed system provides a scalable and privacy-aware foundation for predictive urban infrastructure management.By closing the loop between sensing,learning,and control,it reduces operator dependence,enhances resource efficiency,and supports transparent governance models for emerging smart cities.展开更多
We present a high performance modularly-built open-source software-OpenIFEM.OpenIFEM is a C++implementation of the modified immersed finite element method(mIFEM)to solve fluid-structure interaction(FSI)problems.This s...We present a high performance modularly-built open-source software-OpenIFEM.OpenIFEM is a C++implementation of the modified immersed finite element method(mIFEM)to solve fluid-structure interaction(FSI)problems.This software is modularly built to perform multiple tasks including fluid dynamics(incompressible and slightly compressible fluid models),linear and nonlinear solid mechanics,and fully coupled fluid-structure interactions.Most of open-source software packages are restricted to certain discretization methods;some are under-tested,under-documented,and lack modularity as well as extensibility.OpenIFEM is designed and built to include a set of generic classes for users to adapt so that any fluid and solid solvers can be coupled through the FSI algorithm.In addition,the package utilizes well-developed and tested libraries.It also comes with standard test cases that serve as software and algorithm validation.The software can be built on cross-platform,i.e.,Linux,Windows,and Mac OS,using CMake.Efficient parallelization is also implemented for high-performance computing for large-sized problems.OpenIFEM is documented using Doxygen and publicly available to download on GitHub.It is expected to benefit the future development of FSI algorithms and be applied to a variety of FSI applications.展开更多
Topology optimization(TO),a numerical technique to find the optimalmaterial layoutwith a given design domain,has attracted interest from researchers in the field of structural optimization in recent years.For beginner...Topology optimization(TO),a numerical technique to find the optimalmaterial layoutwith a given design domain,has attracted interest from researchers in the field of structural optimization in recent years.For beginners,opensource codes are undoubtedly the best alternative to learning TO,which can elaborate the implementation of a method in detail and easily engage more people to employ and extend the method.In this paper,we present a summary of various open-source codes and related literature on TO methods,including solid isotropic material with penalization(SIMP),evolutionary method,level set method(LSM),moving morphable components/voids(MMC/MMV)methods,multiscale topology optimization method,etc.Simultaneously,we classify the codes into five levels,fromeasy to difficult,depending on their difficulty,so that beginners can get started and understand the form of code implementation more quickly.展开更多
With the rapid development of Open-Source(OS),more and more software projects are maintained and developed in the form of OS.These Open-Source projects depend on and influence each other,gradually forming a huge OS pr...With the rapid development of Open-Source(OS),more and more software projects are maintained and developed in the form of OS.These Open-Source projects depend on and influence each other,gradually forming a huge OS project network,namely an Open-Source Software ECOsystem(OSSECO).Unfortunately,not all OS projects in the open-source ecosystem can be healthy and stable in the long term,and more projects will go from active to inactive and gradually die.In a tightly connected ecosystem,the death of one project can potentially cause the collapse of the entire ecosystem network.How can we effectively prevent such situations from happening?In this paper,we first identify the basic project characteristics that affect the survival of OS projects at both project and ecosystem levels through the proportional hazards model.Then,we utilize graph convolutional networks based on the ecosystem network to extract the ecosystem environment characteristics of OS projects.Finally,we fuse basic project characteristics and environmental project characteristics and construct a Hybrid Structured Prediction Model(HSPM)to predict the OS project survival state.The experimental results show that HSPM significantly improved compared to the traditional prediction model.Our work can substantially assist OS project managers in maintaining their projects’health.It can also provide an essential reference for developers when choosing the right open-source project for their production activities.展开更多
Scientific research requires the collection of data in order to study, monitor, analyze, describe, or understand a particular process or event. Data collection efforts are often a compromise: manual measurements can b...Scientific research requires the collection of data in order to study, monitor, analyze, describe, or understand a particular process or event. Data collection efforts are often a compromise: manual measurements can be time-consuming and labor-intensive, resulting in data being collected at a low frequency, while automating the data-collection process can reduce labor requirements and increase the frequency of measurements, but at the cost of added expense of electronic data-collecting instrumentation. Rapid advances in electronic technologies have resulted in a variety of new and inexpensive sensing, monitoring, and control capabilities which offer opportunities for implementation in agricultural and natural-resource research applications. An Open Source Hardware project called Arduino consists of a programmable microcontroller development platform, expansion capability through add-on boards, and a programming development environment for creating custom microcontroller software. All circuit-board and electronic component specifications, as well as the programming software, are open-source and freely available for anyone to use or modify. Inexpensive sensors and the Arduino development platform were used to develop several inexpensive, automated sensing and datalogging systems for use in agricultural and natural-resources related research projects. Systems were developed and implemented to monitor soil-moisture status of field crops for irrigation scheduling and crop-water use studies, to measure daily evaporation-pan water levels for quantifying evaporative demand, and to monitor environmental parameters under forested conditions. These studies demonstrate the usefulness of automated measurements, and offer guidance for other researchers in developing inexpensive sensing and monitoring systems to further their research.展开更多
Resource-scarce regions with serious COVID-19 outbreaks do not have enough ventilators to support critically ill patients,and these shortages are especially devastating in developing countries.To help alleviate this s...Resource-scarce regions with serious COVID-19 outbreaks do not have enough ventilators to support critically ill patients,and these shortages are especially devastating in developing countries.To help alleviate this strain,we have designed and tested the accessible low-barrier in vivo-validated economical ventilator(ALIVE Vent),a COVID-19-inspired,cost-effective,open-source,in vivo-validated solution made from commercially available components.The ALIVE Vent operates using compressed oxygen and air to drive inspiration,while two solenoid valves ensure one-way flow and precise cycle timing.The device was functionally tested and profiled using a variable resistance and compliance artificial lung and validated in anesthetized large animals.Our functional test results revealed its effective operation under a wide variety of ventilation conditions defined by the American Association of Respiratory Care guidelines for ventilator stockpiling.The large animal test showed that our ventilator performed similarly if not better than a standard ventilator in maintaining optimal ventilation status.The FiO2,respiratory rate,inspiratory to expiratory time ratio,positive-end expiratory pressure,and peak inspiratory pressure were successfully maintained within normal,clinically validated ranges,and the animals were recovered without any complications.In regions with limited access to ventilators,the ALIVE Vent can help alleviate shortages,and we have ensured that all used materials are publicly available.While this pandemic has elucidated enormous global inequalities in healthcare,innovative,cost-effective solutions aimed at reducing socio-economic barriers,such as the ALIVE Vent,can help enable access to prompt healthcare and life saving technology on a global scale and beyond COVID-19.展开更多
In today’s society with advanced Internet,the amount of information increases dramatically with each passing day,which leads to increasingly complex processes of open-source intelligence.Therefore,it is more importan...In today’s society with advanced Internet,the amount of information increases dramatically with each passing day,which leads to increasingly complex processes of open-source intelligence.Therefore,it is more important to rationalize the operation mode and improve the operation efficiency of open-source intelligence under the premise of satisfying users’needs.This paper focuses on the simulation study of the process system of opensource intelligence from the user’s perspective.First,the basic concept and development status of open-source intelligence are introduced in details.Second,six existing intelligence operation process models are summarized and their advantages and disadvantages are compared in focus.Based on users’preference,the open-source intelligence system simulation theory model is constructed from four aspects:intelligence collection,intelligence processing,intelligence analysis,and intelligence delivery.Meanwhile,the dynamics model of the open-source intelligence process system is constructed based on the open-source intelligence system simulation theoretical model,which specifically includes five parts:determination of system boundary,construction of causal loop diagram,construction of stock flow diagram,writing ofmathematical equations,and system sensitivity test.Finally,the system simulation results were analyzed.It was found that improving the system of intelligence agencies,opening up government affairs,improving the professional level of intelligence personnel,strengthening the communication and cooperation among personnel of various intelligence departments,and expressing intelligence products through diverse forms can effectively improve the operational efficiency of the open-source intelligence process system.展开更多
Surface albedo is defined as the ratio of incident and reflected solar irradiance and describes the ability of a surface to reflect, rather than absorb incident solar shortwave radiation. It is thus a crucial paramete...Surface albedo is defined as the ratio of incident and reflected solar irradiance and describes the ability of a surface to reflect, rather than absorb incident solar shortwave radiation. It is thus a crucial parameter in the climate system, particularly in the polar oceans. Sea ice albedo is a main driver for light transmission into the polar oceans and thus has a high impact on ocean warming, ice melting and marine primary production. During spring and summer, sea ice albedo can exhibit a significant spatial variability caused by meltwater accumulations on the ice. While complex and expensive solutions for albedo measurements are already available, we want to present a simple open-source design that allows for affordable mapping of spatially varying surface albedo on sea ice and beyond. Our solution is based on off-the-shelf components, such as an Arduino microcontroller integrating affordable light sensors, a GPS unit, data recording on memory card and data display into a simple field strengthened unit. We provide example data from two Arctic field deployments showing the capabilities and limitations of this system.展开更多
Apnoea,a major sleep disorder,affects many adults and causes several issues,such as fatigue,high blood pressure,liver conditions,increased risk of type II diabetes,and heart problems.Therefore,advanced monitoring and ...Apnoea,a major sleep disorder,affects many adults and causes several issues,such as fatigue,high blood pressure,liver conditions,increased risk of type II diabetes,and heart problems.Therefore,advanced monitoring and diagnosing tools of apnoea disorders are needed to facilitate better treatment,with advantages such as accuracy,comfort of use,cost effectiveness,and embedded computation capabilities to recognise,store,process,and transmit time series data.In this work we present an adaptation of our apnoea-Pi open-source surface acoustic wave(SAW)platform(Apnoea-Pi)to monitor and recognise apnoea in patients.The platform is based on a thin-film SAW device using bimorph ZnO and Al structures,including those fabricated as Al foils or plates,to achieve breath tracking based on humidity and temperature changes.We applied open-source electronics and provided embedded computing characteristics for signal processing,data recognition,storage,and transmission of breath signals.We show that the thin-film SAW device out-performed standard and off-the-shelf capacitive electronic sensors in terms of their response and accuracy for human breath-tracking purposes.This in combination with embedded electronics makes a suitable platform for human breath monitoring and sleep disorder recognition.展开更多
There is a growing need for web-based geographic information systems for easy and fast dissemination, sharing, displaying and processing of spatial information. The tremendous growth in the use of web and open-source ...There is a growing need for web-based geographic information systems for easy and fast dissemination, sharing, displaying and processing of spatial information. The tremendous growth in the use of web and open-source geospatial resources has sparked development of web-based spatial applications to address multidisciplinary issues with spatial dimensions. This paper presents the integration of open-source geospatial tools and web technology to visualize and interact with spatial data using web browser. The goal of this paper is to implement a prototype system for web-based mapping by providing step-by-step instructions in order to encourage the eager developers and interested readers to publish their maps on the web with no prior technical experience in map servers. The implementation of mapping prototype shows the utilization of open-source geospatial tools which results in a rapid implementation with minimal or no software input cost.展开更多
With the rise of open-source software,the social development paradigm occupies an indispensable position in the current software development process.This paper puts forward a variant of the PageRank algorithm to build...With the rise of open-source software,the social development paradigm occupies an indispensable position in the current software development process.This paper puts forward a variant of the PageRank algorithm to build the importance assessment model,which provides quantifiable importance assessment metrics for new Java projects based on Java open-source projects or components.The critical point of the model is to use crawlers to obtain relevant information about Java open-source projects in the GitHub open-source community to build a domain knowledge graph.According to the three dimensions of the Java open-source project’s project influence,project activity and project popularity,the project is measured.A modified PageRank algorithm is proposed to construct the importance evaluation model.Thereby providing quantifiable importance evaluation indicators for new Java projects based on or components of Java open-source projects.This article evaluates the importance of 4512 Java open-source projects obtained on GitHub and has a good effect.展开更多
The use of open-source data and tools in disaster exposure mapping is presented in this paper. Disaster exposure is a collection of the element at risk to potential loss. Gampaha divisional secretariat (DS) is a study...The use of open-source data and tools in disaster exposure mapping is presented in this paper. Disaster exposure is a collection of the element at risk to potential loss. Gampaha divisional secretariat (DS) is a study area laid on the lower part of the Attanagalu Oya river basin. As the geospatial tools, OpenStreetMap (OSM), Java OpenStreetMap (JOSM), QGIS, GPS Essentials, and Open Map Kit (OMK) are used. The elements of disaster exposure, including the number of people or types of assets, are surveyed and inventoried using the OSM platforms. Local, national, and international agencies produce and evaluate the data. The study developed spatial data for building footprints of 165,000 households, street lengths of 2300 km, hospital units of 16, and utility units of 2300. This could overcome the main challenges of exposure mapping in the area. The procedure developed in the exposure mapping can be used in a data-sparse environment. Exposure mapping is generally used to estimate the impact of hazards or disasters, which are essential in effective disaster management. How are there still remaining challenges in disaster exposure mapping such as less awareness about the mapping procedure, lack of government support, internet access, hardware, and inability to understand the value of exposure mapping?展开更多
Open-wheeled race car aerodynamics is unquestionably challenging insofar as it involves many physical phenomena,such as slender and blunt body aerodynamics,ground effect,vortex management and interaction between diffe...Open-wheeled race car aerodynamics is unquestionably challenging insofar as it involves many physical phenomena,such as slender and blunt body aerodynamics,ground effect,vortex management and interaction between different sophisticated aero devices.In the current work,a 2017 F1 car aerodynamics has been investigated from a numerical point of view by using an open-source code.The vehicle project was developed by PERRINN(Copyright.2011—Present PERRINN),an engineering community founded by Nicolas Perrin in 2011.The racing car performance is quantitatively evaluated in terms of drag,downforce,efficiency and front balance.The goals of the present CFD(computational fluid dynamics)-based research are the following:analyzing the capabilities of the open-source software OpenFOAM in dealing with complex meshes and external aerodynamics calculation,and developing a reliable workflow from CAD(computer aided design)model to the post-processing of the results,in order to meet production demands.展开更多
(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under...(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under solvothermal conditions,to react with transition metals achieving four novel metal-organic frameworks(MOFs):[Zn(IP)(L_(1))]_(n)(1),{[Cd(IP)(L_(1))]·H_(2)O}_(n)(2),{[Co(IP)(L_(1))]·H_(2)O}_(n)(3),and[Zn(IP)(L_(2))(H_(2)O)]_(n)(4).MOFs 1-4 have been characterized by single-crystal X-ray diffraction,powder X-ray diffraction,thermogravimetry,and elemental analysis.Single-crystal X-ray diffraction shows that MOF 1 crystallizes in the monoclinic crystal system with space group P2_(1)/n,and MOFs 2-4 belong to the triclinic system with the P1 space group.1-3 are 2D sheet structures,2 and 3 have similar structural characters,whereas 4 is a 1D chain structure.Furthermore,1-3 exhibited certain photocatalytic capability in the degradation of rhodamine B(Rh B)and pararosaniline hydrochloride(PH).4could be used as a heterogeneous catalyst for the Knoevenagel reaction starting with benzaldehyde derivative and malononitrile.4 could promote the reaction to achieve corresponding products in moderate yields within 3 h.Moreover,the catalyst exhibited recyclability for up to three cycles without significantly dropping its activity.A mechanism for MOF 4 catalyzed Knoevenagel condensation reaction of aromatic aldehyde and malononitrile has been initially proposed.CCDC:2356488,1;2356497,2;2356499,3;2356498,4.展开更多
Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nano...Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nanorods,which had many voids.The S-FeCoTA catalysts exhibited excellent electrochemical oxygen evolution reaction(OER)performance with a low overpotential of 273 mV at 10 mA·cm^(-2)and a small Tafel slope of 36 mV·dec^(-1)in 1 mol·L^(-1)KOH.The potential remained at 1.48 V(vs RHE)at 10 mA·cm^(-2)under continuous testing for 15 h,implying that S-FeCoTA had good stability.The Faraday efficiency of S-FeCoTA was 94%.The outstanding OER activity of S-FeCoTA is attributed to the synergistic effects among S,Fe,and Co,thus promoting electron transfer,reducing the reaction kinetic barrier,and enhancing the OER performance.展开更多
The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic ...The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic frameworks(MOFs)are ideal self-sacrificing templates for the construction of carbon-based EMW absorbers.In this work,bimetallic FeMn-MOF-derived MnFe_(2)O_(4)/C/graphene composites were fabricated via a two-step route of solvothermal reaction and the following pyrolysis treatment.The results re-veal the evolution of the microscopic morphology of carbon skeletons from loofah-like to octahedral and then to polyhedron and pomegran-ate after the adjustment of the Fe^(3+)to Mn^(2+)molar ratio.Furthermore,at the Fe^(3+)to Mn^(2+)molar ratio of 2:1,the obtained MnFe_(2)O_(4)/C/graphene composite exhibited the highest EMW absorption capacity.Specifically,a minimum reflection loss of-72.7 dB and a max-imum effective absorption bandwidth of 5.1 GHz were achieved at a low filling ratio of 10wt%.In addition,the possible EMW absorp-tion mechanism of MnFe_(2)O_(4)/C/graphene composites was proposed.Therefore,the results of this work will contribute to the construction of broadband and efficient carbon-based EMW absorbers derived from MOFs.展开更多
基金supported in part by the National Natural Science Foundation of China(52172377).
文摘An effective energy management strategy(EMS)is essential to optimize the energy efficiency of electric vehicles(EVs).With the advent of advanced machine learning techniques,the focus on developing sophisticated EMS for EVs is increasing.Here,we introduce LearningEMS:a unified framework and open-source benchmark designed to facilitate rapid development and assessment of EMS.LearningEMS is distinguished by its ability to support a variety of EV configurations,including hybrid EVs,fuel cell EVs,and plug-in EVs,offering a general platform for the development of EMS.The framework enables detailed comparisons of several EMS algorithms,encompassing imitation learning,deep reinforcement learning(RL),offline RL,model predictive control,and dynamic programming.We rigorously evaluated these algorithms across multiple perspectives:energy efficiency,consistency,adaptability,and practicability.Furthermore,we discuss state,reward,and action settings for RL in EV energy management,introduce a policy extraction and reconstruction method for learning-based EMS deployment,and conduct hardware-in-the-loop experiments.In summary,we offer a unified and comprehensive framework that comes with three distinct EV platforms,over 10000 km of EMS policy data set,ten state-of-the-art algorithms,and over 160 benchmark tasks,along with three learning libraries.Its flexible design allows easy expansion for additional tasks and applications.The open-source algorithms,models,data sets,and deployment processes foster additional research and innovation in EV and broader engineering domains.
文摘Under hydrothermal and solvothermal conditions,two novel cobalt-based complexes,{[Co_(2)(CIA)(OH)(1,4-dtb)]·3.2H_(2)O}n(HU23)and{[Co_(2)(CIA)(OH)(1,4-dib)]·3.5H2O·DMF}n(HU24),were successfully constructed by coordinatively assembling the semi-rigid multidentate ligand 5-(1-carboxyethoxy)isophthalic acid(H₃CIA)with the Nheterocyclic ligands 1,4-di(4H-1,2,4-triazol-4-yl)benzene(1,4-dtb)and 1,4-di(1H-imidazol-1-yl)benzene(1,4-dib),respectively,around Co^(2+)ions.Single-crystal X-ray diffraction analysis revealed that in both complexes HU23 and HU24,the CIA^(3-)anions adopt aκ^(7)-coordination mode,bridging six Co^(2+)ions via their five carboxylate oxygen atoms and one ether oxygen atom.This linkage forms tetranuclear[Co4(μ3-OH)2]^(6+)units.These Co-oxo cluster units were interconnected by CIA^(3-)anions to assemble into 2D kgd-type structures featuring a 3,6-connected topology.The 2D layers were further connected by 1,4-dtb and 1,4-dib,resulting in 3D pillar-layered frameworks for HU23 and HU24.Notably,despite the similar configurations of 1,4-dtb and 1,4-dib,differences in their coordination spatial orientations lead to topological divergence in the 3D frameworks of HU23 and HU24.Topological analysis indicates that the frameworks of HU23 and HU24 can be simplified into a 3,10-connected net(point symbol:(4^(10).6^(3).8^(2))(4^(3))_(2))and a 3,8-connected tfz-d net(point symbol:(4^(3))_(2)((4^(6).6^(18).8^(4)))),respectively.This structural differentiation confirms the precise regulatory role of ligands on the topology of metal-organic frameworks.Moreover,the ultraviolet-visible absorption spectra confirmed that HU23 and HU24 have strong absorption capabilities for ultraviolet and visible light.According to the Kubelka-Munk method,their bandwidths were 2.15 and 2.08 eV,respectively,which are consistent with those of typical semiconductor materials.Variable-temperature magnetic susceptibility measurements(2-300 K)revealed significant antiferromagnetic coupling in both complexes,with their effective magnetic moments decreasing markedly as the temperature lowered.CCDC:2457554,HU23;2457553,HU24.
基金supported by National Natural Science Foundation of China(32494793).
文摘Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature.Conventional biomass-derived cellulose frameworks face a fundamental trade-off between haze and transparency,coupled with impractical thicknesses(≥1 mm).Inspired by squid’s skin-peeling mechanism,this work develops a peroxyformic acid(HCOOOH)-enabled precision peeling strategy to isolate intact 10-μm-thick bamboo green(BG)frameworks—100×thinner than wood-based counterparts while achieving an unprecedented optical performance(88%haze with 80%transparency).This performance surpasses delignified biomass(transparency<40%at 1 mm)and matches engineered cellulose composites,yet requires no energy-intensive nanofibrillation.The preserved native cellulose I crystalline structure(64.76%crystallinity)and wax-coated uniaxial fibril alignment(Hermans factor:0.23)contribute to high mechanical strength(903 MPa modulus)and broadband light scattering.As a light-management layer in polycrystalline silicon solar cells,the BG framework boosts photoelectric conversion efficiency by 0.41%absolute(18.74%→19.15%),outperforming synthetic anti-reflective coatings.The work establishes a scalable,waste-to-wealth route for optical-grade cellulose materials in next-generation optoelectronics.
基金supported by the National Natural Science Foundation of China (Grant Nos.T2325027,12274448,T2350007,12404239,12174041,12325405,12090054,and T2221001)the National Key R&D Program of China (Grant No.2022YFF0503504)。
文摘The intrinsic pressure framework,which treats self-propelling force as an external force,provides a convenient and consistent description of mechanical equilibrium in active matter.However,direct experimental evidence is still lacking.To validate this framework,here we employ a programmable robotic platform,where a single light-controlled wheeled robot travels in an activity landscape.Our experiments quantitatively demonstrate that the intrinsic pressure difference across the activity interface is balanced by the emerged polarization force.This result unambiguously confirms the theoretical predictions,thus validating the intrinsic pressure framework and laying the experimental foundation for the intrinsic pressure-based mechanical description of dry active matter.
基金The researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025)。
文摘The evolution of cities into digitally managed environments requires computational systems that can operate in real time while supporting predictive and adaptive infrastructure management.Earlier approaches have often advanced one dimension—such as Internet of Things(IoT)-based data acquisition,Artificial Intelligence(AI)-driven analytics,or digital twin visualization—without fully integrating these strands into a single operational loop.As a result,many existing solutions encounter bottlenecks in responsiveness,interoperability,and scalability,while also leaving concerns about data privacy unresolved.This research introduces a hybrid AI–IoT–Digital Twin framework that combines continuous sensing,distributed intelligence,and simulation-based decision support.The design incorporates multi-source sensor data,lightweight edge inference through Convolutional Neural Networks(CNN)and Long ShortTerm Memory(LSTM)models,and federated learning enhanced with secure aggregation and differential privacy to maintain confidentiality.A digital twin layer extends these capabilities by simulating city assets such as traffic flows and water networks,generating what-if scenarios,and issuing actionable control signals.Complementary modules,including model compression and synchronization protocols,are embedded to ensure reliability in bandwidth-constrained and heterogeneous urban environments.The framework is validated in two urban domains:traffic management,where it adapts signal cycles based on real-time congestion patterns,and pipeline monitoring,where it anticipates leaks through pressure and vibration data.Experimental results show a 28%reduction in response time,a 35%decrease in maintenance costs,and a marked reduction in false positives relative to conventional baselines.The architecture also demonstrates stability across 50+edge devices under federated training and resilience to uneven node participation.The proposed system provides a scalable and privacy-aware foundation for predictive urban infrastructure management.By closing the loop between sensing,learning,and control,it reduces operator dependence,enhances resource efficiency,and supports transparent governance models for emerging smart cities.
文摘We present a high performance modularly-built open-source software-OpenIFEM.OpenIFEM is a C++implementation of the modified immersed finite element method(mIFEM)to solve fluid-structure interaction(FSI)problems.This software is modularly built to perform multiple tasks including fluid dynamics(incompressible and slightly compressible fluid models),linear and nonlinear solid mechanics,and fully coupled fluid-structure interactions.Most of open-source software packages are restricted to certain discretization methods;some are under-tested,under-documented,and lack modularity as well as extensibility.OpenIFEM is designed and built to include a set of generic classes for users to adapt so that any fluid and solid solvers can be coupled through the FSI algorithm.In addition,the package utilizes well-developed and tested libraries.It also comes with standard test cases that serve as software and algorithm validation.The software can be built on cross-platform,i.e.,Linux,Windows,and Mac OS,using CMake.Efficient parallelization is also implemented for high-performance computing for large-sized problems.OpenIFEM is documented using Doxygen and publicly available to download on GitHub.It is expected to benefit the future development of FSI algorithms and be applied to a variety of FSI applications.
基金supported by the National Key R&D Program of China[Grant Number 2020YFB1708300]the National Natural Science Foundation of China[Grant Number 52075184].
文摘Topology optimization(TO),a numerical technique to find the optimalmaterial layoutwith a given design domain,has attracted interest from researchers in the field of structural optimization in recent years.For beginners,opensource codes are undoubtedly the best alternative to learning TO,which can elaborate the implementation of a method in detail and easily engage more people to employ and extend the method.In this paper,we present a summary of various open-source codes and related literature on TO methods,including solid isotropic material with penalization(SIMP),evolutionary method,level set method(LSM),moving morphable components/voids(MMC/MMV)methods,multiscale topology optimization method,etc.Simultaneously,we classify the codes into five levels,fromeasy to difficult,depending on their difficulty,so that beginners can get started and understand the form of code implementation more quickly.
基金This work was supported by the National Social Science Foundation(NSSF)Research on intelligent recommendation of multi-modal resources for children’s graded reading in smart library(22BTQ033)the Science and Technology Research and Development Program Project of China railway group limited(Project No.2021-Special-08).
文摘With the rapid development of Open-Source(OS),more and more software projects are maintained and developed in the form of OS.These Open-Source projects depend on and influence each other,gradually forming a huge OS project network,namely an Open-Source Software ECOsystem(OSSECO).Unfortunately,not all OS projects in the open-source ecosystem can be healthy and stable in the long term,and more projects will go from active to inactive and gradually die.In a tightly connected ecosystem,the death of one project can potentially cause the collapse of the entire ecosystem network.How can we effectively prevent such situations from happening?In this paper,we first identify the basic project characteristics that affect the survival of OS projects at both project and ecosystem levels through the proportional hazards model.Then,we utilize graph convolutional networks based on the ecosystem network to extract the ecosystem environment characteristics of OS projects.Finally,we fuse basic project characteristics and environmental project characteristics and construct a Hybrid Structured Prediction Model(HSPM)to predict the OS project survival state.The experimental results show that HSPM significantly improved compared to the traditional prediction model.Our work can substantially assist OS project managers in maintaining their projects’health.It can also provide an essential reference for developers when choosing the right open-source project for their production activities.
文摘Scientific research requires the collection of data in order to study, monitor, analyze, describe, or understand a particular process or event. Data collection efforts are often a compromise: manual measurements can be time-consuming and labor-intensive, resulting in data being collected at a low frequency, while automating the data-collection process can reduce labor requirements and increase the frequency of measurements, but at the cost of added expense of electronic data-collecting instrumentation. Rapid advances in electronic technologies have resulted in a variety of new and inexpensive sensing, monitoring, and control capabilities which offer opportunities for implementation in agricultural and natural-resource research applications. An Open Source Hardware project called Arduino consists of a programmable microcontroller development platform, expansion capability through add-on boards, and a programming development environment for creating custom microcontroller software. All circuit-board and electronic component specifications, as well as the programming software, are open-source and freely available for anyone to use or modify. Inexpensive sensors and the Arduino development platform were used to develop several inexpensive, automated sensing and datalogging systems for use in agricultural and natural-resources related research projects. Systems were developed and implemented to monitor soil-moisture status of field crops for irrigation scheduling and crop-water use studies, to measure daily evaporation-pan water levels for quantifying evaporative demand, and to monitor environmental parameters under forested conditions. These studies demonstrate the usefulness of automated measurements, and offer guidance for other researchers in developing inexpensive sensing and monitoring systems to further their research.
基金the National Institutes of Health(NIH R01 HL089315-01 and NIH R01 HL152155,YJW)the Thoracic Surgery Foundation Resident Research Fellowship(YZ)the National Science Foundation Graduate Research Fellowship Program(AMI).
文摘Resource-scarce regions with serious COVID-19 outbreaks do not have enough ventilators to support critically ill patients,and these shortages are especially devastating in developing countries.To help alleviate this strain,we have designed and tested the accessible low-barrier in vivo-validated economical ventilator(ALIVE Vent),a COVID-19-inspired,cost-effective,open-source,in vivo-validated solution made from commercially available components.The ALIVE Vent operates using compressed oxygen and air to drive inspiration,while two solenoid valves ensure one-way flow and precise cycle timing.The device was functionally tested and profiled using a variable resistance and compliance artificial lung and validated in anesthetized large animals.Our functional test results revealed its effective operation under a wide variety of ventilation conditions defined by the American Association of Respiratory Care guidelines for ventilator stockpiling.The large animal test showed that our ventilator performed similarly if not better than a standard ventilator in maintaining optimal ventilation status.The FiO2,respiratory rate,inspiratory to expiratory time ratio,positive-end expiratory pressure,and peak inspiratory pressure were successfully maintained within normal,clinically validated ranges,and the animals were recovered without any complications.In regions with limited access to ventilators,the ALIVE Vent can help alleviate shortages,and we have ensured that all used materials are publicly available.While this pandemic has elucidated enormous global inequalities in healthcare,innovative,cost-effective solutions aimed at reducing socio-economic barriers,such as the ALIVE Vent,can help enable access to prompt healthcare and life saving technology on a global scale and beyond COVID-19.
基金supported by the National Social Science Foundation of China under the project“Research on the mechanism of developing and utilizing domestic and foreign open-source intelligence under product-oriented thinking(20BTQ049)”.
文摘In today’s society with advanced Internet,the amount of information increases dramatically with each passing day,which leads to increasingly complex processes of open-source intelligence.Therefore,it is more important to rationalize the operation mode and improve the operation efficiency of open-source intelligence under the premise of satisfying users’needs.This paper focuses on the simulation study of the process system of opensource intelligence from the user’s perspective.First,the basic concept and development status of open-source intelligence are introduced in details.Second,six existing intelligence operation process models are summarized and their advantages and disadvantages are compared in focus.Based on users’preference,the open-source intelligence system simulation theory model is constructed from four aspects:intelligence collection,intelligence processing,intelligence analysis,and intelligence delivery.Meanwhile,the dynamics model of the open-source intelligence process system is constructed based on the open-source intelligence system simulation theoretical model,which specifically includes five parts:determination of system boundary,construction of causal loop diagram,construction of stock flow diagram,writing ofmathematical equations,and system sensitivity test.Finally,the system simulation results were analyzed.It was found that improving the system of intelligence agencies,opening up government affairs,improving the professional level of intelligence personnel,strengthening the communication and cooperation among personnel of various intelligence departments,and expressing intelligence products through diverse forms can effectively improve the operational efficiency of the open-source intelligence process system.
基金the Alfred-Wegener-Institut Helmholtz-Zentrum für Polar und Meeresforschungthe Helmholtz infrastructure initiative “Frontiers in Arctic marine Monitoring” (FRAM) for funding this projectfunded by a Sentinel North Postdoctoral Research Fellowship at Université Laval, Canada
文摘Surface albedo is defined as the ratio of incident and reflected solar irradiance and describes the ability of a surface to reflect, rather than absorb incident solar shortwave radiation. It is thus a crucial parameter in the climate system, particularly in the polar oceans. Sea ice albedo is a main driver for light transmission into the polar oceans and thus has a high impact on ocean warming, ice melting and marine primary production. During spring and summer, sea ice albedo can exhibit a significant spatial variability caused by meltwater accumulations on the ice. While complex and expensive solutions for albedo measurements are already available, we want to present a simple open-source design that allows for affordable mapping of spatially varying surface albedo on sea ice and beyond. Our solution is based on off-the-shelf components, such as an Arduino microcontroller integrating affordable light sensors, a GPS unit, data recording on memory card and data display into a simple field strengthened unit. We provide example data from two Arctic field deployments showing the capabilities and limitations of this system.
基金financially supported by the UK Engineering and Physical Sciences Research Council (EPSRC) under grant EP/P018998/1the UK Fluidic Network Special Interest Group of Acoustofluidics (EP/N032861/1).
文摘Apnoea,a major sleep disorder,affects many adults and causes several issues,such as fatigue,high blood pressure,liver conditions,increased risk of type II diabetes,and heart problems.Therefore,advanced monitoring and diagnosing tools of apnoea disorders are needed to facilitate better treatment,with advantages such as accuracy,comfort of use,cost effectiveness,and embedded computation capabilities to recognise,store,process,and transmit time series data.In this work we present an adaptation of our apnoea-Pi open-source surface acoustic wave(SAW)platform(Apnoea-Pi)to monitor and recognise apnoea in patients.The platform is based on a thin-film SAW device using bimorph ZnO and Al structures,including those fabricated as Al foils or plates,to achieve breath tracking based on humidity and temperature changes.We applied open-source electronics and provided embedded computing characteristics for signal processing,data recognition,storage,and transmission of breath signals.We show that the thin-film SAW device out-performed standard and off-the-shelf capacitive electronic sensors in terms of their response and accuracy for human breath-tracking purposes.This in combination with embedded electronics makes a suitable platform for human breath monitoring and sleep disorder recognition.
文摘There is a growing need for web-based geographic information systems for easy and fast dissemination, sharing, displaying and processing of spatial information. The tremendous growth in the use of web and open-source geospatial resources has sparked development of web-based spatial applications to address multidisciplinary issues with spatial dimensions. This paper presents the integration of open-source geospatial tools and web technology to visualize and interact with spatial data using web browser. The goal of this paper is to implement a prototype system for web-based mapping by providing step-by-step instructions in order to encourage the eager developers and interested readers to publish their maps on the web with no prior technical experience in map servers. The implementation of mapping prototype shows the utilization of open-source geospatial tools which results in a rapid implementation with minimal or no software input cost.
基金This work has been supported by the National Science Foundation of China Grant No.61762092“Dynamic multi-objective requirement optimization based on transfer learning,”and the Open Foundation of the Key Laboratory in Software Engineering of Yunnan Province,Grant No.2017SE204+1 种基金“Research on extracting software feature models using transfer learning,”and the National Science Foundation of China Grant No.61762089“The key research of high order tensor decomposition in a distributed environment”.
文摘With the rise of open-source software,the social development paradigm occupies an indispensable position in the current software development process.This paper puts forward a variant of the PageRank algorithm to build the importance assessment model,which provides quantifiable importance assessment metrics for new Java projects based on Java open-source projects or components.The critical point of the model is to use crawlers to obtain relevant information about Java open-source projects in the GitHub open-source community to build a domain knowledge graph.According to the three dimensions of the Java open-source project’s project influence,project activity and project popularity,the project is measured.A modified PageRank algorithm is proposed to construct the importance evaluation model.Thereby providing quantifiable importance evaluation indicators for new Java projects based on or components of Java open-source projects.This article evaluates the importance of 4512 Java open-source projects obtained on GitHub and has a good effect.
文摘The use of open-source data and tools in disaster exposure mapping is presented in this paper. Disaster exposure is a collection of the element at risk to potential loss. Gampaha divisional secretariat (DS) is a study area laid on the lower part of the Attanagalu Oya river basin. As the geospatial tools, OpenStreetMap (OSM), Java OpenStreetMap (JOSM), QGIS, GPS Essentials, and Open Map Kit (OMK) are used. The elements of disaster exposure, including the number of people or types of assets, are surveyed and inventoried using the OSM platforms. Local, national, and international agencies produce and evaluate the data. The study developed spatial data for building footprints of 165,000 households, street lengths of 2300 km, hospital units of 16, and utility units of 2300. This could overcome the main challenges of exposure mapping in the area. The procedure developed in the exposure mapping can be used in a data-sparse environment. Exposure mapping is generally used to estimate the impact of hazards or disasters, which are essential in effective disaster management. How are there still remaining challenges in disaster exposure mapping such as less awareness about the mapping procedure, lack of government support, internet access, hardware, and inability to understand the value of exposure mapping?
文摘Open-wheeled race car aerodynamics is unquestionably challenging insofar as it involves many physical phenomena,such as slender and blunt body aerodynamics,ground effect,vortex management and interaction between different sophisticated aero devices.In the current work,a 2017 F1 car aerodynamics has been investigated from a numerical point of view by using an open-source code.The vehicle project was developed by PERRINN(Copyright.2011—Present PERRINN),an engineering community founded by Nicolas Perrin in 2011.The racing car performance is quantitatively evaluated in terms of drag,downforce,efficiency and front balance.The goals of the present CFD(computational fluid dynamics)-based research are the following:analyzing the capabilities of the open-source software OpenFOAM in dealing with complex meshes and external aerodynamics calculation,and developing a reliable workflow from CAD(computer aided design)model to the post-processing of the results,in order to meet production demands.
文摘(2E,6E)-4-methyl-2,6-bis(pyridin-3-ylmethylene)cyclohexan-1-one(L_(1))and 4-methyl-2,6-bis[(E)-4-(pyridin-4-yl)benzylidene]cyclohexan-1-one(L_(2))were synthesized and combined with isophthalic acid(H_(2)IP),then under solvothermal conditions,to react with transition metals achieving four novel metal-organic frameworks(MOFs):[Zn(IP)(L_(1))]_(n)(1),{[Cd(IP)(L_(1))]·H_(2)O}_(n)(2),{[Co(IP)(L_(1))]·H_(2)O}_(n)(3),and[Zn(IP)(L_(2))(H_(2)O)]_(n)(4).MOFs 1-4 have been characterized by single-crystal X-ray diffraction,powder X-ray diffraction,thermogravimetry,and elemental analysis.Single-crystal X-ray diffraction shows that MOF 1 crystallizes in the monoclinic crystal system with space group P2_(1)/n,and MOFs 2-4 belong to the triclinic system with the P1 space group.1-3 are 2D sheet structures,2 and 3 have similar structural characters,whereas 4 is a 1D chain structure.Furthermore,1-3 exhibited certain photocatalytic capability in the degradation of rhodamine B(Rh B)and pararosaniline hydrochloride(PH).4could be used as a heterogeneous catalyst for the Knoevenagel reaction starting with benzaldehyde derivative and malononitrile.4 could promote the reaction to achieve corresponding products in moderate yields within 3 h.Moreover,the catalyst exhibited recyclability for up to three cycles without significantly dropping its activity.A mechanism for MOF 4 catalyzed Knoevenagel condensation reaction of aromatic aldehyde and malononitrile has been initially proposed.CCDC:2356488,1;2356497,2;2356499,3;2356498,4.
文摘Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nanorods,which had many voids.The S-FeCoTA catalysts exhibited excellent electrochemical oxygen evolution reaction(OER)performance with a low overpotential of 273 mV at 10 mA·cm^(-2)and a small Tafel slope of 36 mV·dec^(-1)in 1 mol·L^(-1)KOH.The potential remained at 1.48 V(vs RHE)at 10 mA·cm^(-2)under continuous testing for 15 h,implying that S-FeCoTA had good stability.The Faraday efficiency of S-FeCoTA was 94%.The outstanding OER activity of S-FeCoTA is attributed to the synergistic effects among S,Fe,and Co,thus promoting electron transfer,reducing the reaction kinetic barrier,and enhancing the OER performance.
基金supported by the Natural Science Research Project of the Anhui Educational Committee,China(No.2022AH050827)the Open Research Fund Program of Anhui Province Key Laboratory of Specialty Polymers,Anhui University of Science and Technology,China(No.AHKLSP23-12)the Joint National-Local Engineering Research Center for Safe and Precise Coal Mining Fund,China(No.EC2022020)。
文摘The preparation of carbon-based electromagnetic wave(EMW)absorbers possessing thin matching thickness,wide absorption bandwidth,strong absorption intensity,and low filling ratio remains a huge challenge.Metal-organic frameworks(MOFs)are ideal self-sacrificing templates for the construction of carbon-based EMW absorbers.In this work,bimetallic FeMn-MOF-derived MnFe_(2)O_(4)/C/graphene composites were fabricated via a two-step route of solvothermal reaction and the following pyrolysis treatment.The results re-veal the evolution of the microscopic morphology of carbon skeletons from loofah-like to octahedral and then to polyhedron and pomegran-ate after the adjustment of the Fe^(3+)to Mn^(2+)molar ratio.Furthermore,at the Fe^(3+)to Mn^(2+)molar ratio of 2:1,the obtained MnFe_(2)O_(4)/C/graphene composite exhibited the highest EMW absorption capacity.Specifically,a minimum reflection loss of-72.7 dB and a max-imum effective absorption bandwidth of 5.1 GHz were achieved at a low filling ratio of 10wt%.In addition,the possible EMW absorp-tion mechanism of MnFe_(2)O_(4)/C/graphene composites was proposed.Therefore,the results of this work will contribute to the construction of broadband and efficient carbon-based EMW absorbers derived from MOFs.