期刊文献+
共找到359,241篇文章
< 1 2 250 >
每页显示 20 50 100
openGauss:An Enterprise-Grade Open-Source Database System 被引量:1
1
作者 Guo-Liang Li Jiang Wang Guo Chen 《Journal of Computer Science & Technology》 SCIE EI CSCD 2024年第5期1007-1028,共22页
We have built openGauss,an enterprise-grade open-source database system.openGauss has fulfilled its design goal of high performance,high availability,high security,and high intelligence.For high performance,it leverag... We have built openGauss,an enterprise-grade open-source database system.openGauss has fulfilled its design goal of high performance,high availability,high security,and high intelligence.For high performance,it leverages NUMA(non-uniform memory access)-aware data access among multiple cores to enable efficient concurrent transaction processing,and symmetric multi-processing to make use of parallel processing resources adaptively.Moreover,memory-optimized tables(MOTs)are designed to put everything in memory.For high availability,a three-tier pooling architecture that shares storage among the master and standby instances is proposed to achieve availability at 99.99%,containing both a distributed memory service(DMS)and a distributed storage service(DSS).For high security,it is a fully encrypted database with safe storage features,efficient complex querying,and tamper-proof.For high intelligence,an AI-based optimizer in the kernel and a self-driving platform named DBMind are demonstrated to achieve better performance and greater user-friendliness.openGauss has served over 150 enterprises and institutions since its release in 2020.We share the lessons we learned from its development and operation,and our customers. 展开更多
关键词 database system open-source high performance storage engine
原文传递
XMe - Xiamen Molecular Electronics Code:An Intelligent and Open-Source Data Analysis Tool for Single-Molecule Conductance Measurements 被引量:2
2
作者 Zhichao Pan Gang Dong +11 位作者 Chi Shang Ruihao Li Tengyang Gao Luchun Lin Huicong Duan Xiaohui Li Jie Bai Yilin Lai Wenfeng Wu Jia Shi Junyang Liu Wenjing Hong 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2024年第3期317-329,共13页
Charge transport characterization of single-molecule junctions is essential for the fundamental research of single-molecule physical chemistry and the development towards single-molecule electronic devices and circuit... Charge transport characterization of single-molecule junctions is essential for the fundamental research of single-molecule physical chemistry and the development towards single-molecule electronic devices and circuits. Among the single-molecule conductance characterization techniques,the single-molecule break junction technique is widely used in tens of worldwide research laboratories which can generate a large amount of experimental data from thousands of individual measurement cycles. However,data interpretation is a challenging task for researchers with different research backgrounds,and the different data analysis approaches sometimes lead to the misunderstanding of the measurement data and even reproducibility issues of the measurement. It is thus a necessity to develop a user-friendly all-in-one data analysis tool that automatizes the basic data analysis in a standard and widely accepted way. In this work,we present the XMe Code (Xiamen Molecular Electronics Code),an intelligent all-in-one data analysis tool for the comprehensive analysis of single-molecule break junction data. XMe code provides end-to-end data analysis that takes in the original experimental data and returns electronic characteristics and even charge transport mechanisms. We believe that XMe Code will promote the transparency of the data analysis in single-molecule electronics and the collaborations among scientists with different research backgrounds. 展开更多
关键词 Molecular electronics Single-molecule studies Break junction data science Software
原文传递
Enhanced urban functional land use map with free and open-source data 被引量:2
3
作者 T.T.Vu N.V.A.Vu +1 位作者 H.P.Phung L.D.Nguyen 《International Journal of Digital Earth》 SCIE 2021年第11期1744-1757,共14页
The study aims at developing an applicable methodology to produce the functional land-use map using only free and open-source data.Top-view Sentinel image and ground-view Open Street Map(OSM)data are chosen due to the... The study aims at developing an applicable methodology to produce the functional land-use map using only free and open-source data.Top-view Sentinel image and ground-view Open Street Map(OSM)data are chosen due to their extensive availability.The three-stage framework,including object-based image analysis,OSM data cleaning,and ontology-based decision fusion,is proposed and implemented with open-source tools.We applied the developed approach to districts 1,4,and 7 of HoChiMinh city,representing the complexities of the dynamic change in big cities.The result showed a good functional land use map with 78.70%overall accuracy.The outcome presents the mismatch between the data-driven approach and human knowledge,which can be improved by ontology-based fusion with OSM data.The ontology-based framework comprises the common urban land-use classes and OSM attributes,which can be applied and extended in other urban areas.Additional text attributes may be applicable only locally and can be modified in our open-source framework.Object-based image analysis takes advantage of Google Earth Engine computing power,whereas ontology-based processing works well on a local computer.In future studies,adopted natural language processing to pre-process OSM data and ontology-based fusion will be implemented on the cloud-computing platform to enhance computational efficiency. 展开更多
关键词 data fusion Remote Sensing Digital City Land use GIS
原文传递
LearningEMS:A Unified Framework and Open-Source Benchmark for Learning-Based Energy Management of Electric Vehicles
4
作者 Yong Wang Hongwen He +9 位作者 Yuankai Wu Pei Wang Haoyu Wang Renzong Lian Jingda Wu Qin Li Xiangfei Meng Yingjuan Tang Fengchun Sun Amir Khajepour 《Engineering》 2025年第11期370-387,共18页
An effective energy management strategy(EMS)is essential to optimize the energy efficiency of electric vehicles(EVs).With the advent of advanced machine learning techniques,the focus on developing sophisticated EMS fo... An effective energy management strategy(EMS)is essential to optimize the energy efficiency of electric vehicles(EVs).With the advent of advanced machine learning techniques,the focus on developing sophisticated EMS for EVs is increasing.Here,we introduce LearningEMS:a unified framework and open-source benchmark designed to facilitate rapid development and assessment of EMS.LearningEMS is distinguished by its ability to support a variety of EV configurations,including hybrid EVs,fuel cell EVs,and plug-in EVs,offering a general platform for the development of EMS.The framework enables detailed comparisons of several EMS algorithms,encompassing imitation learning,deep reinforcement learning(RL),offline RL,model predictive control,and dynamic programming.We rigorously evaluated these algorithms across multiple perspectives:energy efficiency,consistency,adaptability,and practicability.Furthermore,we discuss state,reward,and action settings for RL in EV energy management,introduce a policy extraction and reconstruction method for learning-based EMS deployment,and conduct hardware-in-the-loop experiments.In summary,we offer a unified and comprehensive framework that comes with three distinct EV platforms,over 10000 km of EMS policy data set,ten state-of-the-art algorithms,and over 160 benchmark tasks,along with three learning libraries.Its flexible design allows easy expansion for additional tasks and applications.The open-source algorithms,models,data sets,and deployment processes foster additional research and innovation in EV and broader engineering domains. 展开更多
关键词 Energy management Electric vehicles Reinforcement learning Machine learning open-source benchmark
在线阅读 下载PDF
Mapping Spatial Data on the Web Using Free and Open-Source Tools: A Prototype Implementation
5
作者 Sunil Pratap Singh Preetvanti Singh 《Journal of Geographic Information System》 2014年第1期30-39,共10页
There is a growing need for web-based geographic information systems for easy and fast dissemination, sharing, displaying and processing of spatial information. The tremendous growth in the use of web and open-source ... There is a growing need for web-based geographic information systems for easy and fast dissemination, sharing, displaying and processing of spatial information. The tremendous growth in the use of web and open-source geospatial resources has sparked development of web-based spatial applications to address multidisciplinary issues with spatial dimensions. This paper presents the integration of open-source geospatial tools and web technology to visualize and interact with spatial data using web browser. The goal of this paper is to implement a prototype system for web-based mapping by providing step-by-step instructions in order to encourage the eager developers and interested readers to publish their maps on the web with no prior technical experience in map servers. The implementation of mapping prototype shows the utilization of open-source geospatial tools which results in a rapid implementation with minimal or no software input cost. 展开更多
关键词 open-source TECHNOLOGY WEB-BASED MAPPING WEB TECHNOLOGY GEOGRAPHIC Information System Spatial Application
在线阅读 下载PDF
A Composite Loss-Based Autoencoder for Accurate and Scalable Missing Data Imputation
6
作者 Thierry Mugenzi Cahit Perkgoz 《Computers, Materials & Continua》 2026年第1期1985-2005,共21页
Missing data presents a crucial challenge in data analysis,especially in high-dimensional datasets,where missing data often leads to biased conclusions and degraded model performance.In this study,we present a novel a... Missing data presents a crucial challenge in data analysis,especially in high-dimensional datasets,where missing data often leads to biased conclusions and degraded model performance.In this study,we present a novel autoencoder-based imputation framework that integrates a composite loss function to enhance robustness and precision.The proposed loss combines(i)a guided,masked mean squared error focusing on missing entries;(ii)a noise-aware regularization term to improve resilience against data corruption;and(iii)a variance penalty to encourage expressive yet stable reconstructions.We evaluate the proposed model across four missingness mechanisms,such as Missing Completely at Random,Missing at Random,Missing Not at Random,and Missing Not at Random with quantile censorship,under systematically varied feature counts,sample sizes,and missingness ratios ranging from 5%to 60%.Four publicly available real-world datasets(Stroke Prediction,Pima Indians Diabetes,Cardiovascular Disease,and Framingham Heart Study)were used,and the obtained results show that our proposed model consistently outperforms baseline methods,including traditional and deep learning-based techniques.An ablation study reveals the additive value of each component in the loss function.Additionally,we assessed the downstream utility of imputed data through classification tasks,where datasets imputed by the proposed method yielded the highest receiver operating characteristic area under the curve scores across all scenarios.The model demonstrates strong scalability and robustness,improving performance with larger datasets and higher feature counts.These results underscore the capacity of the proposed method to produce not only numerically accurate but also semantically useful imputations,making it a promising solution for robust data recovery in clinical applications. 展开更多
关键词 Missing data imputation autoencoder deep learning missing mechanisms
在线阅读 下载PDF
Advances in Machine Learning for Explainable Intrusion Detection Using Imbalance Datasets in Cybersecurity with Harris Hawks Optimization
7
作者 Amjad Rehman Tanzila Saba +2 位作者 Mona M.Jamjoom Shaha Al-Otaibi Muhammad I.Khan 《Computers, Materials & Continua》 2026年第1期1804-1818,共15页
Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness a... Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness and explainability required to detect novel and sophisticated attacks effectively.This study introduces an advanced,explainable machine learning framework for multi-class IDS using the KDD99 and IDS datasets,which reflects real-world network behavior through a blend of normal and diverse attack classes.The methodology begins with sophisticated data preprocessing,incorporating both RobustScaler and QuantileTransformer to address outliers and skewed feature distributions,ensuring standardized and model-ready inputs.Critical dimensionality reduction is achieved via the Harris Hawks Optimization(HHO)algorithm—a nature-inspired metaheuristic modeled on hawks’hunting strategies.HHO efficiently identifies the most informative features by optimizing a fitness function based on classification performance.Following feature selection,the SMOTE is applied to the training data to resolve class imbalance by synthetically augmenting underrepresented attack types.The stacked architecture is then employed,combining the strengths of XGBoost,SVM,and RF as base learners.This layered approach improves prediction robustness and generalization by balancing bias and variance across diverse classifiers.The model was evaluated using standard classification metrics:precision,recall,F1-score,and overall accuracy.The best overall performance was recorded with an accuracy of 99.44%for UNSW-NB15,demonstrating the model’s effectiveness.After balancing,the model demonstrated a clear improvement in detecting the attacks.We tested the model on four datasets to show the effectiveness of the proposed approach and performed the ablation study to check the effect of each parameter.Also,the proposed model is computationaly efficient.To support transparency and trust in decision-making,explainable AI(XAI)techniques are incorporated that provides both global and local insight into feature contributions,and offers intuitive visualizations for individual predictions.This makes it suitable for practical deployment in cybersecurity environments that demand both precision and accountability. 展开更多
关键词 Intrusion detection XAI machine learning ensemble method CYBERSECURITY imbalance data
在线阅读 下载PDF
Enhanced Capacity Reversible Data Hiding Based on Pixel Value Ordering in Triple Stego Images
8
作者 Kim Sao Nguyen Ngoc Dung Bui 《Computers, Materials & Continua》 2026年第1期1571-1586,共16页
Reversible data hiding(RDH)enables secret data embedding while preserving complete cover image recovery,making it crucial for applications requiring image integrity.The pixel value ordering(PVO)technique used in multi... Reversible data hiding(RDH)enables secret data embedding while preserving complete cover image recovery,making it crucial for applications requiring image integrity.The pixel value ordering(PVO)technique used in multi-stego images provides good image quality but often results in low embedding capability.To address these challenges,this paper proposes a high-capacity RDH scheme based on PVO that generates three stego images from a single cover image.The cover image is partitioned into non-overlapping blocks with pixels sorted in ascending order.Four secret bits are embedded into each block’s maximum pixel value,while three additional bits are embedded into the second-largest value when the pixel difference exceeds a predefined threshold.A similar embedding strategy is also applied to the minimum side of the block,including the second-smallest pixel value.This design enables each block to embed up to 14 bits of secret data.Experimental results demonstrate that the proposed method achieves significantly higher embedding capacity and improved visual quality compared to existing triple-stego RDH approaches,advancing the field of reversible steganography. 展开更多
关键词 RDH reversible data hiding PVO RDH base three stego images
在线阅读 下载PDF
Impact of Data Processing Techniques on AI Models for Attack-Based Imbalanced and Encrypted Traffic within IoT Environments
9
作者 Yeasul Kim Chaeeun Won Hwankuk Kim 《Computers, Materials & Continua》 2026年第1期247-274,共28页
With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comp... With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices,spanning a range of devices from non-encrypted ones to fully encrypted ones.Given the limited visibility into payloads in this context,this study investigates AI-based attack detection methods that leverage encrypted traffic metadata,eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices.Using the UNSW-NB15 and CICIoT-2023 dataset,encrypted and unencrypted traffic were categorized according to security protocol,and AI-based intrusion detection experiments were conducted for each traffic type based on metadata.To mitigate the problem of class imbalance,eight different data sampling techniques were applied.The effectiveness of these sampling techniques was then comparatively analyzed using two ensemble models and three Deep Learning(DL)models from various perspectives.The experimental results confirmed that metadata-based attack detection is feasible using only encrypted traffic.In the UNSW-NB15 dataset,the f1-score of encrypted traffic was approximately 0.98,which is 4.3%higher than that of unencrypted traffic(approximately 0.94).In addition,analysis of the encrypted traffic in the CICIoT-2023 dataset using the same method showed a significantly lower f1-score of roughly 0.43,indicating that the quality of the dataset and the preprocessing approach have a substantial impact on detection performance.Furthermore,when data sampling techniques were applied to encrypted traffic,the recall in the UNSWNB15(Encrypted)dataset improved by up to 23.0%,and in the CICIoT-2023(Encrypted)dataset by 20.26%,showing a similar level of improvement.Notably,in CICIoT-2023,f1-score and Receiver Operation Characteristic-Area Under the Curve(ROC-AUC)increased by 59.0%and 55.94%,respectively.These results suggest that data sampling can have a positive effect even in encrypted environments.However,the extent of the improvement may vary depending on data quality,model architecture,and sampling strategy. 展开更多
关键词 Encrypted traffic attack detection data sampling technique AI-based detection IoT environment
在线阅读 下载PDF
Graph-Based Unified Settlement Framework for Complex Electricity Markets:Data Integration and Automated Refund Clearing
10
作者 Xiaozhe Guo Suyan Long +4 位作者 Ziyu Yue Yifan Wang Guanting Yin Yuyang Wang Zhaoyuan Wu 《Energy Engineering》 2026年第1期56-90,共35页
The increasing complexity of China’s electricity market creates substantial challenges for settlement automation,data consistency,and operational scalability.Existing provincial settlement systems are fragmented,lack... The increasing complexity of China’s electricity market creates substantial challenges for settlement automation,data consistency,and operational scalability.Existing provincial settlement systems are fragmented,lack a unified data structure,and depend heavily on manual intervention to process high-frequency and retroactive transactions.To address these limitations,a graph-based unified settlement framework is proposed to enhance automation,flexibility,and adaptability in electricity market settlements.A flexible attribute-graph model is employed to represent heterogeneousmulti-market data,enabling standardized integration,rapid querying,and seamless adaptation to evolving business requirements.An extensible operator library is designed to support configurable settlement rules,and a suite of modular tools—including dataset generation,formula configuration,billing templates,and task scheduling—facilitates end-to-end automated settlement processing.A robust refund-clearing mechanism is further incorporated,utilizing sandbox execution,data-version snapshots,dynamic lineage tracing,and real-time changecapture technologies to enable rapid and accurate recalculations under dynamic policy and data revisions.Case studies based on real-world data from regional Chinese markets validate the effectiveness of the proposed approach,demonstrating marked improvements in computational efficiency,system robustness,and automation.Moreover,enhanced settlement accuracy and high temporal granularity improve price-signal fidelity,promote cost-reflective tariffs,and incentivize energy-efficient and demand-responsive behavior among market participants.The method not only supports equitable and transparent market operations but also provides a generalizable,scalable foundation for modern electricity settlement platforms in increasingly complex and dynamic market environments. 展开更多
关键词 Electricity market market settlement data model graph database market refund clearing
在线阅读 下载PDF
Efficient Arabic Essay Scoring with Hybrid Models: Feature Selection, Data Optimization, and Performance Trade-Offs
11
作者 Mohamed Ezz Meshrif Alruily +4 位作者 Ayman Mohamed Mostafa Alaa SAlaerjan Bader Aldughayfiq Hisham Allahem Abdulaziz Shehab 《Computers, Materials & Continua》 2026年第1期2274-2301,共28页
Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic... Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage. 展开更多
关键词 Automated essay scoring text-based features vector-based features embedding-based features feature selection optimal data efficiency
在线阅读 下载PDF
Individual Software Expertise Formalization and Assessment from Project Management Tool Databases
12
作者 Traian-Radu Plosca Alexandru-Mihai Pescaru +1 位作者 Bianca-Valeria Rus Daniel-Ioan Curiac 《Computers, Materials & Continua》 2026年第1期389-411,共23页
Objective expertise evaluation of individuals,as a prerequisite stage for team formation,has been a long-term desideratum in large software development companies.With the rapid advancements in machine learning methods... Objective expertise evaluation of individuals,as a prerequisite stage for team formation,has been a long-term desideratum in large software development companies.With the rapid advancements in machine learning methods,based on reliable existing data stored in project management tools’datasets,automating this evaluation process becomes a natural step forward.In this context,our approach focuses on quantifying software developer expertise by using metadata from the task-tracking systems.For this,we mathematically formalize two categories of expertise:technology-specific expertise,which denotes the skills required for a particular technology,and general expertise,which encapsulates overall knowledge in the software industry.Afterward,we automatically classify the zones of expertise associated with each task a developer has worked on using Bidirectional Encoder Representations from Transformers(BERT)-like transformers to handle the unique characteristics of project tool datasets effectively.Finally,our method evaluates the proficiency of each software specialist across already completed projects from both technology-specific and general perspectives.The method was experimentally validated,yielding promising results. 展开更多
关键词 Expertise formalization transformer-based models natural language processing augmented data project management tool skill classification
在线阅读 下载PDF
Harnessing deep learning for the discovery of latent patterns in multi-omics medical data
13
作者 Okechukwu Paul-Chima Ugwu Fabian COgenyi +8 位作者 Chinyere Nkemjika Anyanwu Melvin Nnaemeka Ugwu Esther Ugo Alum Mariam Basajja Joseph Obiezu Chukwujekwu Ezeonwumelu Daniel Ejim Uti Ibe Michael Usman Chukwuebuka Gabriel Eze Simeon Ikechukwu Egba 《Medical Data Mining》 2026年第1期32-45,共14页
The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities... The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders. 展开更多
关键词 deep learning multi-omics integration biomedical data mining precision medicine graph neural networks autoencoders and transformers
在线阅读 下载PDF
AI-driven integration of multi-omics and multimodal data for precision medicine
14
作者 Heng-Rui Liu 《Medical Data Mining》 2026年第1期1-2,共2页
High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging ... High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1). 展开更多
关键词 high throughput transcriptomics multi omics single cell multimodal learning frameworks foundation models omics data modalitiesemerging ai driven precision medicine
在线阅读 下载PDF
Multimodal artificial intelligence integrates imaging,endoscopic,and omics data for intelligent decision-making in individualized gastrointestinal tumor treatment
15
作者 Hui Nian Yi-Bin Wu +5 位作者 Yu Bai Zhi-Long Zhang Xiao-Huang Tu Qi-Zhi Liu De-Hua Zhou Qian-Cheng Du 《Artificial Intelligence in Gastroenterology》 2026年第1期1-19,共19页
Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including ... Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including computed tomography(CT),magnetic resonance imaging(MRI),endoscopic imaging,and genomic profiles-to enable intelligent decision-making for individualized therapy.This approach leverages AI algorithms to fuse imaging,endoscopic,and omics data,facilitating comprehensive characterization of tumor biology,prediction of treatment response,and optimization of therapeutic strategies.By combining CT and MRI for structural assessment,endoscopic data for real-time visual inspection,and genomic information for molecular profiling,multimodal AI enhances the accuracy of patient stratification and treatment personalization.The clinical implementation of this technology demonstrates potential for improving patient outcomes,advancing precision oncology,and supporting individualized care in gastrointestinal cancers.Ultimately,multimodal AI serves as a transformative tool in oncology,bridging data integration with clinical application to effectively tailor therapies. 展开更多
关键词 Multimodal artificial intelligence Gastrointestinal tumors Individualized therapy Intelligent diagnosis Treatment optimization Prognostic prediction data fusion Deep learning Precision medicine
在线阅读 下载PDF
Cosmic Acceleration and the Hubble Tension from Baryon Acoustic Oscillation Data
16
作者 Xuchen Lu Shengqing Gao Yungui Gong 《Chinese Physics Letters》 2026年第1期327-332,共6页
We investigate the null tests of cosmic accelerated expansion by using the baryon acoustic oscillation(BAO)data measured by the dark energy spectroscopic instrument(DESI)and reconstruct the dimensionless Hubble parame... We investigate the null tests of cosmic accelerated expansion by using the baryon acoustic oscillation(BAO)data measured by the dark energy spectroscopic instrument(DESI)and reconstruct the dimensionless Hubble parameter E(z)from the DESI BAO Alcock-Paczynski(AP)data using Gaussian process to perform the null test.We find strong evidence of accelerated expansion from the DESI BAO AP data.By reconstructing the deceleration parameter q(z) from the DESI BAO AP data,we find that accelerated expansion persisted until z■0.7 with a 99.7%confidence level.Additionally,to provide insights into the Hubble tension problem,we propose combining the reconstructed E(z) with D_(H)/r_(d) data to derive a model-independent result r_(d)h=99.8±3.1 Mpc.This result is consistent with measurements from cosmic microwave background(CMB)anisotropies using the ΛCDM model.We also propose a model-independent method for reconstructing the comoving angular diameter distance D_(M)(z) from the distance modulus μ,using SNe Ia data and combining this result with DESI BAO data of D_(M)/r_(d) to constrain the value of r_(d).We find that the value of r_(d),derived from this model-independent method,is smaller than that obtained from CMB measurements,with a significant discrepancy of at least 4.17σ.All the conclusions drawn in this paper are independent of cosmological models and gravitational theories. 展开更多
关键词 baryon acoustic oscillation bao data cosmic accelerated expansion dimensionless hubble parameter reconstructing deceleration parameter null testwe accelerated expansion null tests gaussian process
原文传递
A Convolutional Neural Network-Based Deep Support Vector Machine for Parkinson’s Disease Detection with Small-Scale and Imbalanced Datasets
17
作者 Kwok Tai Chui Varsha Arya +2 位作者 Brij B.Gupta Miguel Torres-Ruiz Razaz Waheeb Attar 《Computers, Materials & Continua》 2026年第1期1410-1432,共23页
Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using d... Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using deep learning algorithms further enhances performance;nevertheless,it is challenging due to the nature of small-scale and imbalanced PD datasets.This paper proposed a convolutional neural network-based deep support vector machine(CNN-DSVM)to automate the feature extraction process using CNN and extend the conventional SVM to a DSVM for better classification performance in small-scale PD datasets.A customized kernel function reduces the impact of biased classification towards the majority class(healthy candidates in our consideration).An improved generative adversarial network(IGAN)was designed to generate additional training data to enhance the model’s performance.For performance evaluation,the proposed algorithm achieves a sensitivity of 97.6%and a specificity of 97.3%.The performance comparison is evaluated from five perspectives,including comparisons with different data generation algorithms,feature extraction techniques,kernel functions,and existing works.Results reveal the effectiveness of the IGAN algorithm,which improves the sensitivity and specificity by 4.05%–4.72%and 4.96%–5.86%,respectively;and the effectiveness of the CNN-DSVM algorithm,which improves the sensitivity by 1.24%–57.4%and specificity by 1.04%–163%and reduces biased detection towards the majority class.The ablation experiments confirm the effectiveness of individual components.Two future research directions have also been suggested. 展开更多
关键词 Convolutional neural network data generation deep support vector machine feature extraction generative artificial intelligence imbalanced dataset medical diagnosis Parkinson’s disease small-scale dataset
在线阅读 下载PDF
OpenIFEM:A High Performance Modular Open-Source Software of the Immersed Finite Element Method for Fluid-Structure Interactions 被引量:3
18
作者 Jie Cheng Feimi Yu Lucy T.Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第4期91-124,共34页
We present a high performance modularly-built open-source software-OpenIFEM.OpenIFEM is a C++implementation of the modified immersed finite element method(mIFEM)to solve fluid-structure interaction(FSI)problems.This s... We present a high performance modularly-built open-source software-OpenIFEM.OpenIFEM is a C++implementation of the modified immersed finite element method(mIFEM)to solve fluid-structure interaction(FSI)problems.This software is modularly built to perform multiple tasks including fluid dynamics(incompressible and slightly compressible fluid models),linear and nonlinear solid mechanics,and fully coupled fluid-structure interactions.Most of open-source software packages are restricted to certain discretization methods;some are under-tested,under-documented,and lack modularity as well as extensibility.OpenIFEM is designed and built to include a set of generic classes for users to adapt so that any fluid and solid solvers can be coupled through the FSI algorithm.In addition,the package utilizes well-developed and tested libraries.It also comes with standard test cases that serve as software and algorithm validation.The software can be built on cross-platform,i.e.,Linux,Windows,and Mac OS,using CMake.Efficient parallelization is also implemented for high-performance computing for large-sized problems.OpenIFEM is documented using Doxygen and publicly available to download on GitHub.It is expected to benefit the future development of FSI algorithms and be applied to a variety of FSI applications. 展开更多
关键词 Immersed FINITE element method open-source PARALLELIZATION fluid-structure interaction adaptive MESH REFINEMENT
在线阅读 下载PDF
Open-Source Codes of Topology Optimization: A Summary for Beginners to Start Their Research 被引量:2
19
作者 Yingjun Wang Xinqing Li +1 位作者 Kai Long Peng Wei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期1-34,共34页
Topology optimization(TO),a numerical technique to find the optimalmaterial layoutwith a given design domain,has attracted interest from researchers in the field of structural optimization in recent years.For beginner... Topology optimization(TO),a numerical technique to find the optimalmaterial layoutwith a given design domain,has attracted interest from researchers in the field of structural optimization in recent years.For beginners,opensource codes are undoubtedly the best alternative to learning TO,which can elaborate the implementation of a method in detail and easily engage more people to employ and extend the method.In this paper,we present a summary of various open-source codes and related literature on TO methods,including solid isotropic material with penalization(SIMP),evolutionary method,level set method(LSM),moving morphable components/voids(MMC/MMV)methods,multiscale topology optimization method,etc.Simultaneously,we classify the codes into five levels,fromeasy to difficult,depending on their difficulty,so that beginners can get started and understand the form of code implementation more quickly. 展开更多
关键词 Topology optimization open-source code optimization methods code classification BEGINNERS
在线阅读 下载PDF
HSPM:A Better Model to Effectively Preventing Open-Source Projects from Dying 被引量:1
20
作者 Zhifang Liao Fangying Fu +3 位作者 Yiqi Zhao Sui Tan Zhiwu Yu Yan Zhang 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期431-452,共22页
With the rapid development of Open-Source(OS),more and more software projects are maintained and developed in the form of OS.These Open-Source projects depend on and influence each other,gradually forming a huge OS pr... With the rapid development of Open-Source(OS),more and more software projects are maintained and developed in the form of OS.These Open-Source projects depend on and influence each other,gradually forming a huge OS project network,namely an Open-Source Software ECOsystem(OSSECO).Unfortunately,not all OS projects in the open-source ecosystem can be healthy and stable in the long term,and more projects will go from active to inactive and gradually die.In a tightly connected ecosystem,the death of one project can potentially cause the collapse of the entire ecosystem network.How can we effectively prevent such situations from happening?In this paper,we first identify the basic project characteristics that affect the survival of OS projects at both project and ecosystem levels through the proportional hazards model.Then,we utilize graph convolutional networks based on the ecosystem network to extract the ecosystem environment characteristics of OS projects.Finally,we fuse basic project characteristics and environmental project characteristics and construct a Hybrid Structured Prediction Model(HSPM)to predict the OS project survival state.The experimental results show that HSPM significantly improved compared to the traditional prediction model.Our work can substantially assist OS project managers in maintaining their projects’health.It can also provide an essential reference for developers when choosing the right open-source project for their production activities. 展开更多
关键词 Project survival prediction open-source ecosystem open-source project open-source health graph neural networks
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部