This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficienc...This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficiency when multiple lines are connected to the platform. The numerical model of the platform motion simulation in wave is presented. Additionally, how the asynchronous coupling algorithm is implemented during the dynamic coupling analysis is introduced. Through a comparison of the numerical results of our developed model with commercial software for a SPAR platform, the developed numerical model is checked and validated.展开更多
Platform planning is one of the important problems in the command and control(C2) field. Hereto, we analyze the platform planning problem and present nonlinear optimal model aiming at maximizing the task completion qu...Platform planning is one of the important problems in the command and control(C2) field. Hereto, we analyze the platform planning problem and present nonlinear optimal model aiming at maximizing the task completion qualities. Firstly, we take into account the relation among tasks and build the single task nonlinear optimal model with a set of platform constraints. The Lagrange relaxation method and the pruning strategy are used to solve the model. Secondly, this paper presents optimization-based planning algorithms for efficiently allocating platforms to multiple tasks. To achieve the balance of the resource assignments among tasks, the m-best assignment algorithm and the pair-wise exchange(PWE)method are used to maximize multiple tasks completion qualities.Finally, a series of experiments are designed to verify the superiority and effectiveness of the proposed model and algorithms.展开更多
Expert System (ES) is considered effective and efficient in agricultural production, as agricultural informationization becomes a main trend in agricultural development. ES, however, is applied unsatisfactorily in m...Expert System (ES) is considered effective and efficient in agricultural production, as agricultural informationization becomes a main trend in agricultural development. ES, however, is applied unsatisfactorily in most rural areas of China and it has considerably affected and restricted the development of the agricultural informationization. This paper proposed a solution to voice service system of ES, which was suitable for the information transmission, and it especially could help the peasants in remote regions obtain knowledge from ES through the voice service system. As for the disadvantages of massive knowledge data and slow deduction, in this system the classification method could be adopted based on the decision tree. Designing pruning algorithm to "trim off" the unrelated knowledge to the users in query course would simplify the structure of the decision tree and accelerate the speed of deduction before the inference engine deduced the knowledge required by users.展开更多
This study delineates the development of the optimization framework for the preliminary design phase of Floating Offshore Wind Turbines(FOWTs),and the central challenge addressed is the optimization of the FOWT platfo...This study delineates the development of the optimization framework for the preliminary design phase of Floating Offshore Wind Turbines(FOWTs),and the central challenge addressed is the optimization of the FOWT platform dimensional parameters in relation to motion responses.Although the three-dimensional potential flow(TDPF)panel method is recognized for its precision in calculating FOWT motion responses,its computational intensity necessitates an alternative approach for efficiency.Herein,a novel application of varying fidelity frequency-domain computational strategies is introduced,which synthesizes the strip theory with the TDPF panel method to strike a balance between computational speed and accuracy.The Co-Kriging algorithm is employed to forge a surrogate model that amalgamates these computational strategies.Optimization objectives are centered on the platform’s motion response in heave and pitch directions under general sea conditions.The steel usage,the range of design variables,and geometric considerations are optimization constraints.The angle of the pontoons,the number of columns,the radius of the central column and the parameters of the mooring lines are optimization constants.This informed the structuring of a multi-objective optimization model utilizing the Non-dominated Sorting Genetic Algorithm Ⅱ(NSGA-Ⅱ)algorithm.For the case of the IEA UMaine VolturnUS-S Reference Platform,Pareto fronts are discerned based on the above framework and delineate the relationship between competing motion response objectives.The efficacy of final designs is substantiated through the time-domain calculation model,which ensures that the motion responses in extreme sea conditions are superior to those of the initial design.展开更多
An improved CHC algorithm is proposed in the paper and it could be used for the damage diagnosis of structures. It breaks the bottle neck of genetic algorithm in the damage diagnosis of large structures and takes a sh...An improved CHC algorithm is proposed in the paper and it could be used for the damage diagnosis of structures. It breaks the bottle neck of genetic algorithm in the damage diagnosis of large structures and takes a shorter time than the SGA (Stan- dard Genetic Algorithm) in diagnosing structural damage with the same level of error. The case studies show that the algorithm is rapid in convergence and produces satisfactory results in diagnosing both fixed-end beams and jacket offshore platforms.展开更多
"Data Structure and Algorithm",which is an important major subject in computer science,has a lot of problems in teaching activity.This paper introduces and analyzes the situation and problems in this course ..."Data Structure and Algorithm",which is an important major subject in computer science,has a lot of problems in teaching activity.This paper introduces and analyzes the situation and problems in this course study.A "programming factory" method is then brought out which is indeed a practice-oriented platform of the teachingstudy process.Good results are obtained by this creative method.展开更多
Motivated by the business model called“community group buying”(CGB),which has emerged in China and some countries in Southeast Asia,such as Singapore and Indonesia,we develop algorithms that could help CGB platforms...Motivated by the business model called“community group buying”(CGB),which has emerged in China and some countries in Southeast Asia,such as Singapore and Indonesia,we develop algorithms that could help CGB platforms match consumers with stage-stations(the picking up center under the CGB mode).By altering the fundamental design of the existing hierarchy algorithms,improvements are achieved.It is proven that our method has a faster running speed and greater space efficiency.Our algorithms avoid traversal and compress the time complexities of matching a consumer with a stage-station and updating the storage information to O(logM)and O(MlogG),where M is the number of stage-stations and G is that of the platform’s stock-keeping units.Simulation comparisons of our algorithms with the current methods of CGB platforms show that our approaches can effectively reduce delivery costs.An interesting observation of the simula-tions is worthy of note:Increasing G may incur higher costs since it makes inventories more dispersed and delivery prob-lems more complicated.展开更多
In the process of developing oil and gas resources in the Arctic,the impact of icebergs can pose a considerable threat to the structural safety of semi-submersible mooring platforms in ice regions.On the basis of the ...In the process of developing oil and gas resources in the Arctic,the impact of icebergs can pose a considerable threat to the structural safety of semi-submersible mooring platforms in ice regions.On the basis of the arbitrary Lagrangian Eulerian(ALE)algorithm,a numerical model for the interaction between an iceberg and a semi-submersible mooring platform is built in this work.First,a mooring system with a link element is designed and validated.An ice material model for the target iceberg is built and validated.A numerical model for the interaction between an iceberg and a semi-submersible mooring platform is then built.A parametric study(cable angle,tension angle and number of cables)is carried out to study the performance of the mooring system.The collision process between the semi-submersible mooring platform and the iceberg in the polar marine environment can be predicted by the present numerical model,and then the optimal mooring arrangement scheme can be obtained.The research results in this work can provide a reference for the design of mooring systems.展开更多
Finding an optimal isolator arrangement for asymmetric structures using traditional conceptual design methods that can significantly minimize torsional response while ensuring efficient horizontal seismic isolation is...Finding an optimal isolator arrangement for asymmetric structures using traditional conceptual design methods that can significantly minimize torsional response while ensuring efficient horizontal seismic isolation is cumbersome and inefficient.Thus,this work develops a multi-objective optimization method to enhance the torsional resistance of asymmetric base-isolated structures.The primary objective is to simultaneously minimize the interstory rotation of the superstructure,the rotation of the isolation layer,and the interstory displacement of the superstructure without exceeding the isolator displacement limits.A fast non-dominated sorting genetic algorithm(NSGA-Ⅱ)is employed to satisfy this optimization objective.Subsequently,the isolator arrangement,encompassing both positions and categories,is optimized according to this multi-objective optimization method.Additionally,an optimization design platform is developed to streamline the design operation.This platform integrates the input of optimization parameters,the output of optimization results,the finite element analysis,and the multi-objective optimization method proposed herein.Finally,the application of this multi-objective optimization method and its associated platform are demonstrated on two asymmetric base-isolated structures of varying heights and plan configurations.The results indicate that the optimal isolator arrangement derived from the optimization method can further improve the control over the lateral and torsional responses of asymmetric base-isolated structures compared to conventional conceptual design methods.Notably,the interstory rotation of the optimal base-isolated structure is significantly reduced,constituting only approximately 33.7%of that observed in the original base-isolated structure.The proposed platform facilitates the automatic generation of the optimal design scheme for the isolators of asymmetric base-isolated structures,offering valuable insights and guidance for the burgeoning field of intelligent civil engineering design.展开更多
A more effective and accurate improved Sobel algorithm has been developed to detect surface defects on heavy rails. The proposed method can make up for the mere sensitivity to X and Y directions of the Sobel algorithm...A more effective and accurate improved Sobel algorithm has been developed to detect surface defects on heavy rails. The proposed method can make up for the mere sensitivity to X and Y directions of the Sobel algorithm by adding six templates at different directions. Meanwhile, an experimental platform for detecting surface defects consisting of the bed-jig, image-forming system with CCD cameras and light sources, parallel computer system and cable system has been constructed. The detection results of the backfin defects show that the improved Sobel algorithm can achieve an accurate and efficient positioning with decreasing interference noises to the defect edge. It can also extract more precise features and characteristic parameters of the backfin defect. Furthermore, the BP neural network adopted for defects classification with the inputting characteristic parameters of improved Sobel algorithm can obtain the optimal training precision of 0.0095827 with 106 iterative steps and time of 3 s less than Sobel algorithm with 146 steps and 5 s. Finally, an enhanced identification rate of 10% for the defects is also confirmed after the Sobel algorithm is improved.展开更多
Due to the slow processing speed of text topic clustering in stand-alone architecture under the background of big data,this paper takes news text as the research object and proposes LDA text topic clustering algorithm...Due to the slow processing speed of text topic clustering in stand-alone architecture under the background of big data,this paper takes news text as the research object and proposes LDA text topic clustering algorithm based on Spark big data platform.Since the TF-IDF(term frequency-inverse document frequency)algorithm under Spark is irreversible to word mapping,the mapped words indexes cannot be traced back to the original words.In this paper,an optimized method is proposed that TF-IDF under Spark to ensure the text words can be restored.Firstly,the text feature is extracted by the TF-IDF algorithm combined CountVectorizer proposed in this paper,and then the features are inputted to the LDA(Latent Dirichlet Allocation)topic model for training.Finally,the text topic clustering is obtained.Experimental results show that for large data samples,the processing speed of LDA topic model clustering has been improved based Spark.At the same time,compared with the LDA topic model based on word frequency input,the model proposed in this paper has a reduction of perplexity.展开更多
Identification of modal parameters of a linear structure with output-only measurements has received much attention over the past decades. In the paper, the Natural Excitation Technique (NExT) is used for acquisition o...Identification of modal parameters of a linear structure with output-only measurements has received much attention over the past decades. In the paper, the Natural Excitation Technique (NExT) is used for acquisition of the impulse signals from the structural responses. Then Eigensystem Realization Algorithm (ERA) is utilized for modal identification. For disregarding the fictitious ‘computational modes', a procedure, Statistically Averaging Modal Frequency Method (SAMFM), is developed to distinguish the true modes from noise modes, and to improve the precision of the identified modal frequencies of the structure. An offshore platform is modeled with the finite element method. The theoretical modal parameters are obtained for a comparison with the identified values. The dynamic responses of the platform under random wave loading are computed for providing the output signals used for identification with ERA. Results of simulation demonstrate that the proposed method can determine the system modal frequency with high precision.展开更多
The large warping deformation at platform of turbine blade directly affects the forming precision. In the present research, equivalent warping deformation was firstly presented to describe the extent of deformation at...The large warping deformation at platform of turbine blade directly affects the forming precision. In the present research, equivalent warping deformation was firstly presented to describe the extent of deformation at platform. To optimize the process parameters during investment casting to minimize the warping deformation of the platform, based on simulation with Pro CAST, the single factor method, orthogonal test, neural network and genetic algorithm were subsequently used to analyze the influence of pouring temperature, shell mold preheating temperature, furnace temperature and withdrawal velocity on dimensional accuracy of the platform of superalloyDD6 turbine blade. The accuracy of investment casting simulation was verified by measurement of platform at blade casting. The simulation results with the optimal process parameters illustrate that the equivalent warping deformation was dramatically reduced by 21.8% from 0.232295 mm to 0.181698 mm.展开更多
The product family design problem solved by evolutionary algorithms is discussed. A successful product family design method should achieve an optimal tradeoff among a set of competing objectives, which involves maximi...The product family design problem solved by evolutionary algorithms is discussed. A successful product family design method should achieve an optimal tradeoff among a set of competing objectives, which involves maximizing commonality across the family of products and optimizing the performances of each product in the family. A 2-level chromosome structured genetic algorithm (2LCGA) is proposed to solve this class of problems and its performance is analyzed in comparing its results with those obtained with other methods. By interpreting the chromosome as a 2-level linear structure, the variable commonality genetic algorithm (GA) is constructed to vary the amount of platform commonality and automatically searches across varying levels of commonality for the platform while trying to resolve the tradeoff between commonality and individual product performance within the product family during optimization process. By incorporating a commonality assessing index to the problem formulation, the 2LCGA optimize the product platform and its corresponding family of products in a single stage, which can yield improvements in the overall performance of the product family compared with two-stage approaches (the first stage involves determining the best settings for the platform variables and values of unique variables are found for each product in the second stage). The scope of the algorithm is also expanded by introducing a classification mechanism to allow mul- tiple platforms to be considered during product family optimization, offering opportunities for superior overall design by more efficacious tradeoffs between commonality and performance. The effectiveness of 2LCGA is demonstrated through the design of a family of universal electric motors and comparison against previous results.展开更多
With the rapid development of technology,processing the explosive growth of meteorological data on traditional standalone computing has become increasingly time-consuming,which cannot meet the demands of scientific re...With the rapid development of technology,processing the explosive growth of meteorological data on traditional standalone computing has become increasingly time-consuming,which cannot meet the demands of scientific research and business.Therefore,this paper proposes the implementation of the parallel Clustering Large Application based upon RANdomized Search(CLARANS)clustering algorithm on the Spark cloud computing platformto cluster China’s climate regions usingmeteorological data from1988 to 2018.The aim is to address the challenge of applying clustering algorithms to large datasets.In this paper,the morphological similarity distance is adopted as the similarity measurement standard instead of Euclidean distance,which improves clustering accuracy.Furthermore,the issue of local optima caused by an improper selection of initial clustering centers is addressed by utilizing the max-distance criterion.Compared to the k-means clustering algorithm already implemented in the Spark platform,the proposed algorithm has strong robustness,can reduce the interference of outliers in the dataset on clustering results,and has higher parallel performance than the frequently used serial algorithms,thus improving the efficiency of big data analysis.This experiment compares the clustered centroid data with the annual average meteorological data of representative cities in the five typical meteorological regions that exist in China,and the results show that the clustering results are in good agreement with the meteorological data obtained from the National Meteorological Science Data Center.This algorithm has a positive effect on the clustering analysis of massive meteorological data and deserves attention in scientific research activities.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.51109040
文摘This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficiency when multiple lines are connected to the platform. The numerical model of the platform motion simulation in wave is presented. Additionally, how the asynchronous coupling algorithm is implemented during the dynamic coupling analysis is introduced. Through a comparison of the numerical results of our developed model with commercial software for a SPAR platform, the developed numerical model is checked and validated.
基金supported by the National Natural Science Foundation of China(61573017 61703425)+2 种基金the Aeronautical Science Fund(20175796014)the Shaanxi Province Natural Science Foundation Research Project(2016JQ6062 2017JM6062)
文摘Platform planning is one of the important problems in the command and control(C2) field. Hereto, we analyze the platform planning problem and present nonlinear optimal model aiming at maximizing the task completion qualities. Firstly, we take into account the relation among tasks and build the single task nonlinear optimal model with a set of platform constraints. The Lagrange relaxation method and the pruning strategy are used to solve the model. Secondly, this paper presents optimization-based planning algorithms for efficiently allocating platforms to multiple tasks. To achieve the balance of the resource assignments among tasks, the m-best assignment algorithm and the pair-wise exchange(PWE)method are used to maximize multiple tasks completion qualities.Finally, a series of experiments are designed to verify the superiority and effectiveness of the proposed model and algorithms.
基金Supported by Northeast Agricultural University Doctoral Development FoundationChina Postdoctoral Science Foundation
文摘Expert System (ES) is considered effective and efficient in agricultural production, as agricultural informationization becomes a main trend in agricultural development. ES, however, is applied unsatisfactorily in most rural areas of China and it has considerably affected and restricted the development of the agricultural informationization. This paper proposed a solution to voice service system of ES, which was suitable for the information transmission, and it especially could help the peasants in remote regions obtain knowledge from ES through the voice service system. As for the disadvantages of massive knowledge data and slow deduction, in this system the classification method could be adopted based on the decision tree. Designing pruning algorithm to "trim off" the unrelated knowledge to the users in query course would simplify the structure of the decision tree and accelerate the speed of deduction before the inference engine deduced the knowledge required by users.
基金financially supported by the National Natural Science Foundation of China(Grant No.52371261)the Science and Technology Projects of Liaoning Province(Grant No.2023011352-JH1/110).
文摘This study delineates the development of the optimization framework for the preliminary design phase of Floating Offshore Wind Turbines(FOWTs),and the central challenge addressed is the optimization of the FOWT platform dimensional parameters in relation to motion responses.Although the three-dimensional potential flow(TDPF)panel method is recognized for its precision in calculating FOWT motion responses,its computational intensity necessitates an alternative approach for efficiency.Herein,a novel application of varying fidelity frequency-domain computational strategies is introduced,which synthesizes the strip theory with the TDPF panel method to strike a balance between computational speed and accuracy.The Co-Kriging algorithm is employed to forge a surrogate model that amalgamates these computational strategies.Optimization objectives are centered on the platform’s motion response in heave and pitch directions under general sea conditions.The steel usage,the range of design variables,and geometric considerations are optimization constraints.The angle of the pontoons,the number of columns,the radius of the central column and the parameters of the mooring lines are optimization constants.This informed the structuring of a multi-objective optimization model utilizing the Non-dominated Sorting Genetic Algorithm Ⅱ(NSGA-Ⅱ)algorithm.For the case of the IEA UMaine VolturnUS-S Reference Platform,Pareto fronts are discerned based on the above framework and delineate the relationship between competing motion response objectives.The efficacy of final designs is substantiated through the time-domain calculation model,which ensures that the motion responses in extreme sea conditions are superior to those of the initial design.
文摘An improved CHC algorithm is proposed in the paper and it could be used for the damage diagnosis of structures. It breaks the bottle neck of genetic algorithm in the damage diagnosis of large structures and takes a shorter time than the SGA (Stan- dard Genetic Algorithm) in diagnosing structural damage with the same level of error. The case studies show that the algorithm is rapid in convergence and produces satisfactory results in diagnosing both fixed-end beams and jacket offshore platforms.
基金supported by NSF B55101680,NTIF B2090571,B2110140,SCUT x2rjD2116860,Y1080170,Y1090160,Y1100030,Y1100050,Y1110020 and S1010561121,G101056137
文摘"Data Structure and Algorithm",which is an important major subject in computer science,has a lot of problems in teaching activity.This paper introduces and analyzes the situation and problems in this course study.A "programming factory" method is then brought out which is indeed a practice-oriented platform of the teachingstudy process.Good results are obtained by this creative method.
基金supported by the National Natural Science Foundation of China(71991464,71921001)Fundamental Research Funds for the Central Universities,General Program(WK2040000053)Key Program(YD2040002027)。
文摘Motivated by the business model called“community group buying”(CGB),which has emerged in China and some countries in Southeast Asia,such as Singapore and Indonesia,we develop algorithms that could help CGB platforms match consumers with stage-stations(the picking up center under the CGB mode).By altering the fundamental design of the existing hierarchy algorithms,improvements are achieved.It is proven that our method has a faster running speed and greater space efficiency.Our algorithms avoid traversal and compress the time complexities of matching a consumer with a stage-station and updating the storage information to O(logM)and O(MlogG),where M is the number of stage-stations and G is that of the platform’s stock-keeping units.Simulation comparisons of our algorithms with the current methods of CGB platforms show that our approaches can effectively reduce delivery costs.An interesting observation of the simula-tions is worthy of note:Increasing G may incur higher costs since it makes inventories more dispersed and delivery prob-lems more complicated.
基金financially supported by the Open Project Program of Shandong Marine Aerospace Equipment Technological Innovation Center,Ludong University(Grant Nos.MAETIC202209 and MAETIC202201)Shandong Provincial Natural Science Foundation(Grant No.ZR2022QE092)+2 种基金China Postdoctoral Science Foundation(Grant No.2023M730829)Open Fund of the State Key Laboratory of Industrial Equipment Structural Analysis(Grant No.GZ23109)the National Natural Science Foundation of China(Grant Nos.52001284 and 52192694).
文摘In the process of developing oil and gas resources in the Arctic,the impact of icebergs can pose a considerable threat to the structural safety of semi-submersible mooring platforms in ice regions.On the basis of the arbitrary Lagrangian Eulerian(ALE)algorithm,a numerical model for the interaction between an iceberg and a semi-submersible mooring platform is built in this work.First,a mooring system with a link element is designed and validated.An ice material model for the target iceberg is built and validated.A numerical model for the interaction between an iceberg and a semi-submersible mooring platform is then built.A parametric study(cable angle,tension angle and number of cables)is carried out to study the performance of the mooring system.The collision process between the semi-submersible mooring platform and the iceberg in the polar marine environment can be predicted by the present numerical model,and then the optimal mooring arrangement scheme can be obtained.The research results in this work can provide a reference for the design of mooring systems.
基金National Natural Science Foundation of China under Grant No.52278490。
文摘Finding an optimal isolator arrangement for asymmetric structures using traditional conceptual design methods that can significantly minimize torsional response while ensuring efficient horizontal seismic isolation is cumbersome and inefficient.Thus,this work develops a multi-objective optimization method to enhance the torsional resistance of asymmetric base-isolated structures.The primary objective is to simultaneously minimize the interstory rotation of the superstructure,the rotation of the isolation layer,and the interstory displacement of the superstructure without exceeding the isolator displacement limits.A fast non-dominated sorting genetic algorithm(NSGA-Ⅱ)is employed to satisfy this optimization objective.Subsequently,the isolator arrangement,encompassing both positions and categories,is optimized according to this multi-objective optimization method.Additionally,an optimization design platform is developed to streamline the design operation.This platform integrates the input of optimization parameters,the output of optimization results,the finite element analysis,and the multi-objective optimization method proposed herein.Finally,the application of this multi-objective optimization method and its associated platform are demonstrated on two asymmetric base-isolated structures of varying heights and plan configurations.The results indicate that the optimal isolator arrangement derived from the optimization method can further improve the control over the lateral and torsional responses of asymmetric base-isolated structures compared to conventional conceptual design methods.Notably,the interstory rotation of the optimal base-isolated structure is significantly reduced,constituting only approximately 33.7%of that observed in the original base-isolated structure.The proposed platform facilitates the automatic generation of the optimal design scheme for the isolators of asymmetric base-isolated structures,offering valuable insights and guidance for the burgeoning field of intelligent civil engineering design.
基金Project(51174151)supported by the National Natural Science Foundation of ChinaProject(2010Z19003)supported by the Major Scientific Research Program of Hubei Provincial Department of Education,ChinaProject(2010CDB03403)supported by the Natural Science Foundation of Science and Technology Department of Hubei Province,China
文摘A more effective and accurate improved Sobel algorithm has been developed to detect surface defects on heavy rails. The proposed method can make up for the mere sensitivity to X and Y directions of the Sobel algorithm by adding six templates at different directions. Meanwhile, an experimental platform for detecting surface defects consisting of the bed-jig, image-forming system with CCD cameras and light sources, parallel computer system and cable system has been constructed. The detection results of the backfin defects show that the improved Sobel algorithm can achieve an accurate and efficient positioning with decreasing interference noises to the defect edge. It can also extract more precise features and characteristic parameters of the backfin defect. Furthermore, the BP neural network adopted for defects classification with the inputting characteristic parameters of improved Sobel algorithm can obtain the optimal training precision of 0.0095827 with 106 iterative steps and time of 3 s less than Sobel algorithm with 146 steps and 5 s. Finally, an enhanced identification rate of 10% for the defects is also confirmed after the Sobel algorithm is improved.
基金This work is supported by the Science Research Projects of Hunan Provincial Education Department(Nos.18A174,18C0262)the National Natural Science Foundation of China(No.61772561)+2 种基金the Key Research&Development Plan of Hunan Province(Nos.2018NK2012,2019SK2022)the Degree&Postgraduate Education Reform Project of Hunan Province(No.209)the Postgraduate Education and Teaching Reform Project of Central South Forestry University(No.2019JG013).
文摘Due to the slow processing speed of text topic clustering in stand-alone architecture under the background of big data,this paper takes news text as the research object and proposes LDA text topic clustering algorithm based on Spark big data platform.Since the TF-IDF(term frequency-inverse document frequency)algorithm under Spark is irreversible to word mapping,the mapped words indexes cannot be traced back to the original words.In this paper,an optimized method is proposed that TF-IDF under Spark to ensure the text words can be restored.Firstly,the text feature is extracted by the TF-IDF algorithm combined CountVectorizer proposed in this paper,and then the features are inputted to the LDA(Latent Dirichlet Allocation)topic model for training.Finally,the text topic clustering is obtained.Experimental results show that for large data samples,the processing speed of LDA topic model clustering has been improved based Spark.At the same time,compared with the LDA topic model based on word frequency input,the model proposed in this paper has a reduction of perplexity.
文摘Identification of modal parameters of a linear structure with output-only measurements has received much attention over the past decades. In the paper, the Natural Excitation Technique (NExT) is used for acquisition of the impulse signals from the structural responses. Then Eigensystem Realization Algorithm (ERA) is utilized for modal identification. For disregarding the fictitious ‘computational modes', a procedure, Statistically Averaging Modal Frequency Method (SAMFM), is developed to distinguish the true modes from noise modes, and to improve the precision of the identified modal frequencies of the structure. An offshore platform is modeled with the finite element method. The theoretical modal parameters are obtained for a comparison with the identified values. The dynamic responses of the platform under random wave loading are computed for providing the output signals used for identification with ERA. Results of simulation demonstrate that the proposed method can determine the system modal frequency with high precision.
基金financially supported by the National Natural Science Foundation of China(No.51371152)
文摘The large warping deformation at platform of turbine blade directly affects the forming precision. In the present research, equivalent warping deformation was firstly presented to describe the extent of deformation at platform. To optimize the process parameters during investment casting to minimize the warping deformation of the platform, based on simulation with Pro CAST, the single factor method, orthogonal test, neural network and genetic algorithm were subsequently used to analyze the influence of pouring temperature, shell mold preheating temperature, furnace temperature and withdrawal velocity on dimensional accuracy of the platform of superalloyDD6 turbine blade. The accuracy of investment casting simulation was verified by measurement of platform at blade casting. The simulation results with the optimal process parameters illustrate that the equivalent warping deformation was dramatically reduced by 21.8% from 0.232295 mm to 0.181698 mm.
基金This project is supported by National Natural Science Foundation of China(No.70471022,No.70501021)the Joint Research Scheme of National Natural Science Foundation of China(No,70418013) Hong Kong Research Grant Council,China(No.N_HKUST625/04).
文摘The product family design problem solved by evolutionary algorithms is discussed. A successful product family design method should achieve an optimal tradeoff among a set of competing objectives, which involves maximizing commonality across the family of products and optimizing the performances of each product in the family. A 2-level chromosome structured genetic algorithm (2LCGA) is proposed to solve this class of problems and its performance is analyzed in comparing its results with those obtained with other methods. By interpreting the chromosome as a 2-level linear structure, the variable commonality genetic algorithm (GA) is constructed to vary the amount of platform commonality and automatically searches across varying levels of commonality for the platform while trying to resolve the tradeoff between commonality and individual product performance within the product family during optimization process. By incorporating a commonality assessing index to the problem formulation, the 2LCGA optimize the product platform and its corresponding family of products in a single stage, which can yield improvements in the overall performance of the product family compared with two-stage approaches (the first stage involves determining the best settings for the platform variables and values of unique variables are found for each product in the second stage). The scope of the algorithm is also expanded by introducing a classification mechanism to allow mul- tiple platforms to be considered during product family optimization, offering opportunities for superior overall design by more efficacious tradeoffs between commonality and performance. The effectiveness of 2LCGA is demonstrated through the design of a family of universal electric motors and comparison against previous results.
基金supported by the National Natural Science Foundation of China(Grant No.62101275 and 62101274).
文摘With the rapid development of technology,processing the explosive growth of meteorological data on traditional standalone computing has become increasingly time-consuming,which cannot meet the demands of scientific research and business.Therefore,this paper proposes the implementation of the parallel Clustering Large Application based upon RANdomized Search(CLARANS)clustering algorithm on the Spark cloud computing platformto cluster China’s climate regions usingmeteorological data from1988 to 2018.The aim is to address the challenge of applying clustering algorithms to large datasets.In this paper,the morphological similarity distance is adopted as the similarity measurement standard instead of Euclidean distance,which improves clustering accuracy.Furthermore,the issue of local optima caused by an improper selection of initial clustering centers is addressed by utilizing the max-distance criterion.Compared to the k-means clustering algorithm already implemented in the Spark platform,the proposed algorithm has strong robustness,can reduce the interference of outliers in the dataset on clustering results,and has higher parallel performance than the frequently used serial algorithms,thus improving the efficiency of big data analysis.This experiment compares the clustered centroid data with the annual average meteorological data of representative cities in the five typical meteorological regions that exist in China,and the results show that the clustering results are in good agreement with the meteorological data obtained from the National Meteorological Science Data Center.This algorithm has a positive effect on the clustering analysis of massive meteorological data and deserves attention in scientific research activities.