期刊文献+
共找到15,915篇文章
< 1 2 250 >
每页显示 20 50 100
Primordial hydrogen partitioning at Earth’s core-mantle boundary:Multicomponent effects revealed by machine learning-augmented first-principles simulations 被引量:1
1
作者 ZePing Jiang YuYang He ZhiGang Zhang 《Earth and Planetary Physics》 2025年第5期1001-1009,共9页
Hydrogen partitioning between liquid iron alloys and silicate melts governs its distribution and cycling in Earth’s deep interior.Existing models based on simplified Fe-H systems predict strong hydrogen sequestration... Hydrogen partitioning between liquid iron alloys and silicate melts governs its distribution and cycling in Earth’s deep interior.Existing models based on simplified Fe-H systems predict strong hydrogen sequestration into the core.However,these models do not account for the modulating effects of major light elements such as oxygen and silicon in the core during Earth’s primordial differentiation.In this study,we use first-principles molecular dynamics simulations,augmented by machine learning techniques,to quantify hydrogen chemical potentials in quaternary Fe-O-Si-H systems under early core-mantle boundary conditions(135 GPa,5000 K).Our results demonstrate that the presence of 5.2 wt%oxygen and 4.8 wt%silicon reduces the siderophile affinity of hydrogen by 35%,decreasing its alloy-silicate partition coefficient from 18.2(in the case of Fe-H)to 11.8(in the case of Fe-O-Si-H).These findings suggest that previous estimates of the core hydrogen content derived from binary system models require downward revision.Our study underscores the critical role of multicomponent interactions in core formation models and provides first-principles-derived constraints to reconcile Earth’s present-day hydrogen reservoirs with its accretionary history. 展开更多
关键词 partition coefficient HYDROGEN core-mantle differentiation light elements machine learning density functional theory
在线阅读 下载PDF
INEQUALITIES FOR THE CUBIC PARTITIONS AND CUBIC PARTITION PAIRS
2
作者 Chong LI Yi PENG Helen W.J.ZHANG 《Acta Mathematica Scientia》 2025年第2期737-754,共18页
In this paper,we examine the functions a(n)and b(n),which respectively represent the number of cubic partitions and cubic partition pairs.Our work leads to the derivation of asymptotic formulas for both a(n)and b(n).A... In this paper,we examine the functions a(n)and b(n),which respectively represent the number of cubic partitions and cubic partition pairs.Our work leads to the derivation of asymptotic formulas for both a(n)and b(n).Additionally,we establish the upper and lower bounds of these functions,factoring in the explicit error terms involved.Crucially,our findings reveal that a(n)and b(n)both satisfy several inequalities such as log-concavity,third-order Turan inequalities,and strict log-subadditivity. 展开更多
关键词 asymptotic formula LOG-CONCAVITY third-order Turan inequalities cubic partition cubic partition pair
在线阅读 下载PDF
A Study on the Largest Size of Self-Conjugate Simultaneous Core Partitions
3
作者 Hao Zhou Xinglong Wang 《Journal of Contemporary Educational Research》 2025年第11期241-247,共7页
For a positive integer s,a partition is said to be s-core if its hook length set avoids hook length s.The theory of s-core partitions has intriguing applications in representation theory,number theory,and combinatoric... For a positive integer s,a partition is said to be s-core if its hook length set avoids hook length s.The theory of s-core partitions has intriguing applications in representation theory,number theory,and combinatorics.Analogous to the work of Xiong on the largest size of an(s,s+1,…,s+k)-core partition,we evaluate the largest size of a self-conjugate(s,s+1,…,s+k)-core partition for given positive integers s and k.This generalizes the result on the largest size of a self-conjugate(s,s+1,…,s+k)-core partition,which is obtained by Baek,Nam,and Yu by employing Johnson’s bijection. 展开更多
关键词 Core partition SELF-CONJUGATE
在线阅读 下载PDF
Highly selective acetylene capture by a pacs‑type metal‑organic framework constructed using metal‑formate complexes as pore partition units
4
作者 GUO Hongzhe WANG Sen +3 位作者 YANG Lu LIU Fucheng ZHAO Jiongpeng YAO Zhaoquan 《无机化学学报》 北大核心 2025年第10期2157-2164,共8页
To obtain materials capable of efficiently separating acetylene(C_(2)H_(2))from carbon dioxide(CO_(2))and eth-ylene(C_(2)H_(4)),In this work,based on the pore space partition strategy,a pacs-metal-organic framework(MO... To obtain materials capable of efficiently separating acetylene(C_(2)H_(2))from carbon dioxide(CO_(2))and eth-ylene(C_(2)H_(4)),In this work,based on the pore space partition strategy,a pacs-metal-organic framework(MOF):(NH_(2)Me_(2))_(2)[Fe_(3)(μ_(3)-O)(bdc)_(3)][In(FA)_(3)Cl_(3)](Fe‑FAIn‑bdc)was synthesized successfully by using the metal-formate com-plex[In(FA)_(3)Cl_(3)]^(3-)as the pore partition units,where bdc^(2-)=terephthalate,FA-=formate.Owing to the pore partition effect of this metal-organic building block,fruitful confined spaces are formed in the network of Fe‑FAIn‑bdc,endowing this MOF with superior separation performance of acetylene and carbon dioxide.According to the adsorp-tion test,this MOF exhibited a high adsorption capacity for C_(2)H_(2)(50.79 cm^(3)·g^(-1))at 298 K and 100 kPa,which was much higher than that for CO_(2)(29.99 cm^(3)·g^(-1))and C_(2)H_(4)(30.94 cm^(3)·g^(-1))under the same conditions.Ideal adsorbed solution theory(IAST)calculations demonstrate that the adsorption selectivity of Fe‑FAIn‑bdc for the mixture of C_(2)H_(2)/CO_(2)and C_(2)H_(2)/C_(2)H_(4)in a volume ratio of 50∶50 was 3.08 and 3.65,respectively,which was higher than some reported MOFs such as NUM-11 and SNNU-18.CCDC:_(2)453954. 展开更多
关键词 pore space partition strategy metal-organic framework pore-partition ligands separation of C_(2)H_(2)/CO_(2)
在线阅读 下载PDF
Efficient prediction of gaseous n-hexane removal in two-phase partitioning bioreactors with silicone oil based on the mechanism and kinetic models
5
作者 Lichao Lu Tuo Ju +6 位作者 Yangdan Fang Jingtao Hu Zhuqiu Sun Zhuowei Cheng Qian Li Jianmeng Chen Dong-zhi Chen 《Journal of Environmental Sciences》 2025年第8期729-740,共12页
Two-phase partitioning bioreactors(TPPBs)have been widely used because they overcome the mass-transfer limitation of hydrophobic volatile organic compounds(VOCs)in waste gas biological treatments.Understanding the mec... Two-phase partitioning bioreactors(TPPBs)have been widely used because they overcome the mass-transfer limitation of hydrophobic volatile organic compounds(VOCs)in waste gas biological treatments.Understanding the mechanisms of mass-transfer enhancement in TPPBs would enable efficient predictions for further industrial applications.In this study,influences of gradually increasing silicone oil ratio on the TPPB was explored,and a 94.35%reduction of the n-hexane partition coefficient was observed with 0.1 vol.%silicone,which increased to 80.7%along with a 40-fold removal efficiency enhancement in the stabilised removal period.The elimination capacity increased from 1.47 to 148.35 g/(m^(3)·h),i.e.a 101-fold increase compared with that of the single-phase reactors,when 10 vol.%(3 Critical Micelle Concentration)silicone oil was added.The significantly promoted partition coefficient was the main reason for the mass transfer enhancement,which covered the negative influences of the decreased total mass-transfer coefficient with increasing silicone oil volume ratio.The gradually rising stirring rate was benefit to the n-hexane removal,which became negative when the dominant resistance shifted from mass transfer to biodegradation.Moreover,a mass-transfer-reaction kinetic model of the TPPB was constructed based on the balance of n-hexane concentration,dissolved oxygen and biomass.Similar to the mechanism,the partition factor was predicted sensitive to the removal performance,and another five sensitive parameters were found simultaneously.This forecasting method enables the optimisation of TPPB performance and provides theoretical support for hydrophobic VOCs degradation. 展开更多
关键词 Mass transfer N-HEXANE Two-phase partitioning bioreactors Silicone oil
原文传递
Energy partition between entangled fission fragments
6
作者 Hao-Yu Shang Yu Qiang Jun-Chen Pei 《Nuclear Science and Techniques》 2025年第11期257-263,共7页
We studied the energy partition between two well-separated fission fragments associated with the partition of nucleons owing to quantum entanglement.This is different from most fission models that invoke an explicit s... We studied the energy partition between two well-separated fission fragments associated with the partition of nucleons owing to quantum entanglement.This is different from most fission models that invoke an explicit statistical partition of excitation energies.The dynamical fission evolution is described within the time-dependent Hartree-Fock+BCS framework.Excitation energies of isotopic fission fragments were obtained using the particle number projection method after the dynamical splitting of^(238)U.The resulting excitation energies of the light and heavy fragments are consistent with the appearance of sawtooth structures.We found that the pairing correlation strengths have a significant influence on the partition of the excitation energies.Furthermore,the excitation energies of isotopic fragments increase with increasing neutron number,implying the suppression of the production of neutron-rich beams in rare-isotope beam facilities. 展开更多
关键词 Nuclear fission Energy partition Time-dependent density functional theory
在线阅读 下载PDF
A Partitioned Yaw Control Algorithm for Wind Farms Using Dynamic Wake Modeling
7
作者 Yinguo Yang Lifu Ding +3 位作者 Yang Liu Bingchen Wang Weihua Wang Ying Chen 《Energy Engineering》 2025年第7期2571-2587,共17页
This paper addresses the complexity of wake control in large-scale wind farms by proposing a partitioning control algorithm utilizing the FLORIDyn(FLOW Redirection and Induction Dynamics)dynamic wake model.First,the i... This paper addresses the complexity of wake control in large-scale wind farms by proposing a partitioning control algorithm utilizing the FLORIDyn(FLOW Redirection and Induction Dynamics)dynamic wake model.First,the impact of wakes on turbine effective wind speed is analyzed,leading to a quantitative method for assessing wake interactions.Based on these interactions,a partitioning method divides the wind farm into smaller,computationally manageable zones.Subsequently,a heuristic control algorithm is developed for yaw optimization within each partition,reducing the overall computational burden associated with multi-turbine optimization.The algorithm’s effectiveness is evaluated through case studies on 11-turbine and 28-turbine wind farms,demonstrating power generation increases of 9.78%and 1.78%,respectively,compared to baseline operation.The primary innovation lies in coupling the higher-fidelity dynamic FLORIDyn wake model with a graph-based partitioning strategy and a computationally efficient heuristic optimization,enabling scalable and accurate yaw control for large wind farms,overcoming limitations associated with simplified models or centralized optimization approaches. 展开更多
关键词 Wind farm wind turbine yaw control wind farm partition distributed optimization
在线阅读 下载PDF
Novel non-equilibrium partitioning model and a developed strong and ductile Al–7.5Mg–0.5Sc–0.3Zr–0.6Si alloy for selective laser melting
8
作者 Jianzhou Long Chi Zhou +7 位作者 Gang Wang Shuai Zhang Mengmeng Wang Yuanpei Duan Qingsong Pan Zesheng You Liang Song Zhourong Feng 《International Journal of Minerals,Metallurgy and Materials》 2025年第7期1669-1680,共12页
Strong and ductile Al alloys and their suitable design strategy have long been desired in selective laser melting(SLM).This work reports a non-equilibrium partitioning model and a correspondingly designed Al–7.5Mg–0... Strong and ductile Al alloys and their suitable design strategy have long been desired in selective laser melting(SLM).This work reports a non-equilibrium partitioning model and a correspondingly designed Al–7.5Mg–0.5Sc–0.3Zr–0.6Si alloy.This model effectively quantifies the influence of Mg and Si on hot cracking in aluminum alloy by considering the non-equilibrium partitioning under high cooling rates in SLM.The designed Al–7.5Mg–0.5Sc–0.3Zr–0.6Si alloy exhibits no hot cracks and achieves a remarkably enhanced strength–ductility synergy(a yield strength of(412±8)MPa and a uniform elongation of(15.6±0.6)%),superior to previously reported Al–Mg–Sc–Zr and Al–Mn alloys.A tensile cracking model is proposed to explore the origin of the improved ductility.Both the non-equilibrium partitioning model and the novel Al–7.5Mg–0.5Sc–0.3Zr–0.6Si alloy offers a promising opportunity for producing highly reliable aluminum parts through SLM. 展开更多
关键词 aluminum alloy mechanical property selective laser melting non-equilibrium partitioning
在线阅读 下载PDF
An Energy Optimization Algorithm for WRSN Nodes Based on Regional Partitioning and Inter-Layer Routing
9
作者 Cui Zhang Lieping Zhang +2 位作者 Huaquan Gan Hongyuan Chen Zhihao Li 《Computers, Materials & Continua》 2025年第8期3125-3148,共24页
In large-scaleWireless Rechargeable SensorNetworks(WRSN),traditional forward routingmechanisms often lead to reduced energy efficiency.To address this issue,this paper proposes a WRSN node energy optimization algorith... In large-scaleWireless Rechargeable SensorNetworks(WRSN),traditional forward routingmechanisms often lead to reduced energy efficiency.To address this issue,this paper proposes a WRSN node energy optimization algorithm based on regional partitioning and inter-layer routing.The algorithm employs a dynamic clustering radius method and the K-means clustering algorithm to dynamically partition the WRSN area.Then,the cluster head nodes in the outermost layer select an appropriate layer from the next relay routing region and designate it as the relay layer for data transmission.Relay nodes are selected layer by layer,starting from the outermost cluster heads.Finally,the inter-layer routing mechanism is integrated with regional partitioning and clustering methods to develop the WRSN energy optimization algorithm.To further optimize the algorithm’s performance,we conduct parameter optimization experiments on the relay routing selection function,cluster head rotation energy threshold,and inter-layer relay structure selection,ensuring the best configurations for energy efficiency and network lifespan.Based on these optimizations,simulation results demonstrate that the proposed algorithm outperforms traditional forward routing,K-CHRA,and K-CLP algorithms in terms of node mortality rate and energy consumption,extending the number of rounds to 50%node death by 11.9%,19.3%,and 8.3%in a 500-node network,respectively. 展开更多
关键词 Wireless rechargeable sensor network regional partitioning inter-layer routing energy optimization
在线阅读 下载PDF
Microstructure-property correlation and strain partitioning behavior in medium-carbon carbide-free bainitic steel
10
作者 Ru Su Xiong-wei Zheng +5 位作者 Jie Kang Da-yong Wu Hai-kun Ma Fu-cheng Zhang Zhi-nan Yang Qing Li 《Journal of Iron and Steel Research International》 2025年第7期2039-2053,共15页
The correlation between the microstructure,properties,and strain partitioning behavior in a medium-carbon carbide-free bainitic steel was investigated through a combination of experiments and representative volume ele... The correlation between the microstructure,properties,and strain partitioning behavior in a medium-carbon carbide-free bainitic steel was investigated through a combination of experiments and representative volume element simulations.The results reveal that as the austempering temperature increases from low to intermediate,the optimal balance of properties shifts from strength-toughness to plasticity-toughness.The formation of fine bainitic ferrite plates and bainite sheaves under low austempering temperature(270℃)enhances both strength and toughness.Conversely,the wide size and shape distribution of the retained austenite(RA)obtained through austempering at intermediate temperature(350℃)contribute to increased work-hardening capacity,resulting in enhanced plasticity.The volume fraction of the ductile film-like RA plays a crucial role in enhancing impact toughness under relatively higher austempering temperatures.In the simulations of tensile deformation,the concentration of equivalent plastic strain predominantly manifests in the bainitic ferrite neighboring the martensite,whereas the equivalent plastic strain evenly spreads between the thin film-like retained austenite and bainitic ferrite.It is predicted that the cracks will occur at the interface between martensite and bainitic ferrite where the strain is concentrated,and eventually propagate along the strain failure zone. 展开更多
关键词 Carbide-free bainitic steel STRENGTH Retained austenite Representative volume element Strain partitioning
原文传递
Distributed quantum circuit partitioning and optimization based on combined spectral clustering and search tree strategies
11
作者 Zilu Chen Zhijin Guan +1 位作者 Shuxian Zhao Xueyun Cheng 《Chinese Physics B》 2025年第5期237-248,共12页
In the current noisy intermediate-scale quantum(NISQ)era,a single quantum processing unit(QPU)is insufficient to implement large-scale quantum algorithms;this has driven extensive research into distributed quantum com... In the current noisy intermediate-scale quantum(NISQ)era,a single quantum processing unit(QPU)is insufficient to implement large-scale quantum algorithms;this has driven extensive research into distributed quantum computing(DQC).DQC involves the cooperative operation of multiple QPUs but is concurrently challenged by excessive communication complexity.To address this issue,this paper proposes a quantum circuit partitioning method based on spectral clustering.The approach transforms quantum circuits into weighted graphs and,through computation of the Laplacian matrix and clustering techniques,identifies candidate partition schemes that minimize the total weight of the cut.Additionally,a global gate search tree strategy is introduced to meticulously explore opportunities for merged transfer of global gates,thereby minimizing the transmission cost of distributed quantum circuits and selecting the optimal partition scheme from the candidates.Finally,the proposed method is evaluated through various comparative experiments.The experimental results demonstrate that spectral clustering-based partitioning exhibits robust stability and efficiency in runtime in quantum circuits of different scales.In experiments involving the quantum Fourier transform algorithm and Revlib quantum circuits,the transmission cost achieved by the global gate search tree strategy is significantly optimized. 展开更多
关键词 NISQ era distributed quantum computing quantum circuit partitioning transmission cost
原文传递
Ultrastrong and ductile martensitic low-density steel achieved by local strain partitioning into ferrite and delayed TRIP effect
12
作者 Hyun Chung Sangwon Lee +3 位作者 Seokwoo Ko Sun Uk Hwang Alireza Zargaran Seok Su Sohn 《Journal of Materials Science & Technology》 2025年第35期238-249,共12页
Martensitic-based microstructures in low-density steels offer high strength and improved specific strength,combined with the lightweight effect of aluminum(Al).However,while Al effectively reduces density,it simultane... Martensitic-based microstructures in low-density steels offer high strength and improved specific strength,combined with the lightweight effect of aluminum(Al).However,while Al effectively reduces density,it simultaneously promotes the formation of coarse ferrite and expands the two-phase(α+γ)intercritical temperature range.Thus,increasing the Al content for higher weight reduction inevitably leads to ferrite formation and impedes further strengthening.To achieve both high strength and duc-tility while incorporating ferrite,it is crucial to elucidate the effects of ferrite fraction,size,and dis-tribution on mechanical properties and deformation behavior,particularly in relation to phase interac-tions.In this study,three model steels were developed through controlled annealing temperatures,pro-ducing distinct triplex microstructures comprising ferrite,martensite,and retained austenite(RA).The role of each phase in strain partitioning was investigated using ex-situ microscopic digital image cor-relation and electron back-scattered diffraction analysis.Key findings reveal that the martensitic matrix ensures an ultrahigh strength level(1758 MPa),while a moderate fraction(∼17%)and homogeneous dis-tribution of intercritical-ferrite(IC-ferrite)enable sustainable strain-hardening behavior by delaying the transformation-induced plasticity(TRIP)effect.Strain partitioning into IC-ferrite reduces local strains in the martensitic matrix,preventing early exhaustion of the TRIP effect and facilitating ductile fracture behavior.This strategy leverages the presence of ferrite,offering significant advantages for applications requiring both ultrahigh strength and ductility. 展开更多
关键词 Martensitic low-density steel Intercritical ferrite Retained austenite Strain partitioning Transformation-induced plasticity
原文传递
A semi-implicit partition algorithm for fluid-structure coupling problems based on modal force prediction-correction
13
作者 Kangdi LI Zili XU +2 位作者 Shizhi ZHAO Lu CHENG Yu FANG 《Chinese Journal of Aeronautics》 2025年第5期275-286,共12页
The implicit partition algorithm used to solve fluid–structure coupling problems has high accuracy,but it requires a long computation time.In this paper,a semi-implicit fluid–structure coupling algorithm based on mo... The implicit partition algorithm used to solve fluid–structure coupling problems has high accuracy,but it requires a long computation time.In this paper,a semi-implicit fluid–structure coupling algorithm based on modal force prediction-correction is proposed to improve the computational efficiency.In the pre-processing stage,the fluid domain is assumed to be a pseudo-elastic solid and merged with the solid domain to form a holistic system,and the normalized modal information of the holistic system is calculated and stored.During the sub-step cycle,the modal superposition method is used to obtain the response of the holistic system with the predicted modal force as the load,so that the deformation of the structure and the updating of the fluid mesh can be achieved simultaneously.After solving the Reynolds-averaged Navier-Stokes equations in the fluid domain,the predicted modal force is corrected and a new sub-step cycle is started until the converged result is obtained.In this method,the computation of the fluid equations and the updating of the dynamic mesh are done implicitly,while the deformation of the structure is done explicitly.Two numerical cases,vortex induced oscillation of an elastic beam and fluid–structure interaction of a final stage blade,are used to verify the efficiency and accuracy of the proposed algorithm.The results show that the proposed method achieves the same accuracy as the implicit method while the computational time is reduced.In the case of the vortex-induced oscillation problem,the computational time can be reduced to 18.6%.In the case of the final stage blade vibration,the computational time can be reduced to 53.8%. 展开更多
关键词 Fluid-structure interaction Fast mesh deformation Semi-implicit partition algorithm Prediction-correction method FLUTTER
原文传递
Dynamic partition of urban network considering congestion evolution based on random walk
14
作者 Zhen-Tong Feng Lele Zhang +1 位作者 Yong-Hong Wu Mao-Bin Hu 《Chinese Physics B》 2025年第1期530-534,共5页
The successful application of perimeter control of urban traffic system strongly depends on the macroscopic fundamental diagram of the targeted region.Despite intensive studies on the partitioning of urban road networ... The successful application of perimeter control of urban traffic system strongly depends on the macroscopic fundamental diagram of the targeted region.Despite intensive studies on the partitioning of urban road networks,the dynamic partitioning of urban regions reflecting the propagation of congestion remains an open question.This paper proposes to partition the network into homogeneous sub-regions based on random walk algorithm.Starting from selected random walkers,the road network is partitioned from the early morning when congestion emerges.A modified Akaike information criterion is defined to find the optimal number of partitions.Region boundary adjustment algorithms are adopted to optimize the partitioning results to further ensure the correlation of partitions.The traffic data of Melbourne city are used to verify the effectiveness of the proposed partitioning method. 展开更多
关键词 urban road networks dynamic partitioning random walk Akaike information criterion perimeter control
原文传递
Modeling hetero-deformation induced stress partitioning revealing non-basal slip activity in bimodal-grained ZK60 Mg alloy
15
作者 Mei Zhang Liping Zhong +7 位作者 Wenjing Ju Mingshuai Huo Wenzhen Xia Yun Zhang Zhuoran Zeng Qingyu Shi Yongjian Wang Mengran Zhou 《Journal of Magnesium and Alloys》 2025年第11期5745-5762,共18页
The excellent strength-ductility combination of hetero-grained Mg alloys has been reported to stem from pronounced hetero-deformation induced(HDI)stress.This stress alters the internal stress state of various slip sys... The excellent strength-ductility combination of hetero-grained Mg alloys has been reported to stem from pronounced hetero-deformation induced(HDI)stress.This stress alters the internal stress state of various slip systems and triggers significant activity of non-basal slips.However,the HDI stress state of different slip systems,and the mechanisms underlying the selective activation between basal and non-basal slips remain unclear to date.This study develops a novel HDI stress partitioning framework that in-situ calculates the crystallographic parameters and geometrical information of each datapoint within grains,aiming to reveal the correlation between HDI stress partitioning on individual slip systems and localized deformation model in the case of bimodal-grained ZK60 alloy.The framework demonstrates that HDI stress shows a strong dependence on the density of geometrically necessary dislocations(GNDs)and slip-system-level grain size,while exhibiting a relatively weaker correlation with equivalent-circle size of the hetero-grains.Given the close relation between the stress partitioning and the physical parameters,the framework can accurately predict the single and multiple slip activity fields obtained from highresolution digital image correlation(HR-DIC).This holds even for slip systems with low Schmid factors,which are theoretically difficult to activate.Using this framework,it is found that HDI stress plays a more prominent role in diminishing the effective resolved shear stress(RSS)of basaland prismatic(i.e.,component)dislocations,while having a negligible effect on pyramidal<c+a>slips.Benefiting from the increased ratio of RSS_(<c+a>)/RSS_(),pyramidal<c+a>dislocations are extensively activated,leading to excellent strength-ductility combination in the bimodal-grained ZK60 alloy. 展开更多
关键词 Heterostructure Bimodal-grained ZK60 HDI stress partitioning Strength-ductility synergy Non-basal slip
在线阅读 下载PDF
Three stage dynamic partitioning method of active distribution network based on improved sand cat swarm
16
作者 ZHANG Maosong ZHANG Luyao +3 位作者 YANG Jie YANG Lingxiao WANG Xiuqin TAO Jun 《High Technology Letters》 2025年第3期211-225,共15页
With the large-scale integration of renewable energy sources into the grid,distribution networks are increasingly challenged by issues related to renewable energy accommodation and the mainte-nance of power quality st... With the large-scale integration of renewable energy sources into the grid,distribution networks are increasingly challenged by issues related to renewable energy accommodation and the mainte-nance of power quality stability.To address the challenge that existing partitioning methods are inad-equate for the planning and operation needs of active distribution networks under frequently changing power flow conditions,a three-stage dynamic partitioning approach is proposed based on an im-proved sand cat swarm optimization(ISCSO)algorithm.Firstly,a comprehensive dynamic partitio-ning index is developed by integrating both structural and functional metrics,including modularity,voltage regulation capability,and regional renewable energy accommodation capacity.Secondly,to overcome the limitations of the conventional sand cat swarm optimization,namely its weak global ex-ploration ability and tendency to fall into local optima in the later optimization stages,chaotic map-ping is employed to initialize a uniformly distributed population.A nonlinear sensitivity mechanism is introduced to balance global exploration and local exploitation,alongside the design of a particle encoding and position updating scheme tailored for dynamic partitioning.Furthermore,a‘state re-tention-local adjustment-global reconstruction’partitioning structure is developed.To avoid unnec-essary partition changes under minor source-load fluctuations,the concept of overlapping nodes is introduced,enabling fine-tuned adjustments under such conditions.Finally,two experimental sce-narios are designed to validate the proposed method.Simulation results demonstrate strong electrical coupling performance and show that the method enhances voltage regulation and renewable energy integration capabilities across regions. 展开更多
关键词 renewable energy consumption dynamic partition MODULARITY voltage regulation sand cat swarm algorithm overlapping nodes
在线阅读 下载PDF
Dwell scheduling for MFIS with aperture partition and JRC waveform
17
作者 CHENG Ting LIU Luqing HENG Siyu 《Journal of Systems Engineering and Electronics》 2025年第4期951-961,共11页
The multifunctional integration system(MFIS)is based on a common hardware platform that controls and regulates the system’s configurable parameters through software to meet dif-ferent operational requirements.Dwell s... The multifunctional integration system(MFIS)is based on a common hardware platform that controls and regulates the system’s configurable parameters through software to meet dif-ferent operational requirements.Dwell scheduling is a key for the system to realize multifunction and maximize the resource uti-lization.In this paper,an adaptive dwell scheduling optimization model for MFIS which considers the aperture partition and joint radar communication(JRC)waveform is established.To solve the formulated optimization problem,JRC scheduling condi-tions are proposed,including time overlapping condition,beam direction condition and aperture condition.Meanwhile,an effec-tive mechanism to dynamically occupy and release the aperture resource is introduced,where the time-pointer will slide to the earliest ending time of all currently scheduled tasks so that the occupied aperture resource can be released timely.Based on them,an adaptive dwell scheduling algorithm for MFIS with aperture partition and JRC waveform is put forward.Simulation results demonstrate that the proposed algorithm has better com-prehensive scheduling performance than up-to-date algorithms in all considered metrics. 展开更多
关键词 multifunctional integration system(MFIS) dwell scheduling aperture partition joint radar communication(JRC).
在线阅读 下载PDF
Titanium partitioning between pyroxenes and lunar basaltic melts:An experimental perspective
18
作者 Huan Gong Jing Yang Wei Du 《Acta Geochimica》 2025年第5期931-944,共14页
The size of basalt fragments in Chang’E-5(CE-5)regolith are small(<6 mm^(2)),resulting in large variation on the estimated bulk composition of CE-5 basalt.For example,the estimated TiO_(2) content of CE-5 basalt r... The size of basalt fragments in Chang’E-5(CE-5)regolith are small(<6 mm^(2)),resulting in large variation on the estimated bulk composition of CE-5 basalt.For example,the estimated TiO_(2) content of CE-5 basalt ranges from 3.7 wt% to 12.7 wt% and the Mg#(molar percentage of Mg/[Mg+Fe])also shows a wide range(26.2-42.4).Preliminary experimental studies have shown that these geochemical characteristics of CE-5 basalt are critical for investigating the crystallization sequence and formation mechanism of its parent magma.This study presents new experimental data on the distribution coefficient of titanium between pyroxene and lunar basaltic magma(D_(Ti)^(Px/melt)).Combining with available literature data,we confirm that D_(Ti)Px/melt is affected by crystallization conditions such as pressure and temperature,but it is mainly controlled by the CaO content of pyroxene.Comparing with previous experimental results under similar conditions,we parameterized the effect as D_(Ti)^(Px/Melt)=D_(Ti)^(Px/Melt)=-0.0005X_(Cao)^(2)+0.0218X_(CaO)+0.0425(R^(2)=0.82),where X_(CaO) is the CaO content in pyroxene in weight percentage.The new experimental results suggest that pyroxene with high TiO_(2) content(>2.5 wt%)in CE-5 basalt is not a product of equilibrium crystallization,and the CaO content in pyroxene is also affected by cooling rate of its parent magma.The TiO_(2) content in the CE-5 parent magma is estimated to be about 5 wt% based on the Mg# of pyroxene and its calculated CaO content,which is consistent with those estimated from olivine grains. 展开更多
关键词 Lunar basalt Chang’E-5 High pressure and high temperature experiments partitioning coefficient
在线阅读 下载PDF
Partition feature extraction of hyperspectral images for in situ intelligent lithology identification
19
作者 Zhenhao Xu Shan Li +2 位作者 Peng Lin Heng Shi Yanfei Lou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第12期7736-7752,共17页
Imaging hyperspectral technology has distinctive advantages of non-destructive and non-contact measurement,and the integration of spectral and spatial data.These characteristics present new methodologies for intellige... Imaging hyperspectral technology has distinctive advantages of non-destructive and non-contact measurement,and the integration of spectral and spatial data.These characteristics present new methodologies for intelligent geological sensing in tunnels and other underground engineering projects.However,the in situ acquisition and rapid classification of hyperspectral images in underground still faces great challenges,including the difficulty in obtaining uniform hyperspectral images and the complexity of deploying sophisticated models on mobile platforms.This study proposes an intelligent lithology identification method based on partition feature extraction of hyperspectral images.Firstly,pixel-level hyperspectral information from representative lithological regions is extracted and fused to obtain rock hyperspectral image partition features.Subsequently,an SG-SNV-PCA-DNN(SSPD)model specifically designed for optimizing rock hyperspectral data,performing spectral dimensionality reduction,and identifying lithology is integrated.In an experimental study involving 3420 hyperspectral images,the SSPD identification model achieved the highest accuracy in the testing set,reaching 98.77%.Moreover,the speed of the SSPD model was found to be 18.5%faster than that of the unprocessed model,with an accuracy improvement of 5.22%.In contrast,the ResNet-101 model,used for point-by-point identification based on non-partitioned features,achieved a maximum accuracy of 97.86%in the testing set.In addition,the partition feature extraction methods significantly reduce computational complexity.An objective evaluation of various models demonstrated that the SSPD model exhibited superior performance,achieving a precision(P)of 99.46%,a recall(R)of 99.44%,and F1 score(F1)of 99.45%.Additionally,a pioneering in situ detection work was carried out in a tunnel using underground hyperspectral imaging technology. 展开更多
关键词 In situ lithology identification Hyperspectral image partition feature extraction Rock hyperspectral Underground intelligent geological perception Geological remote sensing technology
在线阅读 下载PDF
Laparoscopic associating liver partition and portal vein ligation for staged hepatectomy for colorectal liver metastases:A single-center experience
20
作者 Zhe-Yu Zheng Lei Zhang +5 位作者 Wen-Li Li Shu-Yi Dong Jing-Lin Song Da-Wei Zhang Xiao-Ming Huang Wei-Dong Pan 《World Journal of Gastroenterology》 2025年第18期19-31,共13页
BACKGROUND Associating liver partition and portal vein ligation for staged hepatectomy(ALPPS)is a procedure used for patients with initially unresectable colorectal liver metastases(CRLM).However,the procedure has bee... BACKGROUND Associating liver partition and portal vein ligation for staged hepatectomy(ALPPS)is a procedure used for patients with initially unresectable colorectal liver metastases(CRLM).However,the procedure has been reported to be associated with high morbidity and mortality.Laparoscopic ALPPS has recently been reported as a minimally invasive technique that reduces perioperative risks.AIM To assess the safety and feasibility of full laparoscopic ALPPS in patients with CRLM.METHODS A retrospective analysis was conducted on all consecutive patients with CRLM who underwent full laparoscopic ALPPS at the Sixth Affiliated Hospital of Sun Yat-sen University between March 2021 and July 2024.RESULTS Fifteen patients were included,13 with synchronous liver metastases.Nine patients had more than five liver tumors,with the highest count being 22.The median diameter of the largest lesion was 2.8 cm on preoperative imaging.No extrahepatic metastases were observed.RAS mutations were detected in nine patients,and 14 underwent preoperative chemotherapy.The median increase in future liver remnant volume during the interstage interval was 47.0%.All patients underwent R0 resection.Overall complication rates were 13.3%(stage 1)and 53.3%(stage 2),while major complication rates(Clavien-Dindo≥IIIa)were 13.3%(stage 1)and 33.3%(stage 2).No mortality occurred in either stage.The median hospital stay after stage 2 was 10 days.CONCLUSION Full laparoscopic ALPPS for CRLM is safe and feasible,with the potential for reduced morbidity and mortality,offering radical resection opportunities for patients with initially unresectable CRLM. 展开更多
关键词 Minimally invasive surgery Laparoscopic surgery Associating liver partition and portal vein ligation for staged hepatectomy Colorectal liver metastases Future liver remnant
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部