Addressing issues such as the disconnect between theory and practice and low student engagement in control system education,this paper uses the course“The Working Process of Open-Loop Control Systems”as a case study...Addressing issues such as the disconnect between theory and practice and low student engagement in control system education,this paper uses the course“The Working Process of Open-Loop Control Systems”as a case study to explore the integration of AI technology with the“project-guided and task-driven”teaching model.By constructing a four-dimensional teaching framework of“situation-task-activity-evaluation,”AI tools are embedded in project practices such as the construction of a mechanical timed flower watering device and the optimization of a digital timed flower watering device,achieving precision,interactivity,and personalization in the teaching process.Teaching practice demonstrates that this model significantly enhances students’technical awareness,materialization capabilities,and engineering thinking,providing a reference for the teaching reform of technical courses in high school education.展开更多
Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the s...Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments.展开更多
Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive cont...Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive control(MPC),which utilizes an extensive mathe-matical model of the voltage regulation system to optimize the control actions over a defined prediction horizon.This predictive feature enables MPC to minimize voltage deviations while accounting for operational constraints,thereby improving stability and performance under dynamic conditions.Thefindings were compared with those derived from an optimal proportional integral derivative(PID)con-troller designed using the artificial bee colony(ABC)algorithm.Although the ABC-PID method adjusts the PID parameters based on historical data,it may be difficult to adapt to real-time changes in system dynamics under constraints.Comprehensive simulations assessed both frameworks,emphasizing performance metrics such as disturbance rejection,response to load changes,and resilience to uncertainties.The results show that both MPC and ABC-PID methods effectively achieved accurate voltage regulation;however,MPC excelled in controlling overshoot and settling time—recording 0.0%and 0.25 s,respectively.This demonstrates greater robustness compared to conventional control methods that optimize PID parameters based on performance criteria derived from actual system behavior,which exhibited settling times and overshoots exceeding 0.41 s and 5.0%,respectively.The controllers were implemented using MATLAB/Simulink software,indicating a significant advancement for power plant engineers pursuing state-of-the-art automatic voltage regulations.展开更多
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype...This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.展开更多
In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis...In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.展开更多
In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),...In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain.展开更多
Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluct...Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluctuation caused by new energy units,this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit(DFPSU).Firstly,based on the model predictive control(MPC)theory,the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system;secondly,the proportional-differential control link is introduced to minimize the frequency deviation to further optimize the frequency modulation(FM)output of the DFPSU and inhibit the rapid fluctuation of the frequency;lastly,it is verified on theMatlab/Simulink simulation platform,and the results show that the model predictive control with proportional-differential control link can further release the FM potential of the DFPSU,increase the depth of its FM,effectively reduce the frequency deviation of the system and its rate of change,realize the optimization of the active output of the DFPSU and that of other units,and improve the frequency response capability of the system.展开更多
The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system...The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system,the connection point of each network is regarded as a neuron in the nervous system,and each connection point has input and output functions.Only when the input of nodes reaches a certain threshold can the output function of nodes be stimulated.Using the networking mode of the artificial neural network model,the mobile node can output in multiple directions.If the input direction of a certain path is the same as that of other nodes,it can choose to avoid and choose another path.The weighted value of each path between nodes is different,which means that the influence of the front node on the current node varies.The control method based on the artificial neural network model can be applied to vehicle control,household sweeping robots,and other fields,and a relatively optimized scheme can be obtained from the aspect of time and energy consumption.展开更多
Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands...Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands on its control performance.The model predictive control(MPC)algorithm is emerging as a potential high-performance motor control algorithm due to its capability of handling multiple-input and multipleoutput variables and imposed constraints.For the MPC used in the PMSM control process,there is a nonlinear disturbance caused by the change of electromagnetic parameters or load disturbance that may lead to a mismatch between the nominal model and the controlled object,which causes the prediction error and thus affects the dynamic stability of the control system.This paper proposes a data-driven MPC strategy in which the historical data in an appropriate range are utilized to eliminate the impact of parameter mismatch and further improve the control performance.The stability of the proposed algorithm is proved as the simulation demonstrates the feasibility.Compared with the classical MPC strategy,the superiority of the algorithm has also been verified.展开更多
Digital modeling and autonomous control of the die forging process are significant challenges in realizing high-quality intelli-gent forging of components.Using the die forging of AA2014 aluminum alloy as a case study...Digital modeling and autonomous control of the die forging process are significant challenges in realizing high-quality intelli-gent forging of components.Using the die forging of AA2014 aluminum alloy as a case study,a machine-learning-assisted method for di-gital modeling of the forging force and autonomous control in response to forging parameter disturbances was proposed.First,finite ele-ment simulations of the forging processes were conducted under varying friction factors,die temperatures,billet temperatures,and for-ging velocities,and the sample data,including process parameters and forging force under different forging strokes,were gathered.Pre-diction models for the forging force were established using the support vector regression algorithm.The prediction error of F_(f),that is,the forging force required to fill the die cavity fully,was as low as 4.1%.To further improve the prediction accuracy of the model for the ac-tual F_(f),two rounds of iterative forging experiments were conducted using the Bayesian optimization algorithm,and the prediction error of F_(f) in the forging experiments was reduced from 6.0%to 1.5%.Finally,the prediction model of F_(f) combined with a genetic algorithm was used to establish an autonomous optimization strategy for the forging velocity at each stage of the forging stroke,when the billet and die temperatures were disturbed,which realized the autonomous control in response to disturbances.In cases of−20 or−40℃ reductions in the die and billet temperatures,forging experiments conducted with the autonomous optimization strategy maintained the measured F_(f) around the target value of 180 t,with the relative error ranging from−1.3%to+3.1%.This work provides a reference for the study of di-gital modeling and autonomous optimization control of quality factors in the forging process.展开更多
This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set a...This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set and a probabilistic reachable set based on the priori knowledge of system uncertainties.Assisted with enhanced robust tubes,the chance constraints are then formulated into a deterministic form.To alleviate the online computational burden,a novel event-triggered stochastic model predictive control is developed,where the triggering condition is designed based on the past and future optimal trajectory tracking errors in order to achieve a good trade-off between system resource utilization and control performance.Two triggering parametersσandγare used to adjust the frequency of solving the optimization problem.The probabilistic feasibility and stability of the system under the event-triggered mechanism are also examined.Finally,numerical studies on the control of a heating,ventilation,and air conditioning(HVAC)system confirm the efficacy of the proposed control.展开更多
In quadrupeds,the cervical and lumbar circuits work together to achieve the speed-dependent gait expression.While most studies have focused on how local lumbar circuits regulate limb coordination and gaits,relatively ...In quadrupeds,the cervical and lumbar circuits work together to achieve the speed-dependent gait expression.While most studies have focused on how local lumbar circuits regulate limb coordination and gaits,relatively few studies are known about cervical circuits and even less about locomotor gaits.We use the previously published models by Danner et al.(DANNER,S.M.,SHEVTSOVA,N.A.,FRIGON,A.,and RYBAK,I.A.Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds.e Life,6,e31050(2017))as a basis,and modify it by proposing an asymmetric organization of cervical and lumbar circuits.First,the model reproduces the typical speed-dependent gait expression in mice and more biologically appropriate locomotor parameters,including the gallop gait,locomotor frequencies,and limb coordination of the forelimbs.Then,the model replicates the locomotor features regulated by the M-current.The walk frequency increases with the M-current without affecting the interlimb coordination or gaits.Furthermore,the model reveals the interaction mechanism between the brainstem drive and ionic currents in regulating quadrupedal locomotion.Finally,the model demonstrates the dynamical properties of locomotor gaits.Trot and bound are identified as attractor gaits,walk as a semi-attractor gait,and gallop as a transitional gait,with predictable transitions between these gaits.The model suggests that cervical-lumbar circuits are asymmetrically recruited during quadrupedal locomotion,thereby providing new insights into the neural control of speed-dependent gait expression.展开更多
A mathematical model of the decarburization reaction zone was established for the Ruhrstahl–Heraeus (RH) forced oxygen blowing decarburization process by Matlab R2022b software. For the problem of inaccurate predicti...A mathematical model of the decarburization reaction zone was established for the Ruhrstahl–Heraeus (RH) forced oxygen blowing decarburization process by Matlab R2022b software. For the problem of inaccurate prediction due to the large variation range of oxygen absorption rate under different process conditions, we statistically analyzed the main factors affecting the oxygen absorption rate. The backpropagation neural network was used to train and predict the oxygen absorption rate and was used to calculate the RH decarburization reaction zone model. We designed and developed a mathematical modeling software with process control of decarburization in RH degasser, which can realize the change of operating process parameters in the dynamic prediction process. The optimized mathematical model has more than 95% of the furnaces whose absolute error in calculation of carbon content is within ± 5 × 10^(−6), more than 90% of the heats whose relative error in calculation of oxygen content is within ± 15%, and the average absolute error of calculation of oxygen content is 26.4 × 10^(−6). Finally, we studied the influence of oxygen blowing timing, oxygen blowing volume and initial oxygen content on the forced decarburization process.展开更多
Spillover of trypanosomiasis parasites from wildlife to domestic livestock and humans remains a major challenge world over.With the disease targeted for elimination by 2030,assessing the impact of control strategies i...Spillover of trypanosomiasis parasites from wildlife to domestic livestock and humans remains a major challenge world over.With the disease targeted for elimination by 2030,assessing the impact of control strategies in communities where there are human-cattle-wildlife interactions is therefore essential.A compartmental framework incorporating tsetse flies,humans,cattle,wildlife and various disease control strategies is developed and analyzed.The reproduction is derived and its sensitivity to different model parameters is investigated.Meanwhile,the optimal control theory is used to identify a combination of control strategies capable of minimizing the infected human and cattle population over time at minimal costs of implementation.The results indicates that tsetse fly mortality rate is strongly and negatively correlated to the reproduction number.It is also established that tsetse fly feeding rate in strongly and positively correlated to the reproduction number.Simulation results indicates that time dependent control strategies can significantly reduce the infections.Overall,the study shows that screening and treatment of humans may not lead to disease elimination.Combining this strategy with other strategies such as screening and treatment of cattle and vector control strategies will result in maximum reduction of tsetse fly population and disease elimination.展开更多
In this paper,based on the SVIQR model we develop a stochastic epidemic model with multiple vaccinations and time delay.Firstly,we prove the existence and uniqueness of the global positive solution of the model,and co...In this paper,based on the SVIQR model we develop a stochastic epidemic model with multiple vaccinations and time delay.Firstly,we prove the existence and uniqueness of the global positive solution of the model,and construct suitable functions to obtain sufficient conditions for disease extinction.Secondly,in order to effectively control the spread of the disease,appropriate control strategies are formulated by using optimal control theory.Finally,the results are verified by numerical simulation.展开更多
The conventional Shear Stress Transport(SST)k–ωturbulence model often exhibits substantial inaccu-racies when applied to the prediction of flow behavior in complex regions within axial flow control valves.To enhance...The conventional Shear Stress Transport(SST)k–ωturbulence model often exhibits substantial inaccu-racies when applied to the prediction of flow behavior in complex regions within axial flow control valves.To enhance its predictive fidelity for internal flow fields,this study introduces a novel calibration framework that integrates an artificial neural network(ANN)surrogate model with a particle swarm optimization(PSO)algorithm.In particular,an optimal Latin hypercube sampling strategy was employed to generate representative sample points across the empirical parameter space.For each sample,numerical simulations using ANSYS Fluent were conducted to evaluate the flow characteristics,with empirical turbulence model parameters as inputs and flow rate as the target output.These data were used to construct the high-fidelity ANN surrogate model.The PSO algorithm was then applied to this surrogate to identify the optimal set of empirical parameters tailored specifically to axial flow control valve configurations.A revealed by the presented results,the calibrated SST k–ωmodel significantly improves prediction accuracy:deviations from large eddy simulation(LES)benchmarks at small valve openings were reduced from 7.6%to under 3%.Furthermore,the refined model maintains the computational efficiency characteristic of Reynolds-averaged Navier-Stokes(RANS)simulations while substantially enhancing the accuracy of both pressure and velocity field predictions.Overall,the proposed methodology effectively reconciles the trade-off between computational cost and predictive accuracy,offering a robust and scalable approach for turbulence model calibration in complex internal flow scenarios.展开更多
Malaria is a significant global health challenge.This devastating disease continues to affect millions,especially in tropical regions.It is caused by Plasmodium parasites transmitted by female Anopheles mosquitoes.Thi...Malaria is a significant global health challenge.This devastating disease continues to affect millions,especially in tropical regions.It is caused by Plasmodium parasites transmitted by female Anopheles mosquitoes.This study introduces a nonlinear mathematical model for examining the transmission dynamics of malaria,incorporating both human and mosquito populations.We aim to identify the key factors driving the endemic spread of malaria,determine feasible solutions,and provide insights that lead to the development of effective prevention and management strategies.We derive the basic reproductive number employing the next-generation matrix approach and identify the disease-free and endemic equilibrium points.Stability analyses indicate that the disease-free equilibrium is locally and globally stable when the reproductive number is below one,whereas an endemic equilibrium persists when this threshold is exceeded.Sensitivity analysis identifies the most influential mosquito-related parameters,particularly the bite rate and mosquito mortality,in controlling the spread of malaria.Furthermore,we extend our model to include a treatment compartment and three disease-preventive control variables such as antimalaria drug treatments,use of larvicides,and the use of insecticide-treated mosquito nets for optimal control analysis.The results show that optimal use of mosquito nets,use of larvicides for mosquito population control,and treatment can lower the basic reproduction number and control malaria transmission with minimal intervention costs.The analysis of disease control strategies and findings offers valuable information for policymakers in designing cost-effective strategies to combat malaria.展开更多
This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading d...This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading dynamic differential coupling model is proposed. Then, by using mean-field theory and the next-generation matrix method, the equilibriums and basic reproduction number are derived. Theoretical results indicate that the basic reproduction number significantly relies on model parameters and topology of the underlying networks. In addition, the globally asymptotic stability of equilibrium and the permanence of the disease are proved in detail by the Routh–Hurwitz criterion, Lyapunov method and La Salle's invariance principle. Furthermore, we find that the quarantine mechanism, that is the quarantine rate(γ1, γ2), has a significant effect on epidemic spreading through sensitivity analysis of basic reproduction number and model parameters. Meanwhile, the optimal control model of quarantined rate and analysis method are proposed, which can optimize the government control strategies and reduce the number of infected individual. Finally, numerical simulations are given to verify the correctness of theoretical results and a practice application is proposed to predict and control the spreading of COVID-19.展开更多
This paper aims to study the optimal control and algorithm implementation of a generalized epidemic model governed by reaction-diffusion equations.Considering individual mobility,this paper first proposes a reaction-d...This paper aims to study the optimal control and algorithm implementation of a generalized epidemic model governed by reaction-diffusion equations.Considering individual mobility,this paper first proposes a reaction-diffusion epidemic model with two strains.Furthermore,applying vaccines as a control strategy in the model,an optimal control problem is proposed to increase the number of healthy individuals while reducing control costs.By applying the truncation function technique and the operator semigroup methods,we prove the existence and uniqueness of a globally positive strong solution for the control model.The existence of the optimal control strategy is proven by using functional analysis theory and minimum sequence methods.The first-order necessary condition satisfied by the optimal control is established by employing the dual techniques.Finally,a specific example and its algorithm are provided.展开更多
This paper aims to fuse two well-established and,at the same time,opposed control techniques,namely,model predictive control(MPC)and active disturbance rejection control(ADRC),to develop a dynamic motion controller fo...This paper aims to fuse two well-established and,at the same time,opposed control techniques,namely,model predictive control(MPC)and active disturbance rejection control(ADRC),to develop a dynamic motion controller for a laser beam steering system.The proposed technique uses the ADRC philosophy to lump disturbances and model uncertainties into a total disturbance.Then,the total disturbance is estimated via a discrete extended state disturbance observer(ESO),and it is used to(1)handle the system constraints in a quadratic optimization problem and(2)injected as a feedforward term to the plant to reject the total disturbance,together with the feedback term obtained by the MPC.The main advantage of the proposed approach is that the MPC is designed based on a straightforward integrator-chain model such that a simple convex optimization problem is performed.Several experiments show the real-time closed-loop performance regarding trajectory tracking and disturbance rejection.Owing to simplicity,the self-contained approach MPC+ESO becomes a Frugal MPC,which is computationally economical,adaptable,efficient,resilient,and suitable for applications where on-board computational resources are limited.展开更多
文摘Addressing issues such as the disconnect between theory and practice and low student engagement in control system education,this paper uses the course“The Working Process of Open-Loop Control Systems”as a case study to explore the integration of AI technology with the“project-guided and task-driven”teaching model.By constructing a four-dimensional teaching framework of“situation-task-activity-evaluation,”AI tools are embedded in project practices such as the construction of a mechanical timed flower watering device and the optimization of a digital timed flower watering device,achieving precision,interactivity,and personalization in the teaching process.Teaching practice demonstrates that this model significantly enhances students’technical awareness,materialization capabilities,and engineering thinking,providing a reference for the teaching reform of technical courses in high school education.
基金supported in part by the National Natural Science Foundation of China under Grant 52077002。
文摘Model predictive control(MPC)has been deemed as an attractive control method in motor drives by virtue of its simple structure,convenient multi-objective optimization,and satisfactory dynamic performance.However,the strong reliance on mathematical models seriously restrains its practical application.Therefore,improving the robustness of MPC has attained significant attentions in the last two decades,followed by which,model-free predictive control(MFPC)comes into existence.This article aims to reveal the current state of MFPC strategies for motor drives and give the categorization from the perspective of implementation.Based on this review,the principles of the reported MFPC strategies are introduced in detail,as well as the challenges encountered in technology realization.In addition,some of typical and important concepts are experimentally validated via case studies to evaluate the performance and highlight their features.Finally,the future trends of MFPC are discussed based on the current state and reported developments.
文摘Fluctuating voltage levels in power grids necessitate automatic voltage regulators(AVRs)to ensure stability.This study examined the modeling and control of AVR in hydroelectric power plants using model predictive control(MPC),which utilizes an extensive mathe-matical model of the voltage regulation system to optimize the control actions over a defined prediction horizon.This predictive feature enables MPC to minimize voltage deviations while accounting for operational constraints,thereby improving stability and performance under dynamic conditions.Thefindings were compared with those derived from an optimal proportional integral derivative(PID)con-troller designed using the artificial bee colony(ABC)algorithm.Although the ABC-PID method adjusts the PID parameters based on historical data,it may be difficult to adapt to real-time changes in system dynamics under constraints.Comprehensive simulations assessed both frameworks,emphasizing performance metrics such as disturbance rejection,response to load changes,and resilience to uncertainties.The results show that both MPC and ABC-PID methods effectively achieved accurate voltage regulation;however,MPC excelled in controlling overshoot and settling time—recording 0.0%and 0.25 s,respectively.This demonstrates greater robustness compared to conventional control methods that optimize PID parameters based on performance criteria derived from actual system behavior,which exhibited settling times and overshoots exceeding 0.41 s and 5.0%,respectively.The controllers were implemented using MATLAB/Simulink software,indicating a significant advancement for power plant engineers pursuing state-of-the-art automatic voltage regulations.
基金supported by the National Natural Science Foundation of China(12072090).
文摘This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.
文摘In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.
文摘In recent years,there has been a growing demand for more efficient and robust control strategies in cooperative multi-robot systems.This paper introduces the cascade explicit tube model predictive controller(CET-MPC),a control architecture designed specifically for distributed aerial robot systems.By integrating an explicit model predictive controller(MPC)with a tube MPC,our approach significantly reduces online computational demands while enhancing robustness against disturbances such as wind and measurement noise,as well as uncertainties in inertia parameters.Further,we incorporate a cascade controller to minimize steady-state errors and improve system performance dynamically.The results of this assessment provide valuable insights into the effectiveness and reliability of the CET-MPC approach under realistic operating conditions.The simulation results of flight scenarios for multi-agent quadrotors demonstrate the controller’s stability and accurate tracking of the desired path.By addressing the complexities of quadrotors’six degrees of freedom,this controller serves as a versatile solution applicable to a wide range of multi-robot systems with varying degrees of freedom,demonstrating its adaptability and scalability beyond the quadrotor domain.
基金supported by the National Natural Science Foundation of China(Project No.52377082)the Scientific Research Program of Jilin Provincial Department of Education(Project No.JJKH20230123KJ).
文摘Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluctuation caused by new energy units,this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit(DFPSU).Firstly,based on the model predictive control(MPC)theory,the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system;secondly,the proportional-differential control link is introduced to minimize the frequency deviation to further optimize the frequency modulation(FM)output of the DFPSU and inhibit the rapid fluctuation of the frequency;lastly,it is verified on theMatlab/Simulink simulation platform,and the results show that the model predictive control with proportional-differential control link can further release the FM potential of the DFPSU,increase the depth of its FM,effectively reduce the frequency deviation of the system and its rate of change,realize the optimization of the active output of the DFPSU and that of other units,and improve the frequency response capability of the system.
文摘The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system,the connection point of each network is regarded as a neuron in the nervous system,and each connection point has input and output functions.Only when the input of nodes reaches a certain threshold can the output function of nodes be stimulated.Using the networking mode of the artificial neural network model,the mobile node can output in multiple directions.If the input direction of a certain path is the same as that of other nodes,it can choose to avoid and choose another path.The weighted value of each path between nodes is different,which means that the influence of the front node on the current node varies.The control method based on the artificial neural network model can be applied to vehicle control,household sweeping robots,and other fields,and a relatively optimized scheme can be obtained from the aspect of time and energy consumption.
文摘Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands on its control performance.The model predictive control(MPC)algorithm is emerging as a potential high-performance motor control algorithm due to its capability of handling multiple-input and multipleoutput variables and imposed constraints.For the MPC used in the PMSM control process,there is a nonlinear disturbance caused by the change of electromagnetic parameters or load disturbance that may lead to a mismatch between the nominal model and the controlled object,which causes the prediction error and thus affects the dynamic stability of the control system.This paper proposes a data-driven MPC strategy in which the historical data in an appropriate range are utilized to eliminate the impact of parameter mismatch and further improve the control performance.The stability of the proposed algorithm is proved as the simulation demonstrates the feasibility.Compared with the classical MPC strategy,the superiority of the algorithm has also been verified.
基金financially supported by the National Key Research and Development Program of China(No.2022YFB3706901)the National Natural Science Foundation of China(No.52090041)the Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC 001).
文摘Digital modeling and autonomous control of the die forging process are significant challenges in realizing high-quality intelli-gent forging of components.Using the die forging of AA2014 aluminum alloy as a case study,a machine-learning-assisted method for di-gital modeling of the forging force and autonomous control in response to forging parameter disturbances was proposed.First,finite ele-ment simulations of the forging processes were conducted under varying friction factors,die temperatures,billet temperatures,and for-ging velocities,and the sample data,including process parameters and forging force under different forging strokes,were gathered.Pre-diction models for the forging force were established using the support vector regression algorithm.The prediction error of F_(f),that is,the forging force required to fill the die cavity fully,was as low as 4.1%.To further improve the prediction accuracy of the model for the ac-tual F_(f),two rounds of iterative forging experiments were conducted using the Bayesian optimization algorithm,and the prediction error of F_(f) in the forging experiments was reduced from 6.0%to 1.5%.Finally,the prediction model of F_(f) combined with a genetic algorithm was used to establish an autonomous optimization strategy for the forging velocity at each stage of the forging stroke,when the billet and die temperatures were disturbed,which realized the autonomous control in response to disturbances.In cases of−20 or−40℃ reductions in the die and billet temperatures,forging experiments conducted with the autonomous optimization strategy maintained the measured F_(f) around the target value of 180 t,with the relative error ranging from−1.3%to+3.1%.This work provides a reference for the study of di-gital modeling and autonomous optimization control of quality factors in the forging process.
基金supported by the National Nature Science Foundation of China(62073194)the Natural Science Foundation of Shandong Province of China(ZR2023MF028)the Taishan Scholars Program of Shandong Province(tsqn202312008)
文摘This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set and a probabilistic reachable set based on the priori knowledge of system uncertainties.Assisted with enhanced robust tubes,the chance constraints are then formulated into a deterministic form.To alleviate the online computational burden,a novel event-triggered stochastic model predictive control is developed,where the triggering condition is designed based on the past and future optimal trajectory tracking errors in order to achieve a good trade-off between system resource utilization and control performance.Two triggering parametersσandγare used to adjust the frequency of solving the optimization problem.The probabilistic feasibility and stability of the system under the event-triggered mechanism are also examined.Finally,numerical studies on the control of a heating,ventilation,and air conditioning(HVAC)system confirm the efficacy of the proposed control.
基金Project supported by the National Natural Science Foundation of China(Nos.12272092 and 12332004)。
文摘In quadrupeds,the cervical and lumbar circuits work together to achieve the speed-dependent gait expression.While most studies have focused on how local lumbar circuits regulate limb coordination and gaits,relatively few studies are known about cervical circuits and even less about locomotor gaits.We use the previously published models by Danner et al.(DANNER,S.M.,SHEVTSOVA,N.A.,FRIGON,A.,and RYBAK,I.A.Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds.e Life,6,e31050(2017))as a basis,and modify it by proposing an asymmetric organization of cervical and lumbar circuits.First,the model reproduces the typical speed-dependent gait expression in mice and more biologically appropriate locomotor parameters,including the gallop gait,locomotor frequencies,and limb coordination of the forelimbs.Then,the model replicates the locomotor features regulated by the M-current.The walk frequency increases with the M-current without affecting the interlimb coordination or gaits.Furthermore,the model reveals the interaction mechanism between the brainstem drive and ionic currents in regulating quadrupedal locomotion.Finally,the model demonstrates the dynamical properties of locomotor gaits.Trot and bound are identified as attractor gaits,walk as a semi-attractor gait,and gallop as a transitional gait,with predictable transitions between these gaits.The model suggests that cervical-lumbar circuits are asymmetrically recruited during quadrupedal locomotion,thereby providing new insights into the neural control of speed-dependent gait expression.
基金supported by the Central Government Guides Local Science and Technology Development Foundation(No.2023JH6/100100046)the Project funded by China Postdoctoral Science Foundation(No.2023M730230).
文摘A mathematical model of the decarburization reaction zone was established for the Ruhrstahl–Heraeus (RH) forced oxygen blowing decarburization process by Matlab R2022b software. For the problem of inaccurate prediction due to the large variation range of oxygen absorption rate under different process conditions, we statistically analyzed the main factors affecting the oxygen absorption rate. The backpropagation neural network was used to train and predict the oxygen absorption rate and was used to calculate the RH decarburization reaction zone model. We designed and developed a mathematical modeling software with process control of decarburization in RH degasser, which can realize the change of operating process parameters in the dynamic prediction process. The optimized mathematical model has more than 95% of the furnaces whose absolute error in calculation of carbon content is within ± 5 × 10^(−6), more than 90% of the heats whose relative error in calculation of oxygen content is within ± 15%, and the average absolute error of calculation of oxygen content is 26.4 × 10^(−6). Finally, we studied the influence of oxygen blowing timing, oxygen blowing volume and initial oxygen content on the forced decarburization process.
文摘Spillover of trypanosomiasis parasites from wildlife to domestic livestock and humans remains a major challenge world over.With the disease targeted for elimination by 2030,assessing the impact of control strategies in communities where there are human-cattle-wildlife interactions is therefore essential.A compartmental framework incorporating tsetse flies,humans,cattle,wildlife and various disease control strategies is developed and analyzed.The reproduction is derived and its sensitivity to different model parameters is investigated.Meanwhile,the optimal control theory is used to identify a combination of control strategies capable of minimizing the infected human and cattle population over time at minimal costs of implementation.The results indicates that tsetse fly mortality rate is strongly and negatively correlated to the reproduction number.It is also established that tsetse fly feeding rate in strongly and positively correlated to the reproduction number.Simulation results indicates that time dependent control strategies can significantly reduce the infections.Overall,the study shows that screening and treatment of humans may not lead to disease elimination.Combining this strategy with other strategies such as screening and treatment of cattle and vector control strategies will result in maximum reduction of tsetse fly population and disease elimination.
基金supported by the Fundamental Research Funds for the Central Universities(No.3122025090)。
文摘In this paper,based on the SVIQR model we develop a stochastic epidemic model with multiple vaccinations and time delay.Firstly,we prove the existence and uniqueness of the global positive solution of the model,and construct suitable functions to obtain sufficient conditions for disease extinction.Secondly,in order to effectively control the spread of the disease,appropriate control strategies are formulated by using optimal control theory.Finally,the results are verified by numerical simulation.
基金funded by Gansu Provincial Department of Education(Industrial Support Plan Project:2025CYZC-048).
文摘The conventional Shear Stress Transport(SST)k–ωturbulence model often exhibits substantial inaccu-racies when applied to the prediction of flow behavior in complex regions within axial flow control valves.To enhance its predictive fidelity for internal flow fields,this study introduces a novel calibration framework that integrates an artificial neural network(ANN)surrogate model with a particle swarm optimization(PSO)algorithm.In particular,an optimal Latin hypercube sampling strategy was employed to generate representative sample points across the empirical parameter space.For each sample,numerical simulations using ANSYS Fluent were conducted to evaluate the flow characteristics,with empirical turbulence model parameters as inputs and flow rate as the target output.These data were used to construct the high-fidelity ANN surrogate model.The PSO algorithm was then applied to this surrogate to identify the optimal set of empirical parameters tailored specifically to axial flow control valve configurations.A revealed by the presented results,the calibrated SST k–ωmodel significantly improves prediction accuracy:deviations from large eddy simulation(LES)benchmarks at small valve openings were reduced from 7.6%to under 3%.Furthermore,the refined model maintains the computational efficiency characteristic of Reynolds-averaged Navier-Stokes(RANS)simulations while substantially enhancing the accuracy of both pressure and velocity field predictions.Overall,the proposed methodology effectively reconciles the trade-off between computational cost and predictive accuracy,offering a robust and scalable approach for turbulence model calibration in complex internal flow scenarios.
基金supported by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia[Grant No.KFU252959].
文摘Malaria is a significant global health challenge.This devastating disease continues to affect millions,especially in tropical regions.It is caused by Plasmodium parasites transmitted by female Anopheles mosquitoes.This study introduces a nonlinear mathematical model for examining the transmission dynamics of malaria,incorporating both human and mosquito populations.We aim to identify the key factors driving the endemic spread of malaria,determine feasible solutions,and provide insights that lead to the development of effective prevention and management strategies.We derive the basic reproductive number employing the next-generation matrix approach and identify the disease-free and endemic equilibrium points.Stability analyses indicate that the disease-free equilibrium is locally and globally stable when the reproductive number is below one,whereas an endemic equilibrium persists when this threshold is exceeded.Sensitivity analysis identifies the most influential mosquito-related parameters,particularly the bite rate and mosquito mortality,in controlling the spread of malaria.Furthermore,we extend our model to include a treatment compartment and three disease-preventive control variables such as antimalaria drug treatments,use of larvicides,and the use of insecticide-treated mosquito nets for optimal control analysis.The results show that optimal use of mosquito nets,use of larvicides for mosquito population control,and treatment can lower the basic reproduction number and control malaria transmission with minimal intervention costs.The analysis of disease control strategies and findings offers valuable information for policymakers in designing cost-effective strategies to combat malaria.
基金Project supported the Natural Science Foundation of Zhejiang Province, China (Grant No. LQN25F030011)the Fundamental Research Project of Hangzhou Dianzi University (Grant No. KYS065624391)+1 种基金the National Natural Science Foundation of China (Grant No. 61573148)the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2019A050520001)。
文摘This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading dynamic differential coupling model is proposed. Then, by using mean-field theory and the next-generation matrix method, the equilibriums and basic reproduction number are derived. Theoretical results indicate that the basic reproduction number significantly relies on model parameters and topology of the underlying networks. In addition, the globally asymptotic stability of equilibrium and the permanence of the disease are proved in detail by the Routh–Hurwitz criterion, Lyapunov method and La Salle's invariance principle. Furthermore, we find that the quarantine mechanism, that is the quarantine rate(γ1, γ2), has a significant effect on epidemic spreading through sensitivity analysis of basic reproduction number and model parameters. Meanwhile, the optimal control model of quarantined rate and analysis method are proposed, which can optimize the government control strategies and reduce the number of infected individual. Finally, numerical simulations are given to verify the correctness of theoretical results and a practice application is proposed to predict and control the spreading of COVID-19.
基金Supported by the National Natural Science Foundation of China(Grant Nos.125610811246108612271147)。
文摘This paper aims to study the optimal control and algorithm implementation of a generalized epidemic model governed by reaction-diffusion equations.Considering individual mobility,this paper first proposes a reaction-diffusion epidemic model with two strains.Furthermore,applying vaccines as a control strategy in the model,an optimal control problem is proposed to increase the number of healthy individuals while reducing control costs.By applying the truncation function technique and the operator semigroup methods,we prove the existence and uniqueness of a globally positive strong solution for the control model.The existence of the optimal control strategy is proven by using functional analysis theory and minimum sequence methods.The first-order necessary condition satisfied by the optimal control is established by employing the dual techniques.Finally,a specific example and its algorithm are provided.
基金support through his Master scholarshipThe Vicerrectoría de Investigación y Estudios de Posgrado(VIEP-BUAP)partially funded this work under grant number 00593-PV/2025.
文摘This paper aims to fuse two well-established and,at the same time,opposed control techniques,namely,model predictive control(MPC)and active disturbance rejection control(ADRC),to develop a dynamic motion controller for a laser beam steering system.The proposed technique uses the ADRC philosophy to lump disturbances and model uncertainties into a total disturbance.Then,the total disturbance is estimated via a discrete extended state disturbance observer(ESO),and it is used to(1)handle the system constraints in a quadratic optimization problem and(2)injected as a feedforward term to the plant to reject the total disturbance,together with the feedback term obtained by the MPC.The main advantage of the proposed approach is that the MPC is designed based on a straightforward integrator-chain model such that a simple convex optimization problem is performed.Several experiments show the real-time closed-loop performance regarding trajectory tracking and disturbance rejection.Owing to simplicity,the self-contained approach MPC+ESO becomes a Frugal MPC,which is computationally economical,adaptable,efficient,resilient,and suitable for applications where on-board computational resources are limited.