期刊文献+
共找到17,797篇文章
< 1 2 250 >
每页显示 20 50 100
Instability of cylinder wake under open-loop active control 被引量:1
1
作者 Yadong HUANG Benmou ZHOU Zhaolie TANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第3期439-452,共14页
Instability of a wake controlled by a streamwise Lorentz force is investigated through a Floquet stability analysis. The streamwise Lorentz force, which is a two-dimensional control input created by an electromagnetic... Instability of a wake controlled by a streamwise Lorentz force is investigated through a Floquet stability analysis. The streamwise Lorentz force, which is a two-dimensional control input created by an electromagnetic actuator located on the cylinder surface,adjusts the base flow to affect the three-dimensional wake instability and achieve wake stabilization and transition delay. The instability mode at a Reynolds number Re = 300 can be transformed from B to A with N = 1.0, where N is an interaction number representing the strength of the Lorentz force relative to the inertial force in the fluid. The wake flow is Floquet stable when N increases to 1.3. The spanwise perturbation wavelengths are 3.926 D and 0.822 D in the modes A and B, respectively, where D is the cylinder diameter. In addition, the oscillating amplitudes of drag and lift are reduced with the increase in the interaction number. Particle tracing is used to explore the essential physical mechanism for mode transformation. The path lines show that suppression of flow separation hinders the fluid deformation and rotation, leading to the decrease in elliptic and hyperbolic instability regions, which is the material cause of mode transformation.All of the results indicate that wake stabilization and transition delay can be achieved under open-loop active control via the streamwise Lorentz force. 展开更多
关键词 flow instability global stability analysis open-loop active control streamwise Lorentz force wake stabilization transition delay
在线阅读 下载PDF
Output feedback active disturbance rejection control of an electro-hydraulic servo system based on command filter 被引量:1
2
作者 Yanchun BAI Jianyong YAO +1 位作者 Jian HU Guangbin FENG 《Chinese Journal of Aeronautics》 2025年第2期214-225,共12页
The output feedback active disturbance rejection control of a valve-controlled cylinder electro-hydraulic servo system is investigated in this paper.First,a comprehensive nonlinear mathematical model that encompasses ... The output feedback active disturbance rejection control of a valve-controlled cylinder electro-hydraulic servo system is investigated in this paper.First,a comprehensive nonlinear mathematical model that encompasses both matched and mismatched disturbances is formulated.Due to the fact that only position information can be measured,a linear Extended State Observer(ESO)is introduced to estimate unknown states and matched disturbances,while a dedicated disturbance observer is constructed to estimate mismatched disturbances.Different from the traditional observer results,the design of the disturbance observer used in this study is carried out under the constraint of output feedback.Furthermore,an output feedback nonlinear controller is proposed leveraging the aforementioned observers to achieve accurate trajectory tracking.To mitigate the inherent differential explosion problem of the traditional backstepping framework,a finite-time stable command filter is incorporated.Simultaneously,considering transient filtering errors,a set of error compensation signals are designed to counter their negative impact effectively.Theoretical analysis affirms that the proposed control strategy ensures the boundedness of all signals within the closed-loop system.Additionally,under the specific condition of only time-invariant disturbances in the system,the conclusion of asymptotic stability is established.Finally,the algorithm’s efficacy is validated through comparative experiments. 展开更多
关键词 active disturbance rejection control Extended state observer Output feedback Disturbance observer Command filter
原文传递
Overview on active disturbance rejection control for electro-mechanical actuation servo drive 被引量:1
3
作者 Chunqiang LIU Guangzhao LUO +1 位作者 Zhe CHEN Xiaofeng DING 《Chinese Journal of Aeronautics》 2025年第7期291-309,共19页
Permanent magnet synchronous motor based electro-mechanical actuation servo drives have widespread applications in the aviation field,such as unmanned aerial vehicle electric servos,electric cabin doors,and mechanical... Permanent magnet synchronous motor based electro-mechanical actuation servo drives have widespread applications in the aviation field,such as unmanned aerial vehicle electric servos,electric cabin doors,and mechanical arms.The performance of the servo drive,which encompasses the response to the torque,efficiency,control bandwidth and the steady-state positioning accuracy,significantly influences the performance of the aviation actuation.Consequently,enhancing the control bandwidth and refining the positioning accuracy of aviation electro-mechanical actuation servo drives have emerged as a focal point of research.This paper investigates the multi-source disturbances present in aviation electro-mechanical actuation servo systems and summarizes recent research on high-performance servo control methods based on active disturbance rejection control(ADRC).We present a comprehensive overview of the research status pertaining to servo control architecture,strategies for suppressing disturbances in the current loop,and ADRC-based strategies for the position loop.We delineate the research challenges and difficulties encountered by aviation electro-mechanical actuation servo drive control technology. 展开更多
关键词 active disturbance rejection control Electric servo drive Permanent magnet synchronous motor Electro-mechanical actuation
原文传递
Robust control barrier functions based on active disturbance rejection control for adaptive cruise control
4
作者 Jaime Arcos-Legarda Andres Hoyos Hernán García Arias 《Control Theory and Technology》 2025年第3期454-463,共10页
The objective of this paper is to present a robust safety-critical control system based on the active disturbance rejection control approach, designed to guarantee safety even in the presence of model inaccuracies, un... The objective of this paper is to present a robust safety-critical control system based on the active disturbance rejection control approach, designed to guarantee safety even in the presence of model inaccuracies, unknown dynamics, and external disturbances. The proposed method combines control barrier functions and control Lyapunov functions with a nonlinear extended state observer to produce a robust and safe control strategy for dynamic systems subject to uncertainties and disturbances. This control strategy employs an optimization-based control, supported by the disturbance estimation from a nonlinear extended state observer. Using a quadratic programming algorithm, the controller computes an optimal, stable, and safe control action at each sampling instant. The effectiveness of the proposed approach is demonstrated through numerical simulations of a safety-critical interconnected adaptive cruise control system. 展开更多
关键词 control barrier functions active disturbance rejection control Extended state observer control Lyapunov function Optimization-based control Quadratic programming
原文传递
Fuzzy adaptive finite-time inverse optimal control for active suspension systems
5
作者 Zhenggang Chen Wei Wu Shaocheng Tong 《Journal of Automation and Intelligence》 2025年第4期312-320,共9页
This paper investigates the problem of fuzzy adaptive finite-time inverse optimal control for active suspension systems(ASSs).The fuzzy logic systems(FLSs)are utilized to learn the unknown non-linear dynamics and an a... This paper investigates the problem of fuzzy adaptive finite-time inverse optimal control for active suspension systems(ASSs).The fuzzy logic systems(FLSs)are utilized to learn the unknown non-linear dynamics and an auxiliary system is established.Based on the finite-time stability theory and inverse optimal theory,a fuzzy adaptive inverse finite-time inverse optimal control method is proposed.It is proven that the formulated control approach guarantees the stability of the controlled systems,while ensuring that errors converge to a small neighborhood of zero within finite time.Moreover,the optimized control performance can be achieved.Eventually,the simulation results demonstrate the effectiveness of the proposed fuzzy adaptive finite-time inverse optimal control scheme. 展开更多
关键词 active suspension systems Inverse optimal control Finite-time control Fuzzy adaptive control
在线阅读 下载PDF
Research Advances in the Control of Spider Mites Using Bioactive Substances of Biological Origin
6
作者 Tongshu DAI Kaicheng LIU Yanjie LUO 《Asian Agricultural Research》 2025年第11期51-53,共3页
Spider mites are significant pests in agricultural production.The increasing resistance of spider mites,along with environmental pollution and ecological imbalance caused by their control,is primarily attributed to th... Spider mites are significant pests in agricultural production.The increasing resistance of spider mites,along with environmental pollution and ecological imbalance caused by their control,is primarily attributed to the long-term use of chemical acaricides in agriculture.In contrast,bioactive substances of biological origin offer advantages such as wide availability,environmental friendliness,and low tendency to induce resistance,making them a research hotspot for spider mite control.This review summarizes recent advances in the use of plant-derived active compounds(exemplified by extracts from Veratrum rhizomes),RNA interference(RNAi)technology,and microorganism-derived active substances for controlling spider mites.These bioactive agents exert acaricidal effects by disrupting the nervous system,interfering with metabolic processes,or silencing key genes in mites,demonstrating favorable efficacy and considerable potential for development.However,challenges remain,including poor environmental stability,slow action,high production costs,and insufficient understanding of their effects on non-target organisms.Therefore,future research should focus on the screening and development of novel bioactive substances of biological origin,elucidation of their mechanisms of action,optimization of formulation technologies,and assessment of their ecological safety.These efforts will provide valuable insights for promoting the advancement of bioactive substances and supporting sustainable agricultural development. 展开更多
关键词 Bioactive substances of BIOLOGICAL ORIGIN Spider MITE control RNA interference Plant-derived active substances Microorganism-derived active substances
在线阅读 下载PDF
Research on Vibration Control of Pump Valve Pipeline System Based on Active Damping Device
7
作者 Hao-zhe Zhu Li-dong He Qing-wang Qin 《风机技术》 2025年第2期78-83,共6页
Pump valve pipeline vibration brings serious safety hazards to the operation of the equipment,for the pump valve system in the process of variable flow,variable speed,variable openings lead to excessive pipeline vibra... Pump valve pipeline vibration brings serious safety hazards to the operation of the equipment,for the pump valve system in the process of variable flow,variable speed,variable openings lead to excessive pipeline vibration.An active damping device(ADD)is used to the vibration of the pump valve pipeline system to apply the control force,to achieve the active control of the pipeline vibration.A pump-valve pipeline vibration test bench was built to compare the control effect of active damping device on pipeline vibration under different pump valve working conditions,and the results show that applying ADD control could effectively suppress the vibration of the pump valve pipeline and enhance the stability of the equipment during operation.At different pump operating rotation frequencies,the vibration amplitude of the pump valve pipeline in working frequency and its multiple frequencies are also effectively suppressed,with the maximum amplitude reduction of more than 60%.For the valve vibration caused by different operating openings,the vibration of the highest reduction of 68%,and the centrifugal pump drive shaft vi-bration reduced by up to 73%,which provides a new idea for vibration control of pump valve pipeline system. 展开更多
关键词 active Damping Device active control ACTUATOR Pump Valve Pipeline
在线阅读 下载PDF
Active flow control in aeronautic field and disease treatment in medical field
8
作者 Zhengyu ZUO Xin ZHANG 《Chinese Journal of Aeronautics》 2025年第11期1-4,共4页
Activeow control technology is a technique that controls the internaloweld of aircraft engines or theoweld around wings by means of disturbances induced by actuators,and adjusts the aerodynamic force and attitude of t... Activeow control technology is a technique that controls the internaloweld of aircraft engines or theoweld around wings by means of disturbances induced by actuators,and adjusts the aerodynamic force and attitude of the aircraft,so as to achieve the purposes of increasing lift,reducing drag,suppressing vibration and reducing noise.Hailed as an important source of innovative development for aircraft,this technology provides a new technical approach to solve the aerodynamic problems of aircraft,signicantly improve their comprehensive performance,break throughight boundaries,and promote disruptive innovation in the next generation of aircraft. 展开更多
关键词 aeronautical field disease treatment active flow control controls internaloweld adjusts aerodynamic force attitude aerodynamic problems activeow control technology aircraft engines
原文传递
Overcoming inclined surface challenges in Mecanum-wheeled robots using active disturbance rejection control
9
作者 JoséC.Ortiz Hernández David I.Rosas Almeida Ernesto V.González Solís 《Control Theory and Technology》 2025年第3期437-453,共17页
The study of Mecanum mobile robots typically assumes motion on planar surfaces,while the challenges posed by inclined terrains remain largely unexplored,leaving a significant gap in control applications for such scena... The study of Mecanum mobile robots typically assumes motion on planar surfaces,while the challenges posed by inclined terrains remain largely unexplored,leaving a significant gap in control applications for such scenarios.In this context,two critical issues emerge:the gravitational pull caused by adding a potential energy term in the robot dynamics,which drives the vehicle downhill,and several positioning errors due to vibrations and slippage of the Mecanum wheel.To address these challenges,this work presents an Active Disturbance Rejection Control(ADRC)-based framework designed to enable accurate tracking on inclined surfaces,despite the compounded effects of gravitational forces and slippage.Unlike conventional controllers,the proposed method requires minimal model knowledge while actively compensates for unknown dynamics and external disturbances in real time.A complete theoretical formulation is provided,supported by numerical simulations and comprehensive experimental validation.Results demonstrate that the ADRC structure significantly outperforms not only the traditional proportional-integral-derivative(PID)control but also a robust variant of PID combined with a Quasi-Sliding Mode control(PID-QSMC)strategy,achieving superior tracking.Notably,this study offers an important experimental validation of ADRC for Mecanum-wheeled robots operating on inclined surfaces.It contributes a practical and scalable solution to extend their operational capabilities beyond flat environments. 展开更多
关键词 Mecanum active disturbance rejection control SLOPE DISTURBANCE
原文传递
Reactive voltage support strategy for droop-controlled grid-forming converters based on LADRC
10
作者 Dejian Yang Zhijie Cao Chaoquan Li 《iEnergy》 2025年第4期259-268,共10页
To enhance the low-voltage ride-through(LVRT)capability of emerging power systems with increasing penetration of renewable energy while addressing issues such as the slow response speed of traditional proportional-int... To enhance the low-voltage ride-through(LVRT)capability of emerging power systems with increasing penetration of renewable energy while addressing issues such as the slow response speed of traditional proportional-integral(PI)control,high model accuracy requirements,and complex system parameter tuning,this paper proposes a droop-controlled converter reactive power support strategy based on first-order linear active disturbance rejection control(LADRC).First,a mathematical model of a droop-controlled grid-forming(GFM)converter is established.A model equivalence method is then proposed to transform the dynamic characteristics of the control loop into equivalent impedance parameters.Based on the equivalent impedance parameter model,the influencing factors of the converter terminal voltage and point of common coupling(PCC)voltage are derived.Next,a first-order linear active disturbance rejection control strategy is introduced into the traditional droop control framework,and the controller parameters are optimized via the bandwidth tuning method.Finally,a simulation model of the droop-controlled GFM converter based on the linear active disturbance rejection controller is constructed on the PSCAD/EMTDC platform,and through comparative experiments under typical grid fault conditions,the effectiveness of the proposed control strategy in improving the system fault ride-through capability and voltage support is verified. 展开更多
关键词 Grid-forming control linear active disturbance rejection control reactive power support low-voltage ride-through
在线阅读 下载PDF
Robust decoupled sliding mode control for active suspension systems with prescribed tracking performance
11
作者 Jiawei Peng Xiaodong Shi Yinlong Hu 《Control Theory and Technology》 2025年第2期310-320,共11页
In this paper,a robust decoupled sliding mode control(RDSMC)is proposed for active suspension system(ASS)to balance the trade-off between ride comfort and road holding.The ASS is decoupled into two subsystems:a sprung... In this paper,a robust decoupled sliding mode control(RDSMC)is proposed for active suspension system(ASS)to balance the trade-off between ride comfort and road holding.The ASS is decoupled into two subsystems:a sprung-mass subsystem(regarding ride comfort)and an unsprung-mass subsystem(regarding road holding),which correspond to two prescribed performance tracking problems.Subsequently,an integrated control law is designed by introducing the unsprung-mass sliding surface into the control of the sprung-mass one.To reduce chattering and stabilize the subsystems,a prescribed-time extended disturbance observer(PT-EDO)is designed,achieving the time-varying switching gain RDSMC(TVSG-RDSMC).Numerical simulations imply that the proposed TVSG-RDSMC can effectively improve ride comfort and road holding with a significantly reduced chattering. 展开更多
关键词 active suspension system Sliding mode control Prescribed tracking performance Disturbance observer
原文传递
A Novel Feedforward Hybrid Active Noise Control System with Narrowband Frequency Adaptive Estimation and Error Separation
12
作者 PANG Mingrui LIU Yifei LIU Jian 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第5期638-647,共10页
The conventional feedforward hybrid active noise control(FFHANC)system combines the advantages of the feedforward narrowband active noise control(FFNANC)system and the feedforward broadband active noise control(FFBANC... The conventional feedforward hybrid active noise control(FFHANC)system combines the advantages of the feedforward narrowband active noise control(FFNANC)system and the feedforward broadband active noise control(FFBANC)system.To enhance its adaptive adjustment capability under frequency mismatch(FM)conditions,this paper introduces a narrowband frequency adaptive estimation module into the conventional FFHANC system.This module integrates an autoregressive(AR)model and a linear cascaded adaptive notch filter(LCANF),enabling accurate reference signal frequency estimation even under significant FM.Furthermore,in order to improve the coherence between narrowband and broadband components in the system’s error signal and its corresponding control filter for the conventional FFHANC system,this paper proposes an algorithm based on autoregressive bandpass filter bank(AR-BPFB)for error separation.Simulation results demonstrate that the proposed FFHANC system maintains robust performance under high FM conditions and effectively suppresses hybrid-band noise.The AR-BPFB algorithm significantly elevates the convergence speed of the FFHANC system. 展开更多
关键词 active noise control feedforward hybrid active noise control(FFHANC)system autoregressive(AR)model linear cascaded adaptive notch filter(LCANF) bandpass filter bank(BPFB) error separation
在线阅读 下载PDF
Active vibration control for rotating machines with current-controlled electrodynamic actuators and velocity feedback of the machine feet based on a generalized mathematical formulation
13
作者 Ulrich Werner 《Control Theory and Technology》 2025年第1期1-27,共27页
A theoretical analysis regarding active vibration control of rotating machines with current-controlled electrodynamic actuators between machine feet and steel frame foundation and with velocity feedback of the machine... A theoretical analysis regarding active vibration control of rotating machines with current-controlled electrodynamic actuators between machine feet and steel frame foundation and with velocity feedback of the machine feet vibrations is presented.First,a generalized mathematical formulation is derived based on a state-space description which can be used for different kinds of models(1D,2D,and 3D models).It is shown that under special boundary conditions,the control parameters can be directly implemented into the stiffness and damping matrices of the system.Based on the generalized mathematical formulation,an example of a rotating machine—described by a 2D model—with journal bearings,flexible rotor,current-controlled electrodynamic actuators,steel frame foundation,and velocity feedback of the machine feet vibrations is presented where the effectiveness of the described active vibration control system is demonstrated. 展开更多
关键词 active vibration control Rotating machines Current-controlled electrodynamic actuators Steel frame foundation
原文传递
On the stability condition of active disturbance rejection control with time-varying bandwidth observer
14
作者 Depeng Song Sen Chen +1 位作者 Wenchao Xue Zhiliang Zhao 《Control Theory and Technology》 2025年第3期464-478,共15页
With the growing adoption of artificial intelligence algorithms and neural networks,online learning and adaptive methods for updating the bandwidth have become increasingly prevalent.However,the conditions required to... With the growing adoption of artificial intelligence algorithms and neural networks,online learning and adaptive methods for updating the bandwidth have become increasingly prevalent.However,the conditions required to ensure closed-loop stability when employing a time-varying bandwidth,as well as the supporting mathematical foundations,remain insufficiently studied.This paper investigates the stability condition for active disturbance rejection control(ADRC)with a time-varying bandwidth extended state observer(ESO).A new stability condition is derived,which means that the upper bound of rate of change for ESO bandwidth should be restricted.Moreover,under the proposed condition,the closed-loop stability of ADRC with a time-varying bandwidth observer is rigorously proved for nonlinear uncertainties.In simulations,the necessity of the proposed condition is illustrated,demonstrating that the rate of change of ESO bandwidth is crucial for closed-loop stability. 展开更多
关键词 active disturbance rejection control Time-varying bandwidth Extended state observer Closed-loop stability Rate of change
原文传递
Frugalmodel predictive control and active disturbance rejection for laser beam steering systems
15
作者 Rafael Isaac Vázquez-Cruz Ernesto Castellanos-Velasco José Fermi Guerrero-Castellanos 《Control Theory and Technology》 2025年第3期513-528,共16页
This paper aims to fuse two well-established and,at the same time,opposed control techniques,namely,model predictive control(MPC)and active disturbance rejection control(ADRC),to develop a dynamic motion controller fo... This paper aims to fuse two well-established and,at the same time,opposed control techniques,namely,model predictive control(MPC)and active disturbance rejection control(ADRC),to develop a dynamic motion controller for a laser beam steering system.The proposed technique uses the ADRC philosophy to lump disturbances and model uncertainties into a total disturbance.Then,the total disturbance is estimated via a discrete extended state disturbance observer(ESO),and it is used to(1)handle the system constraints in a quadratic optimization problem and(2)injected as a feedforward term to the plant to reject the total disturbance,together with the feedback term obtained by the MPC.The main advantage of the proposed approach is that the MPC is designed based on a straightforward integrator-chain model such that a simple convex optimization problem is performed.Several experiments show the real-time closed-loop performance regarding trajectory tracking and disturbance rejection.Owing to simplicity,the self-contained approach MPC+ESO becomes a Frugal MPC,which is computationally economical,adaptable,efficient,resilient,and suitable for applications where on-board computational resources are limited. 展开更多
关键词 Frugal model predictive control(FMPC) active disturbance rejection control(ADRC) Laser beam steering system(LBS) Real-time application Constrained systems
原文传递
Active traveling wave vibration control of elastic supported conical shells with smart micro fiber composites based on the differential quadrature method
16
作者 Yuxin HAO Lei SUN +1 位作者 Wei ZHANG Han LI 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期305-322,共18页
This paper investigates the active traveling wave vibration control of an elastic supported rotating porous aluminium conical shell(CS)under impact loading.Piezoelectric smart materials in the form of micro fiber comp... This paper investigates the active traveling wave vibration control of an elastic supported rotating porous aluminium conical shell(CS)under impact loading.Piezoelectric smart materials in the form of micro fiber composites(MFCs)are used as actuators and sensors.To this end,a metal pore truncated CS with MFCs attached to its surface is considered.Adding artificial virtual springs at two edges of the truncated CS achieves various elastic supported boundaries by changing the spring stiffness.Based on the first-order shear deformation theory(FSDT),minimum energy principle,and artificial virtual spring technology,the theoretical formulations considering the electromechanical coupling are derived.The comparison of the natural frequency of the present results with the natural frequencies reported in previous literature evaluates the accuracy of the present approach.To study the vibration control,the integral quadrature method in conjunction with the differential quadrature approximation in the length direction is used to discretize the partial differential dynamical system to form a set of ordinary differential equations.With the aid of the velocity negative feedback method,both the time history and the input control voltage on the actuator are demonstrated to present the effects of velocity feedback gain,pore distribution type,semi-vertex angle,impact loading,and rotational angular velocity on the traveling wave vibration control. 展开更多
关键词 rotating conical shell(CS) porous metal material active vibration control elastic support differential quadrature method
在线阅读 下载PDF
Modeling and Control of the Linear Motor Active Suspension with Quasi-zero Stiffness Air Spring System Using Polynomial Chaos Expansion
17
作者 Pai Li Xing Xu +3 位作者 Cong Liang Te Chen Jiachen Jiang Vincent Akolbire Atindana 《Chinese Journal of Mechanical Engineering》 2025年第5期101-119,共19页
As a crucial component of intelligent chassis systems,air suspension significantly enhances driver comfort and vehicle stability.To further improve the adaptability of commercial vehicles to complex and variable road ... As a crucial component of intelligent chassis systems,air suspension significantly enhances driver comfort and vehicle stability.To further improve the adaptability of commercial vehicles to complex and variable road conditions,this paper proposes a linear motor active suspension with quasi-zero stiffness(QZS)air spring system.Firstly,a dynamic model of the linear motor active suspension with QZS air spring system is established.Secondly,considering the random uncertainties in the linear motor parameters due to manufacturing and environmental factors,a dynamic model and state equations incorporating these uncertainties are constructed using the polynomial chaos expansion(PCE)method.Then,based on H_(2) robust control theory and the Kalman filter,a state feedback control law is derived,accounting for the random parameter uncertainties.Finally,simulation and hardware-in-the-loop(HIL)experimental results demonstrate that the PCE-H_(2) robust controller not only provides better performance in terms of vehicle ride comfort compared to general H_(2) robust controller but also exhibits higher robustness to the effects of random uncertain parameters,resulting in more stable control performance. 展开更多
关键词 Linear motor active suspension Quasi-zero stiffness air spring Stochastic uncertain systems Polynomial chaos expansion Robust control
在线阅读 下载PDF
Control Strategy for Hybrid Magnetic Bearing based on Improved Cascaded Reduced-order Active Disturbance Rejection Controller
18
作者 Kaiyu Shan Ke Wang +4 位作者 Wei Zhang Yuxiang Zhu Lu Zhao Jinquan Zhu Yaohua Li 《CES Transactions on Electrical Machines and Systems》 2025年第3期340-351,共12页
During the startup of the hydraulic turbine generators,the hybrid magnetic bearing support system exhibits displacement fluctuations,and the nonlinearity and strong coupling characteristics of the magnetic bearings li... During the startup of the hydraulic turbine generators,the hybrid magnetic bearing support system exhibits displacement fluctuations,and the nonlinearity and strong coupling characteristics of the magnetic bearings limit the accuracy of rotor modeling,making traditional control methods difficult to adapt to parameter variations.To suppress startup disturbances and achieve a control strategy with low computational complexity and high precision,this paper proposes a five-degree-of-freedom hybrid magnetic bearing control strategy based on an improved cascaded reduced-order linear active disturbance rejection controller(CRLADRC).The front-stage reduced-order linear extended state observer(FRLESO)reduces the system’s computational complexity,enabling the system to maintain stability during motor startup disturbances.The second-stage reduced-order linear extended state observer(SRLESO)further enhances the system’s disturbance estimation accuracy while maintaining low computational complexity.Furthermore,the disturbance rejection and noise suppression capabilities are analyzed in the frequency domain and the stability of the proposed control method is proven using Lyapunov theory.Experimental results indicate that the proposed strategy effectively reduces displacement fluctuations in the hybrid magnetic bearing support system during motor startup,significantly enhancing the system’s robustness. 展开更多
关键词 Hydraulic turbine generator Hybrid magnetic bearing Improved cascaded reduced-order active disturbance rejection controller Displacement fluctuation suppression Stability analysis
在线阅读 下载PDF
Active disturbance rejection control with cascade generalized proportional integral observer:application to the current control of grid-connected converters
19
作者 Harvey David Rojas Nelson Leonardo Díaz +1 位作者 Herbert Enrique Rojas John Cortés-Romero 《Control Theory and Technology》 2025年第3期543-562,共20页
This paper presents a novel active disturbance rejection control(ADRC)scheme based on a cascade connection of generalized proportional integral observers(GPIOs)with internal models designed to estimate both polynomial... This paper presents a novel active disturbance rejection control(ADRC)scheme based on a cascade connection of generalized proportional integral observers(GPIOs)with internal models designed to estimate both polynomial and resonant disturbances.In this estimator structure,referred to as Cascade GPIO(CGPIO),the total disturbance sensitivity is the product of the sensitivities at each cascade level.This approach improves system performance against both periodic and non-periodic disturbances and enhances robustness under frequency variations in harmonic components.Additionally,the decoupled nature of the estimator reduces the order of the GPIOs,thereby simplifying tuning and limiting observer gains.The proposed control scheme is supported by a frequency-domain analysis and is experimentally validated in the current control of a grid-connected converter subject to control gain uncertainties,harmonic distortion,frequency deviations,and measurement noise.Experimental results demonstrate that the CGPIO-based ADRC outperforms benchmark solutions,including proportional-integral(PI)and proportional-resonant(PR)controllers. 展开更多
关键词 active disturbance rejection control(ADRC) Cascade observer Generalized proportional integral observer(GPIO) Periodic and non-periodic disturbances Grid-connected converter(GcC)
原文传递
Numerical Simulation of Active Control on Tip Leakage Flow in Axial Turbine 被引量:6
20
作者 李伟 乔渭阳 +1 位作者 许开富 罗华铃 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第2期129-137,共9页
In an effort to reduce the blade tip clearance leakage in turbine designs, this article aims to numerically investigate the effects of active jet-flow injected from the blade tip platform upon the blade tip clearance ... In an effort to reduce the blade tip clearance leakage in turbine designs, this article aims to numerically investigate the effects of active jet-flow injected from the blade tip platform upon the blade tip clearance flow. A CFD code integrated with dense-correction-based 3D Reynolds-averaged Navier-Stokes equations together with the well-proven Reynolds stress model (RSM) is adopted. The variation of specific heat is taken into consideration. The effects of jet-flow on the tip clearance flow are simulated ... 展开更多
关键词 tip clearance height INJECTION tip leakage vortex active control numerical simulation
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部