The non-linear wheel-rail motional model is the first research breakthrough I have made in the field of vehicle system dynamics. The main external interference to a vehicle system in rail-borne transportation comes fr...The non-linear wheel-rail motional model is the first research breakthrough I have made in the field of vehicle system dynamics. The main external interference to a vehicle system in rail-borne transportation comes from the dynamic interaction between the wheel and the rail. To determine the forces exerted on the rail-contacting patches of a railcar is known to be one of the most complicated problems in rail haulage, expecially in its unsaturated state, i.e. before overall sliding occurs. Since the 1960s, many scholars, including K.L. Johnson and J.J.Kalker, have considered it a problem in rolling contact mechanics. However, none of the presented展开更多
For a two-level atom in a lossy cavity, a scheme to manipulate the non-Markovian speedup dynamics has been pro- posed in the controllable environment (the lossy cavity field). We mainly focus on the effects of the q...For a two-level atom in a lossy cavity, a scheme to manipulate the non-Markovian speedup dynamics has been pro- posed in the controllable environment (the lossy cavity field). We mainly focus on the effects of the qubit--cavity detuning A and the qubit-cavity coupling strength k on the non-Markovian speedup evolution of an open system. By controlling the environment, i.e., tuning zl and , two dynamical crossovers from Markovian to non-Markovian and from no-speedup to speedup are achieved. Furthermore, it is clearly found that increasing the coupling strength k or detuning A in some cases can make the environmental non-Markovianity stronger and hence can lead to faster evolution of the open system.展开更多
文摘The non-linear wheel-rail motional model is the first research breakthrough I have made in the field of vehicle system dynamics. The main external interference to a vehicle system in rail-borne transportation comes from the dynamic interaction between the wheel and the rail. To determine the forces exerted on the rail-contacting patches of a railcar is known to be one of the most complicated problems in rail haulage, expecially in its unsaturated state, i.e. before overall sliding occurs. Since the 1960s, many scholars, including K.L. Johnson and J.J.Kalker, have considered it a problem in rolling contact mechanics. However, none of the presented
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11647171,61675115,and 91536108)
文摘For a two-level atom in a lossy cavity, a scheme to manipulate the non-Markovian speedup dynamics has been pro- posed in the controllable environment (the lossy cavity field). We mainly focus on the effects of the qubit--cavity detuning A and the qubit-cavity coupling strength k on the non-Markovian speedup evolution of an open system. By controlling the environment, i.e., tuning zl and , two dynamical crossovers from Markovian to non-Markovian and from no-speedup to speedup are achieved. Furthermore, it is clearly found that increasing the coupling strength k or detuning A in some cases can make the environmental non-Markovianity stronger and hence can lead to faster evolution of the open system.