期刊文献+
共找到1,033篇文章
< 1 2 52 >
每页显示 20 50 100
Enrichment Analysis and Deep Learning in Biomedical Ontology:Applications and Advancements 被引量:1
1
作者 Hong-Yu Fu Yang-Yang Liu +1 位作者 Mei-Yi Zhang Hai-Xiu Yang 《Chinese Medical Sciences Journal》 2025年第1期45-56,I0006,共13页
Biomedical big data,characterized by its massive scale,multi-dimensionality,and heterogeneity,offers novel perspectives for disease research,elucidates biological principles,and simultaneously prompts changes in relat... Biomedical big data,characterized by its massive scale,multi-dimensionality,and heterogeneity,offers novel perspectives for disease research,elucidates biological principles,and simultaneously prompts changes in related research methodologies.Biomedical ontology,as a shared formal conceptual system,not only offers standardized terms for multi-source biomedical data but also provides a solid data foundation and framework for biomedical research.In this review,we summarize enrichment analysis and deep learning for biomedical ontology based on its structure and semantic annotation properties,highlighting how technological advancements are enabling the more comprehensive use of ontology information.Enrichment analysis represents an important application of ontology to elucidate the potential biological significance for a particular molecular list.Deep learning,on the other hand,represents an increasingly powerful analytical tool that can be more widely combined with ontology for analysis and prediction.With the continuous evolution of big data technologies,the integration of these technologies with biomedical ontologies is opening up exciting new possibilities for advancing biomedical research. 展开更多
关键词 biomedical ontology enrichment analysis deep learning ontology hierarchy ontology annotation
在线阅读 下载PDF
A new integrated neurosymbolic approach for crop-yield prediction using environmental data and satellite imagery at field scale
2
作者 Khadija Meghraoui Teeradaj Racharak +2 位作者 Kenza Ait El Kadi Saloua Bensiali Imane Sebari 《Artificial Intelligence in Geosciences》 2025年第1期202-227,共26页
Crop-yield is a crucial metric in agriculture,essential for effective sector management and improving the overall production process.This indicator is heavily influenced by numerous environmental factors,particularly ... Crop-yield is a crucial metric in agriculture,essential for effective sector management and improving the overall production process.This indicator is heavily influenced by numerous environmental factors,particularly those related to soil and climate,which present a challenging task due to the complex interactions involved.In this paper,we introduce a novel integrated neurosymbolic framework that combines knowledge-based approaches with sensor data for crop-yield prediction.This framework merges predictions from vectors generated by modeling environmental factors using a newly developed ontology focused on key elements and evaluates this ontology using quantitative methods,specifically representation learning techniques,along with predictions derived from remote sensing imagery.We tested our proposed methodology on a public dataset centered on corn,aiming to predict crop-yield.Our developed smart model achieved promising results in terms of crop-yield prediction,with a root mean squared error(RMSE)of 1.72,outperforming the baseline models.The ontologybased approach achieved an RMSE of 1.73,while the remote sensing-based method yielded an RMSE of 1.77.This confirms the superior performance of our proposed approach over those using single modalities.This in-tegrated neurosymbolic approach demonstrates that the fusion of statistical and symbolic artificial intelligence(AI)represents a significant advancement in agricultural applications.It is particularly effective for crop-yield prediction at the field scale,thus facilitating more informed decision-making in advanced agricultural prac-tices.Additionally,it is acknowledged that results might be further improved by incorporating more detailed ontological knowledge and testing the model with higher-resolution imagery to enhance prediction accuracy. 展开更多
关键词 Crop-yield prediction Neuro-symbolic AI ONTOLOGY Ontology embedding Satellite imagery Machine learning
在线阅读 下载PDF
Beyond the Goldilocks Zone:Reconsidering the Ontological Conditions for Interstellar Life
3
作者 Yujin Hwang 《Philosophy Study》 2025年第4期145-150,共6页
This paper critically re-examines the anthropocentric“Goldilocks Zone”paradigm that has dominated the search for extraterrestrial life.As of 2024,more than 5,500 exoplanets have been identified,yet only about 2%are ... This paper critically re-examines the anthropocentric“Goldilocks Zone”paradigm that has dominated the search for extraterrestrial life.As of 2024,more than 5,500 exoplanets have been identified,yet only about 2%are located within the traditionally defined habitable zone(National Aeronautics and Space Administration(NASA)Exoplanet Archive,2024;Kane et al.,2023).Moreover,the discovery of extremophiles-organisms thriving in high-radiation,extreme heat,or vacuum environments-demonstrates that the boundaries of life far exceed Earth-like conditions(Rothschild&Mancinelli,2001). 展开更多
关键词 Goldilocks Zone ontological conditions interstellar life exoplanets EXTREMOPHILES planetary ethics habitability
在线阅读 下载PDF
METAseen:analyzing network traffic and privacy policies in Web 3.0 based Metaverse
4
作者 Beiyuan Yu Yizhong Liu +2 位作者 Shanyao Ren Ziyu Zhou Jianwei Liu 《Digital Communications and Networks》 2025年第1期13-25,共13页
Metaverse is a new emerging concept building up a virtual environment for the user using Virtual Reality(VR)and blockchain technology but introduces privacy risks.Now,a series of challenges arise in Metaverse security... Metaverse is a new emerging concept building up a virtual environment for the user using Virtual Reality(VR)and blockchain technology but introduces privacy risks.Now,a series of challenges arise in Metaverse security,including massive data traffic breaches,large-scale user tracking,analysis activities,unreliable Artificial Intelligence(AI)analysis results,and social engineering security for people.In this work,we concentrate on Decentraland and Sandbox,two well-known Metaverse applications in Web 3.0.Our experiments analyze,for the first time,the personal privacy data exposed by Metaverse applications and services from a combined perspective of network traffic and privacy policy.We develop a lightweight traffic processing approach suitable for the Web 3.0 environment,which does not rely on complex decryption or reverse engineering techniques.We propose a smart contract interaction traffic analysis method capable of retrieving user interactions with Metaverse applications and blockchain smart contracts.This method provides a new approach to de-anonymizing users'identities through Metaverse applications.Our system,METAseen,analyzes and compares network traffic with the privacy policies of Metaverse applications to identify controversial data collection practices.The consistency check experiment reveals that the data types exposed by Metaverse applications include Personal Identifiable Information(PII),device information,and Metaverse-related data.By comparing the data flows observed in the network traffic with assertions made in the privacy regulations of the Metaverse service provider,we discovered that far more than 49%of the Metaverse data flows needed to be disclosed appropriately. 展开更多
关键词 Metaverse Privacy policy Traffic analysis Blockchain Data ontology
在线阅读 下载PDF
Automatic Generation Method of Knowledge Graph for Complex Product Assembly Processes Based on Text Mining
5
作者 Kunping Li Jianhua Liu +2 位作者 Sikuan Zhai Cunbo Zhuang Fengque Pei 《Chinese Journal of Mechanical Engineering》 2025年第6期256-271,共16页
Efficient preparation and assembly guidance for complex products relies heavily on semantic information in assembly process documents.This information encompasses various levels of elements and complex semantic relati... Efficient preparation and assembly guidance for complex products relies heavily on semantic information in assembly process documents.This information encompasses various levels of elements and complex semantic relationships.However,there is currently a scarcity of effective modeling techniques to express these documents'inherent assembly process knowledge.This study introduces a method for constructing an Assembly Process Knowledge Graph of Complex Products(APKG-CP)utilizing text mining techniques to tackle the challenges of high costs,low efficiency,and difficulty reusing process knowledge.Developing the assembly process knowledge graph involves categorizing entity and relationship classes from multiple levels.The Bert-BiLSTM-CRF model integrates BERT(bidirectional encoder representations from transformers),BiLSTM(bidirectional long short-term memory),and CRF(conditional random field)to extract knowledge entities and relationships in assembly process documents automatically.Furthermore,the knowledge fusion method automatically instantiates the assembly process knowledge graph.The proposed construction method is validated by constructing and visualizing an assembly process knowledge graph using data from an aerospace enterprise as an example.Integrating the knowledge graph with the assembly process preparation system demonstrates its effectiveness for process design. 展开更多
关键词 Complex Product Bert-BiLSTM-CRF Semantic information Text mining Knowledge representation Multilevel ontology modeling
在线阅读 下载PDF
Expert System Based on Ontology and Interpretable Machine Learning to Assist in the Discovery of Railway Accident Scenarios
6
作者 Habib Hadj-Mabrouk 《Computers, Materials & Continua》 2025年第9期4399-4430,共32页
A literature review on AI applications in the field of railway safety shows that the implemented approaches mainly concern the operational,maintenance,and feedback phases following railway incidents or accidents.These... A literature review on AI applications in the field of railway safety shows that the implemented approaches mainly concern the operational,maintenance,and feedback phases following railway incidents or accidents.These approaches exploit railway safety data once the transport system has received authorization for commissioning.However,railway standards and regulations require the development of a safety management system(SMS)from the specification and design phases of the railway system.This article proposes a new AI approach for analyzing and assessing safety from the specification and design phases of the railway system with a view to improving the development of the SMS.Unlike some learning methods,the proposed approach,which is dedicated in particular to safety assessment bodies,is based on semi-supervised learning carried out in close collaboration with safety experts who contributed to the development of a database of potential accident scenarios(learning example database)relating to the risk of rail collision.The proposed decision support is based on the use of an expert system whose knowledge base is automatically generated by inductive learning in the form of an association rule(rule base)and whose main objective is to suggest to the safety expert possible hazards not considered during the development of the SMS to complete the initial hazard register. 展开更多
关键词 Artificial intelligence ONTOLOGY semi-supervised learning expert system association rules railways safety HAZARD accident scenarios classification assessment
在线阅读 下载PDF
Intelligent Spatial Anomaly Activity Recognition Method Based on Ontology Matching
7
作者 Longgang Zhao Seok-Won Lee 《Computers, Materials & Continua》 2025年第6期4447-4476,共30页
This research addresses the performance challenges of ontology-based context-aware and activity recognition techniques in complex environments and abnormal activities,and proposes an optimized ontology framework to im... This research addresses the performance challenges of ontology-based context-aware and activity recognition techniques in complex environments and abnormal activities,and proposes an optimized ontology framework to improve recognition accuracy and computational efficiency.The method in this paper adopts the event sequence segmentation technique,combines location awareness with time interval reasoning,and improves human activity recognition through ontology reasoning.Compared with the existing methods,the framework performs better when dealing with uncertain data and complex scenes,and the experimental results show that its recognition accuracy is improved by 15.6%and processing time is reduced by 22.4%.In addition,it is found that with the increase of context complexity,the traditional ontology inferencemodel has limitations in abnormal behavior recognition,especially in the case of high data redundancy,which tends to lead to a decrease in recognition accuracy.This study effectively mitigates this problem by optimizing the ontology matching algorithm and combining parallel computing and deep learning techniques to enhance the activity recognition capability in complex environments. 展开更多
关键词 Context awareness activity recognition ontological reasoning complex context anomaly detection
在线阅读 下载PDF
Knowledge graphs in heterogeneous catalysis: Recent advances and future opportunities
8
作者 Raúl Díaz Hongliang Xin 《Chinese Journal of Chemical Engineering》 2025年第8期179-189,共11页
Knowledge graphs (KGs) offer a structured, machine-readable format for organizing complex information. In heterogeneous catalysis, where data on catalytic materials, reaction conditions, mechanisms, and synthesis rout... Knowledge graphs (KGs) offer a structured, machine-readable format for organizing complex information. In heterogeneous catalysis, where data on catalytic materials, reaction conditions, mechanisms, and synthesis routes are dispersed across diverse sources, KGs provide a semantic framework that supports data integration under the FAIR (Findable, Accessible, Interoperable, and Reusable) principles. This review aims to survey recent developments in catalysis KGs, describe the main techniques for graph construction, and highlight how artificial intelligence, particularly large language models (LLMs), enhances graph generation and query. We conducted a systematic analysis of the literature, focusing on ontology-guided text mining pipelines, graph population methods, and maintenance strategies. Our review identifies key trends: ontology-based approaches enable the automated extraction of domain knowledge, LLM-driven retrieval-augmented generation supports natural-language queries, and scalable graph architectures range from a few thousand to over a million triples. We discuss state-of-the-art applications, such as catalyst recommendation systems and reaction mechanism discovery tools, and examine the major challenges, including data heterogeneity, ontology alignment, and long-term graph curation. We conclude that KGs, when combined with AI methods, hold significant promise for accelerating catalyst discovery and knowledge management, but progress depends on establishing community standards for ontology development and maintenance. This review provides a roadmap for researchers seeking to leverage KGs to advance heterogeneous catalysis research. 展开更多
关键词 Heterogeneous catalysis Knowledge graph ONTOLOGY Large language models Deep learning
在线阅读 下载PDF
Constructing regional mineral prospecting knowledge graph from GIS maps
9
作者 Jiawen Liu Yuxin Ye +2 位作者 Ziheng Li Zhezhe Xing Shuisheng Ye 《Artificial Intelligence in Geosciences》 2025年第2期384-397,共14页
Geographic Information System(GIS)layers contain both spatial precision and domain knowledge,making them valuable for mineral prospectivity analysis.This study proposes a task-oriented methodology to struct con-a mine... Geographic Information System(GIS)layers contain both spatial precision and domain knowledge,making them valuable for mineral prospectivity analysis.This study proposes a task-oriented methodology to struct con-a mineral prospecting knowledge graph directly from GIS maps.The framework integrates ontology construction,spatiotemporal semantic embedding,and triple confidence evaluation.Ontologies are built from GIS layers through terminology extraction and alignment with existing standards,while spatial and temporal semantics are encoded using GeoSPARQL and the Geological Time Ontology.Graph Convolutional Networks(GCN)combined with the TransE embedding model are then applied to assess triple plausibility.A case study in the Eastern Tianshan region of Xinjiang verifies the effectiveness of the proposed method through semantic evaluation and graph-theoretic analysis.Guided by GIS,ontology construction significantly enhances the semantic fidelity and structural robustness of the prospecting knowledge graph,providing relatively reliable support for subsequent reasoning and predictive studies. 展开更多
关键词 Prospecting prediction Knowledge graph Ontology engineering GIS maps
在线阅读 下载PDF
Model and service for privacy in decentralized online social networks
10
作者 George Pacheco Pinto JoséRonaldo Leles Jr +3 位作者 Cíntia da Costa Souza Paulo Rde Souza Frederico Araújo Durão Cássio Prazeres 《Journal of Electronic Science and Technology》 2025年第1期76-97,共22页
Intensely using online social networks(OSNs)makes users concerned about privacy of data.Given the centralized nature of these platforms,and since each platform has a particular storage mechanism,authentication,and acc... Intensely using online social networks(OSNs)makes users concerned about privacy of data.Given the centralized nature of these platforms,and since each platform has a particular storage mechanism,authentication,and access control,their users do not have the control and the right over their data.Therefore,users cannot easily switch between similar platforms or transfer data from one platform to another.These issues imply,among other things,a threat to privacy since such users depend on the interests of the service provider responsible for administering OSNs.As a strategy for the decentralization of the OSNs and,consequently,as a solution to the privacy problems in these environments,the so-called decentralized online social networks(DOSNs)have emerged.Unlike OSNs,DOSNs are decentralized content management platforms because they do not use centralized service providers.Although DOSNs address some of the privacy issues encountered in OSNs,DOSNs also pose significant challenges to consider,for example,access control to user profile information with high granularity.This work proposes developing an ontological model and a service to support privacy in DOSNs.The model describes the main concepts of privacy access control in DOSNs and their relationships.In addition,the service will consume the model to apply access control according to the policies represented in the model.Our model was evaluated in two phases to verify its compliance with the proposed domain.Finally,we evaluated our service with a performance evaluation,and the results were satisfactory concerning the response time of access control requests. 展开更多
关键词 Access control Decentralized online social network ONTOLOGY PRIVACY
在线阅读 下载PDF
Cell cycle and HIF-1 related gene expression alteration in thyroid cell lines under microgravity
11
作者 JONG-HYUK AHN JIN WOOK YI 《Oncology Research》 2025年第8期1909-1931,共23页
Background:With growing interest in space exploration,understanding microgravity’s impact on human health is essential.This study aims to investigate gene expression changes and migration and invasion potential infive... Background:With growing interest in space exploration,understanding microgravity’s impact on human health is essential.This study aims to investigate gene expression changes and migration and invasion potential infive thyroid-related cell lines cultured under simulated microgravity.Methods:Five thyroid-related cell lines—normal thyrocytes(Nthy-ori 3-1),papillary thyroid cancer(PTC)cells(SNU-790,TPC-1),poorly differentiated thyroid cancer cell(BCPAP),and anaplastic thyroid cancer cell(SNU-80)—were cultured under simulated microgravity(10-3 g)using a clinostat.Differentially expressed genes(DEGs)were analyzed using cDNA microarray,followed by functional annotation and assessment of aggressiveness via Transwell migration and invasion assays.Results:DEG analysis under simulated microgravity revealed distinct gene expression profiles by gravity condition,with 2980 DEGs in SNU-790,1033 in BCPAP,562 in TPC-1,477 in Nthy-ori 3-1,and 246 in SNU-80,as confirmed by hierarchical clustering.In PTC cell lines(SNU-790,TPC-1),G2–M phase–related genes were upregulated.In non-PTC cell lines(BCPAP,SNU-80),genes associated with innate immune response,Toll-like receptor signaling,were upregulated,whereas Hypoxia-Inducible Factor 1-alpha(HIF-1α)signaling-related genes were downregulated.Additionally,under simulated microgravity,significant migration was observed in SNU-790(3×104 cells)and BCPAP(2×104 and 3×104),while significant invasion occurred in SNU-790,Nthy-ori 3-1,and BCPAP at a seeding density of 2×104.Other conditions showed no significant differences.Conclusion:This study comprehensively evaluates the effects of simulated microgravity using a diverse panel of thyroid-related cell lines.Thesefindings provide valuable insight into how microgravity could influence cancer biology,emphasizing the importance of further research on cancer behavior in space environments and its implications for human health during long-term space missions. 展开更多
关键词 WEIGHTLESSNESS Space simulation Thyroid neoplasms cDNA microarray Gene expression profiling Gene ontologies Cell migration assays
暂未订购
Ontology Matching Method Based on Gated Graph Attention Model
12
作者 Mei Chen Yunsheng Xu +1 位作者 Nan Wu Ying Pan 《Computers, Materials & Continua》 2025年第3期5307-5324,共18页
With the development of the Semantic Web,the number of ontologies grows exponentially and the semantic relationships between ontologies become more and more complex,understanding the true semantics of specific terms o... With the development of the Semantic Web,the number of ontologies grows exponentially and the semantic relationships between ontologies become more and more complex,understanding the true semantics of specific terms or concepts in an ontology is crucial for the matching task.At present,the main challenges facing ontology matching tasks based on representation learning methods are how to improve the embedding quality of ontology knowledge and how to integrate multiple features of ontology efficiently.Therefore,we propose an Ontology Matching Method Based on the Gated Graph Attention Model(OM-GGAT).Firstly,the semantic knowledge related to concepts in the ontology is encoded into vectors using the OWL2Vec^(*)method,and the relevant path information from the root node to the concept is embedded to understand better the true meaning of the concept itself and the relationship between concepts.Secondly,the ontology is transformed into the corresponding graph structure according to the semantic relation.Then,when extracting the features of the ontology graph nodes,different attention weights are assigned to each adjacent node of the central concept with the help of the attention mechanism idea.Finally,gated networks are designed to further fuse semantic and structural embedding representations efficiently.To verify the effectiveness of the proposed method,comparative experiments on matching tasks were carried out on public datasets.The results show that the OM-GGAT model can effectively improve the efficiency of ontology matching. 展开更多
关键词 Ontology matching representation learning OWL2Vec*method graph attention model
在线阅读 下载PDF
Ontology研究综述 被引量:767
13
作者 邓志鸿 唐世渭 +2 位作者 张铭 杨冬青 陈捷 《北京大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第5期730-738,共9页
Ontology是描述概念及概念之间关系的概念模型 ,通过概念之间的关系来描述概念的语义。作为一种有效表现概念层次结构和语义的模型 ,Ontology被广泛地应用到计算机科学的众多领域。本文作者对目前Ontology的研究与应用现状进行了综述性... Ontology是描述概念及概念之间关系的概念模型 ,通过概念之间的关系来描述概念的语义。作为一种有效表现概念层次结构和语义的模型 ,Ontology被广泛地应用到计算机科学的众多领域。本文作者对目前Ontology的研究与应用现状进行了综述性地介绍 ,从Ontology的定义、Ontol ogy理论研究、Ontology在信息系统中的应用以及在语义Web中的地位等方面加以了系统阐述。 展开更多
关键词 ONTOLOGY 信息系统 语义WEB XML RDF 概念模型 概念层次结构 应用模式 人工智能
在线阅读 下载PDF
一个语义Web构架及其实现 被引量:22
14
作者 廖乐健 曹元大 +1 位作者 幺敬国 李守丽 《计算机工程与应用》 CSCD 北大核心 2003年第15期157-161,共5页
语义Web是国际互联网组织W3C制定的关于未来Web的一个长远蓝图,近两年发展异常迅猛,并显示出诱人的应用前景。该文在概述语义Web基本技术的基础上,设计了一个面向企业门户网站的语义Web体系结构;提出了页面代理的概念及其作用与功能结构... 语义Web是国际互联网组织W3C制定的关于未来Web的一个长远蓝图,近两年发展异常迅猛,并显示出诱人的应用前景。该文在概述语义Web基本技术的基础上,设计了一个面向企业门户网站的语义Web体系结构;提出了页面代理的概念及其作用与功能结构;设计了语义Web查询语言CDQL,该语言在跨信息源查询、约束表示等方面扩充了DQL查询语言。 展开更多
关键词 语义WEB ONTOLOGY RDF DAML
在线阅读 下载PDF
应急事件Ontology语义模型及其应用 被引量:16
15
作者 王文俊 刘昕鹏 +2 位作者 罗英伟 汪小林 许卓群 《计算机工程》 EI CAS CSCD 北大核心 2005年第10期10-12,44,共4页
应急联动系统IERS是综合各种应急服务资源,采用统一号码,用于公众报告紧急事件,统一接警与指挥,联合行动,为市民提供应急服务的大型时空信息应用动态集成系统。IERS面临多领域集成的挑战,基于应急事件Ontology语义模型E2M集成是有效的... 应急联动系统IERS是综合各种应急服务资源,采用统一号码,用于公众报告紧急事件,统一接警与指挥,联合行动,为市民提供应急服务的大型时空信息应用动态集成系统。IERS面临多领域集成的挑战,基于应急事件Ontology语义模型E2M集成是有效的手段。E2M有事件、过程、动作3个层次。E2M提供信息交换的通用模型和词汇表,是各业务达成一致的关键基础和共同理解。 展开更多
关键词 应急事件模型 应急联动系统集成 ONTOLOGY ABC模型
在线阅读 下载PDF
一种新的基于Ontology的信息抽取方法 被引量:18
16
作者 陈兰 左志宏 +1 位作者 熊毅 孟令谦 《计算机应用研究》 CSCD 北大核心 2004年第8期155-157,170,共4页
把语法分析和Ontology结合起来 ,先利用领域Ontology里的概念、关系、关键字自动生成标注规则(Rule) ,然后对文章、句子的语法结构进行分析 ,再利用语法分析的结果和先前生成的标注规则一起对文档进行信息标注与抽取 。
关键词 ONTOLOGY 语法分析 标注 规则 信息抽取
在线阅读 下载PDF
基于Ontology的Web内容二阶段半自动提取方法 被引量:18
17
作者 高军 王腾蛟 +1 位作者 杨冬青 唐世渭 《计算机学报》 EI CSCD 北大核心 2004年第3期310-318,共9页
目前Web中的海量信息已经成为人们重要的信息来源 ,如何从大量半结构化或无结构的HTML网页中提取信息已成为目前的研究热点 .但是Web页面的初始设计目的是为了方便用户浏览 ,而不是便于应用程序自动处理 ,如何实现一个精确的、应用广泛... 目前Web中的海量信息已经成为人们重要的信息来源 ,如何从大量半结构化或无结构的HTML网页中提取信息已成为目前的研究热点 .但是Web页面的初始设计目的是为了方便用户浏览 ,而不是便于应用程序自动处理 ,如何实现一个精确的、应用广泛的提取系统面临很多困难 .传统的方法可以粗略划分为基于交互产生的包装程序和自动生成的包装程序 ,但是基于交互产生的包装程序不具备普遍的应用性 ,基于自动生成的包装程序准确性不高 .该文提出了一种新的二阶段基于语义的半自动提取方法 ,在保证提取准确性的前提下 ,尽可能减少交互操作 ,同时随着参与网站的增加 ,逐步提高包装程序生成的自动化 .相对于目前的方法 ,该文方法同时考虑了包装程序提取结果的准确性和提取过程的应用普遍性 .其有效性在原型系统中得到验证 .应用该方法 ,已经成功提取了12 0万HTML页面 . 展开更多
关键词 Internet 搜索引擎系统 信息获取 Web ONTOLOGY 网页分类 半自动提取法
在线阅读 下载PDF
安佳欣胶囊对抑郁症模型大鼠基因功能类表达影响的初步研究 被引量:12
18
作者 钟国才 李强 +7 位作者 柯尊洪 吕莹丽 郝晓峰 李崇前 杨达 王海敏 王栋 郭政 《中国神经精神疾病杂志》 CAS CSCD 北大核心 2007年第2期82-87,共6页
目的研究安佳欣胶囊对抑郁症模型大鼠基因功能类表达的影响。方法分析抑郁症大鼠模型组和安佳欣胶囊组各8例样本的基因表达谱数据,筛选差异表达基因。利用基因功能分类体系Gene Ontology中的生物学过程子树和细胞组分子树,寻找和分析显... 目的研究安佳欣胶囊对抑郁症模型大鼠基因功能类表达的影响。方法分析抑郁症大鼠模型组和安佳欣胶囊组各8例样本的基因表达谱数据,筛选差异表达基因。利用基因功能分类体系Gene Ontology中的生物学过程子树和细胞组分子树,寻找和分析显著聚集差异表达基因的复合功能类,从分子水平和基因功能模块水平探索安佳欣胶囊对抑郁症模型大鼠基因表达谱的影响。结果筛选出330个差异表达基因,并进一步识别了8个差异表达基因功能模块,主要涉及糖代谢、蛋白转运、谷氨酰胺代谢、凋亡诱导和神经发生。通过文献证实进一步发现了差异功能模块中7个可能与抑郁症发病相关的基因(Pfkm、Gpx1、Stx1a、Ninj2、Plp、Evl、Nrn1)在两组动物中差异表达。结论安佳欣胶囊可能增加抑郁症模型大鼠的单胺递质合成和释放,改善神经保护和神经发生功能,这些改变可能与安佳欣胶囊的抗抑郁作用有关。 展开更多
关键词 安佳欣胶囊 抑郁症 基因表达谱 GENE ONTOLOGY 基因功能
暂未订购
基于Ontology的网络地理服务描述与发现 被引量:24
19
作者 安杨 边馥苓 关佶红 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2004年第12期1063-1066,共4页
针对目前Web服务的行业标准中服务描述和发现方法的不足 ,提出了一种基于Ontology的网络地理信息服务描述和发现方法。其核心思想是采用“概念层 应用层”两个层次来描述地理信息服务 ,将服务发布后 ,通过对服务描述中输入输出等参数... 针对目前Web服务的行业标准中服务描述和发现方法的不足 ,提出了一种基于Ontology的网络地理信息服务描述和发现方法。其核心思想是采用“概念层 应用层”两个层次来描述地理信息服务 ,将服务发布后 ,通过对服务描述中输入输出等参数和用户需求中功能描述的测度来判断服务与用户需求的匹配程度 ,从而进行服务发现。 展开更多
关键词 网络地理服务 服务描述 领域ONTOLOGY OWL-S 相似度 服务发现
在线阅读 下载PDF
基于Ontology的语义检索研究 被引量:24
20
作者 丁晟春 岑咏华 顾德访 《情报学报》 CSSCI 北大核心 2005年第6期702-707,共6页
本文从语义检索和概念空间的内涵入手,分析了现有的两种概念空间形式,重点分析了基于Ontology的概念空间的构建方法、描述语言及其编辑工具Protégé.在此基础上,分析了基于Ontology的语义检索系统的构建步骤及其关键技术.最后... 本文从语义检索和概念空间的内涵入手,分析了现有的两种概念空间形式,重点分析了基于Ontology的概念空间的构建方法、描述语言及其编辑工具Protégé.在此基础上,分析了基于Ontology的语义检索系统的构建步骤及其关键技术.最后利用Protégé实现了简单的语义检索. 展开更多
关键词 ONTOLOGY 本体 开发工具 PROTÉGÉ 语义检索 概念空间
在线阅读 下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部