A numerical method is presented for the large deflection in elastic analysis of tensegrity structures including both geometric and material nonlinearities.The geometric nonlinearity is considered based on both total L...A numerical method is presented for the large deflection in elastic analysis of tensegrity structures including both geometric and material nonlinearities.The geometric nonlinearity is considered based on both total Lagrangian and updated Lagrangian formulations,while the material nonlinearity is treated through elastoplastic stress-strain relationship.The nonlinear equilibrium equations are solved using an incremental-iterative scheme in conjunction with the modified Newton-Raphson method.A computer program is developed to predict the mechanical responses of tensegrity systems under tensile,compressive and flexural loadings.Numerical results obtained are compared with those reported in the literature to demonstrate the accuracy and efficiency of the proposed program.The flexural behavior of the double layer quadruplex tensegrity grid is sufficiently good for lightweight large-span structural applications.On the other hand,its bending strength capacity is not sensitive to the self-stress level.展开更多
This paper introduces an orthogonal expansion method for general stochastic processes. In the method, a normalized orthogonal function of time variable t is first introduced to carry out the decomposition of a stochas...This paper introduces an orthogonal expansion method for general stochastic processes. In the method, a normalized orthogonal function of time variable t is first introduced to carry out the decomposition of a stochastic process and then a correlated matrix decomposition technique, which transforms a correlated random vector into a vector of standard uncorrelated random variables, is used to complete a double orthogonal decomposition of the stochastic processes. Considering the relationship between the Hartley transform and Fourier transform of a real-valued function, it is suggested that the first orthogonal expansion in the above process is carried out using the Hartley basis function instead of the trigonometric basis function in practical applications. The seismic ground motion is investigated using the above method. In order to capture the main probabilistic characteristics of the seismic ground motion, it is proposed to directly carry out the orthogonal expansion of the seismic displacements. The case study shows that the proposed method is feasible to represent the seismic ground motion with only a few random variables. In the second part of the paper, the probability density evolution method (PDEM) is employed to study the stochastic response of nonlinear structures subjected to earthquake excitations. In the PDEM, a completely uncoupled one-dimensional partial differential equation, the generalized density evolution equation, plays a central role in governing the stochastic seismic responses of the nonlinear structure. The solution to this equation will yield the instantaneous probability density function of the responses. Computational algorithms to solve the probability density evolution equation are described. An example, which deals with a nonlinear frame structure subjected to stochastic ground motions, is illustrated to validate the above approach.展开更多
The dynamic equivalent continuum modeling method of the mast which is based on energy equivalency principle was investigated. And three kinds of mast dynamic model were established, which were equivalent continuum mod...The dynamic equivalent continuum modeling method of the mast which is based on energy equivalency principle was investigated. And three kinds of mast dynamic model were established, which were equivalent continuum model, finite element model and simulation model, respectively. The mast frequencies and mode shapes were calculated by these models and compared with each other. The error between the equivalent continuum model and the finite element model is less than 5% when the mast length is longer. Dynamic responses of the mast with different lengths are tested, the mode frequencies and mode shapes are compared with finite element model. The mode shapes match well with each other, while the frequencies tested by experiments are lower than the results of the finite element model, which reflects the joints lower the mast stiffness. The nonlinear dynamic characteristics are presented in the dynamic responses of the mast under different excitation force levels. The joint nonlinearities in the deployable mast are identified as nonlinear hysteresis contributed by the coulomb friction which soften the mast stiffness and lower the mast frequencies.展开更多
The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced conc...The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced concrete structures including offshore concrete structures, subject to any number of the cyclic load. On the basis of the anal ysis of the experimental data,this model simplifies the number of cycles-total cyclic strain curve of concrete as three straight line segments,and it is assumed that the stress-strain curves of different cycles in each segment are the same, thus the elastoplastic analysis is only needed for the first cycle of each segment, and the stress or strain corresponding to any number of cycles can be obtained by superposition of stress or strain obtained by the above e lastoplastic analysis based on the cyclic numbers in each segment.This model spends less computer time,and can obtain the stress and strain states of the structures after any number of cycles.The endochronic-damage and ideal offshore concrete platform subject to cyclic loading are experimented and analyzed by the finite element method based on the model proposed in this paper. The results between the experiment and the finite element analysis are in good agreement,which demonstrates the validity and accuracy of the proposed model.展开更多
The fast-growing demand of computational fluid dynamics(CFD) application for computing resources stimulates the development of high performance computing(HPC) and meanwhile raises new requirements for the technolo...The fast-growing demand of computational fluid dynamics(CFD) application for computing resources stimulates the development of high performance computing(HPC) and meanwhile raises new requirements for the technology of parallel application performance monitor and analysis.In response to large-scale and long-time running for the application of CFD,online and scalable performance analysis technology is required to optimize the parallel programs as well as to improve their operational efficiency.As a result,this research implements a scalable infrastructure for online performance analysis on CFD application with homogeneous or heterogeneous system.The infrastructure is part of the parallel application performance monitor and analysis system(PAPMAS) and is composed of two modules which are scalable data transmission module and data storage module.The paper analyzes and elaborates this infrastructure in detail with respect to its design and implementation.Furthermore,some experiments are carried out to verify the rationality and high efficiency of this infrastructure that could be adopted to meet the practical needs.展开更多
Super-highly reinforced concrete tube in tube structure is a developing structure system of high-rise building. The more reasonable derivation process of the multi-vertical-line-element model stiffness matrix is given...Super-highly reinforced concrete tube in tube structure is a developing structure system of high-rise building. The more reasonable derivation process of the multi-vertical-line-element model stiffness matrix is given.On the premise of pointing out the problems of present multi-spring element model, combined with present multivertical-line-element model for analyzing on shear wall, the model is expanded to spatial one, and the stiffness matrix of which is derived. Combined with hysteretic axial model and hysteretic shear model, it is suitable for columns,wall limbs and beams with all kinds of section form. Some examples are calculated and compared with test results,which shows that the models have relatively good accuracy. On the base of the experimental phenomenon and failure mechanism for tube in tube structure specimen, nonlinear seismic responses analysis program on the basis of the advantaged element model for tube in tube structure is developed. Calculation results are in good agreement with those of the pseudo-dynamic tests and the failure mechanism can be well reflected.展开更多
Structural analysis problems can be formulized as either root finding problems,or optimization problems.The general practice is to choose the first option directly or to convert the second option again to a root findi...Structural analysis problems can be formulized as either root finding problems,or optimization problems.The general practice is to choose the first option directly or to convert the second option again to a root finding problem by taking relevant derivatives and equating them to zero.The second alternative is used very randomly as it is and only for some simple demonstrative problems,most probably due to difficulty in solving optimization problems by classical methods.The method called TPO/MA(Total Potential Optimization using Metaheuristic Algorithms)described in this study successfully enables to handle structural problems with optimization formulation.Using metaheuristic algorithms provides additional advantages in dealing with all kinds of constraints.展开更多
Kernel independent component analysis(KICA) is a newly emerging nonlinear process monitoring method,which can extract mutually independent latent variables called independent components(ICs) from process variables. Ho...Kernel independent component analysis(KICA) is a newly emerging nonlinear process monitoring method,which can extract mutually independent latent variables called independent components(ICs) from process variables. However, when more than one IC have Gaussian distribution, it cannot extract the IC feature effectively and thus its monitoring performance will be degraded drastically. To solve such a problem, a kernel time structure independent component analysis(KTSICA) method is proposed for monitoring nonlinear process in this paper. The original process data are mapped into a feature space nonlinearly and then the whitened data are calculated in the feature space by the kernel trick. Subsequently, a time structure independent component analysis algorithm, which has no requirement for the distribution of ICs, is proposed to extract the IC feature.Finally, two monitoring statistics are built to detect process faults. When some fault is detected, a nonlinear fault identification method is developed to identify fault variables based on sensitivity analysis. The proposed monitoring method is applied in the Tennessee Eastman benchmark process. Applications demonstrate the superiority of KTSICA over KICA.展开更多
The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving ...The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach.展开更多
According to the innate characteristic of four types of furnace, the copper flash continuous smelting (CFCS) furnace can be considered a synthetic reactor of two relatively independent processes: flash matte smelti...According to the innate characteristic of four types of furnace, the copper flash continuous smelting (CFCS) furnace can be considered a synthetic reactor of two relatively independent processes: flash matte smelting process (FMSP) and copper continuous converting process (CCCP). Then, the CFCS thermodynamic model was proposed by establishing the multi-phase equilibrium model of FMSP and the local-equilibrium model of CCCP, respectively, and by combining them through the smelting intermediates. Subsequently, the influences of the furnace structures were investigated using the model on the formation of blister copper, the Fe3O4 behavior, the copper loss in slag and the copper recovery rate. The results show that the type D furnace, with double flues and a slag partition wall, is an ideal CFCS reactor compared with the other three types furnaces. For CFCS, it is effective to design a partition wall in the furnace to make FMSP and CCCP perform in two relatively independent zones, respectively, and to make smelting gas and converting gas discharge from respective flues.展开更多
Objective:This project has mainly studied the online learning engagement of undergraduate nursing students and analyzes influencing factors of online learning and teaching mode during the Novel Coronavirus(COVID-19).T...Objective:This project has mainly studied the online learning engagement of undergraduate nursing students and analyzes influencing factors of online learning and teaching mode during the Novel Coronavirus(COVID-19).This research has significant references for improving the efficiency and quality of the online learning mode of students.Methods:In this study,212 undergraduate nursing students were selected from a comprehensive university in Jilin Province by combining convenience sampling and cluster sampling methods.And these students were conducted with a general information questionnaire,Online Academic Emotion Scale,and Online Learning Engagement Scale.The influencing factors of this teaching mode were analyzed by multiple linear stepwise regression.Results:The total score of online learning engagement of undergraduate students was 53.85±7.38,which positively correlated with positive high arousal emotion and negative high arousal emotion,but weakly negatively correlated with negative low arousal emotion(r=0.661,0.246,-0.187,P<0.001).Grade,type of online class,online learning time,and positively high arousal emotion were mainly affected the online learning engagement of undergraduate nursing students,which explained 78.5%of the total variation(P<0.001).Conclusion:The online learning engagement of undergraduate nursing students was above the middle level under the background of the COVID-19 pandemic.Lectures and professors who teach undergraduate nursing students,should integrate the individuation characters of nursing students,and motivate their positively high arousal emotion to improve online learning engagement of students to ensure the quality of online teaching mode.展开更多
In this paper,a framework is established for nonlinear flutter and gust response analyses based on an efficient Reduced Order Model(ROM).The proposed method can be used to solve the aeroelastic response problems of wi...In this paper,a framework is established for nonlinear flutter and gust response analyses based on an efficient Reduced Order Model(ROM).The proposed method can be used to solve the aeroelastic response problems of wings containing geometric nonlinearities.A structural modeling approach presented herein describes the stiffness nonlinearities with a modal formulation.Two orthogonal spanwise modes describe the foreshortening effects of the wing.Dynamic linearization of the ROM under nonlinear equilibrium states is applied to a nonlinear flutter analysis,and the fully nonlinear ROM coupled with the non-planar Unsteady Vortex Lattice Method(UVLM)is applied to gust response analysis.Furthermore,extended Precise Integration Method(PIM)ensures accuracy of the dynamic equation solutions.To demonstrate applicability and accuracy of the method presented,a wind tunnel test is conducted and good agreements between theoretical and test results of nonlinear flutter speed and gust response deflection are reached.The method described in this paper is suitable for predicting the nonlinear flutter speed and calculating the gust responses of a large-aspect-ratio wing in time domain.Meanwhile,the results derived highlight the effects of geometric nonlinearities obviously.展开更多
A mobile fiber-optic laser-induced breakdown spectrometer(FO-LIBS) prototype was developed to rapidly detect a large quantity of steel material online and quantitatively analyze the trace elements in a large-diameter ...A mobile fiber-optic laser-induced breakdown spectrometer(FO-LIBS) prototype was developed to rapidly detect a large quantity of steel material online and quantitatively analyze the trace elements in a large-diameter steel tube.Twenty-four standard samples and a polynomial fitting method were used to establish calibration curve models.The R^2 factors of the calibration curves were all above 0.99,except for Cu,indicating the elements’ strong self-absorption effect.Five special steel materials were rapidly detected in the steel mill.The average absolute errors of Mn,Cr,Ni,V,Cu,and Mo in the special steel materials were 0.039,0.440,0.033,0.057,0.003,and0.07 wt%,respectively,and their average relative errors fluctuated from 2.9% to 15.7%.The results demonstrated that the performance of this mobile FO-LIBS prototype can be compared with that of most conventional LIBS systems,but the more robust and flexible characteristics of the FO-LIBS prototype provide a feasible approach for promoting LIBS from the laboratory to the industry.展开更多
The automation of traditional Chinese medicine(TCM)pharmaceuticals has driven the development of process analysis from offline to online.Most of common online process analytical technologies are based on spectroscopy,...The automation of traditional Chinese medicine(TCM)pharmaceuticals has driven the development of process analysis from offline to online.Most of common online process analytical technologies are based on spectroscopy,making the identification and quantification of specific ingredients still a challenge.Herein,we developed a quality control(QC)system for monitoring TCM pharmaceuticals based on paper spray ionization miniature mass spectrometry(mini-MS).It enabled real-time online qualitative and quantitative detection of target ingredients in herbal extracts using mini-MS without chromatographic separation for the first time.Dynamic changes of alkaloids in Aconiti Lateralis Radix Praeparata(Fuzi)during decoction were used as examples,and the scientific principle of Fuzi compatibility was also investigated.Finally,the system was verified to work stably at the hourly level for pilot-scale extraction.This mini-MS based online analytical system is expected to be further developed for QC applications in a wider range of pharmaceutical processes.展开更多
To better understand the genetic diversity and population structure of broccoli cultivars planted in China,a total of 161 representative broccoli cultivars in the past 25 years were collected and analysed based on sin...To better understand the genetic diversity and population structure of broccoli cultivars planted in China,a total of 161 representative broccoli cultivars in the past 25 years were collected and analysed based on single nucleotide polymorphism(SNP)markers.Ten pairs of primers with good polymorphism and high resolution were screened from 315 pairs of SNP primers by 3 broccoli accessions(inbred lines)with different phenotypes and maturity.The 10 pairs of SNP primers were selected,producing 78 alleles.The diversity analysis indicated that the polymorphism information content(PIC)of SNP primer ranged from 0.64 to 0.90.The observed number of alleles(Na)was 2.00,the effective number of alleles(Ne)was 1.11–2.00,the Nei’s gene diversity(H)was 0.10–0.50,and Shannon information index(I)was 0.20–0.70 using PopGene32 software.The clustering results showed that the 161 broccoli cultivars could be divided into 4 major subgroups(A,B,C and D),foreign cultivars were all assigned to subgroup A,and domestic cultivars were assigned to 3 subgroups of B,C,and D.This study indicated that some domestic cultivars and foreign cultivars were similar in genetic background,but most domestic cultivars were still different from the Japanese cultivars.When K=2,the population structure result presented that 161 broccoli cultivars could be divided into 1 simple group(2 groups)and 1 mixed group.When Q≥0.6,143(88.82%)broccoli cultivars belonged to the simple groups.In simple groups 68(42.24%)broccoli cultivars of group 1 were derived from Japan,the United States,Switzerland,the Netherlands,China-Taiwan,and China-Mainland;75(46.58%)broccoli cultivars belonged to group 2;when Q<0.6,18(11.18%)broccoli cultivars belonged to the mixed groups.This study is helpful to understand the diversity and resolution of broccoli cultivars from worldwide,which is beneficial to plant breeding and materials innovation.And meanwhile,this result is also used for construction of broccoli fingerprint serving for cultivar identification.展开更多
In this paper,a new price is given to the online decision maker at the beginning of each day.The trader must decide how many items to purchase according to the current price.We present three variants and an online alg...In this paper,a new price is given to the online decision maker at the beginning of each day.The trader must decide how many items to purchase according to the current price.We present three variants and an online algorithm based on cost function.The competitive ratio of the online algorithm is given for each variant,which is a performance measure of an online algorithm.More importantly,we show that the online algorithm is optimal.展开更多
Dynamic characteristics of UV enhanced gas–solid PVC chlorination process were revealed by a UV–Vis spectral online analysis method. Experimental results showed an instantaneous increase of the chlorination rate as ...Dynamic characteristics of UV enhanced gas–solid PVC chlorination process were revealed by a UV–Vis spectral online analysis method. Experimental results showed an instantaneous increase of the chlorination rate as soon as UV light was affiliated, which demonstrated the intensified effect of UV radiation on PVC chlorination directly.Different affiliation methods of UV light were then studied, proving that continuous UV radiation could enhance the chlorination process significantly while intermittent UV radiation was able to initiate the chlorination reaction once it was conducted. Besides, experiments were carried out to study the influences of parameters on the chlorination process such as UV wavelength, chlorination temperature, partial pressure of chlorine gas and PVC raw materials. Among all the parameters, chlorination temperature and partial pressure of chlorine gas were testified as two key factors to determine the chlorination performance. Thermal analysis of CPVC products showed that their corresponding properties such as the glass transition temperature(Tg) and the homogeneity of chlorine distribution in polymer phase were improved with the increase of chlorine content.展开更多
A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a t...A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a three-dimensional membrane–cable fabric model to represent a parachute system at a highly folded configuration. The large shape change during parachute inflation is computed by the nonlinear Newton–Raphson iteration and the linear system equation is solved by the generalized minimal residual(GMRES) method. A membrane wrinkling algorithm is also utilized to evaluate the special uniaxial tension state of membrane elements on the parachute canopy. In order to avoid large time expenses during structural nonlinear iteration, the implicit Hilber–Hughes–Taylor(HHT) time integration method is employed. For the fluid dynamic simulations, the Roe and HLLC(Harten–Lax–van Leer contact) scheme has been modified and extended to compute flow problems at all speeds. The lower–upper symmetric Gauss–Seidel(LUSGS) approximate factorization is applied to accelerate the numerical convergence speed. Finally,the test model of a highly folded C-9 parachute is simulated at a prescribed speed and the results show similar characteristics compared with experimental results and previous literature.展开更多
The adsorption behavior of butyl xanthate on the surface of lead oxide was investigated using continuous online in situ attenuated total reflectance Fourier transform infrared(ATR-FTIR) spectroscopy technique and tw...The adsorption behavior of butyl xanthate on the surface of lead oxide was investigated using continuous online in situ attenuated total reflectance Fourier transform infrared(ATR-FTIR) spectroscopy technique and two dimensional(2D) correlation analysis.The adsorbed layer studied was prepared by coating α-PbO particles onto the surfaces of the ZnSe crystal.The appearance of spectral peaks at 1203 cm^-1,1033 cm^-1 and their red shift indicated the formation and aggregation of xanthate at the surface of α-PbO.According to 1R intensity changes after rinsing with deionized water and a NaOH solution,the adsorption was proved to be a chemisorption type.The competition between xanthate and OH^- for the surfaces leads to desorption of xanthate at higher pH.The technique of 2D correlation ATR-FTIR spectroscopy was used to evaluate the changing order of spectral intensities in the adsorption process,and the results indicated that xanthate micelles were formed at the surfaces.The adsorption kinetics of butyl xanthate was found to be a pseudo-second-order reaction model and the adsorption capacity of butyl xanthate at α-PbO was as high as 281 mg g^-1 after 150 min.展开更多
Purpose:Opinion mining and sentiment analysis in Online Learning Community can truly reflect the students’learning situation,which provides the necessary theoretical basis for following revision of teaching plans.To ...Purpose:Opinion mining and sentiment analysis in Online Learning Community can truly reflect the students’learning situation,which provides the necessary theoretical basis for following revision of teaching plans.To improve the accuracy of topic-sentiment analysis,a novel model for topic sentiment analysis is proposed that outperforms other state-of-art models.Methodology/approach:We aim at highlighting the identification and visualization of topic sentiment based on learning topic mining and sentiment clustering at various granularitylevels.The proposed method comprised data preprocessing,topic detection,sentiment analysis,and visualization.Findings:The proposed model can effectively perceive students’sentiment tendencies on different topics,which provides powerful practical reference for improving the quality of information services in teaching practice.Research limitations:The model obtains the topic-terminology hybrid matrix and the document-topic hybrid matrix by selecting the real user’s comment information on the basis of LDA topic detection approach,without considering the intensity of students’sentiments and their evolutionary trends.Practical implications:The implication and association rules to visualize the negative sentiment in comments or reviews enable teachers and administrators to access a certain plaint,which can be utilized as a reference for enhancing the accuracy of learning content recommendation,and evaluating the quality of their services.Originality/value:The topic-sentiment analysis model can clarify the hierarchical dependencies between different topics,which lay the foundation for improving the accuracy of teaching content recommendation and optimizing the knowledge coherence of related courses.展开更多
基金support of the research reported here by Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education, Science and Technology (NRF2010-0019373)
文摘A numerical method is presented for the large deflection in elastic analysis of tensegrity structures including both geometric and material nonlinearities.The geometric nonlinearity is considered based on both total Lagrangian and updated Lagrangian formulations,while the material nonlinearity is treated through elastoplastic stress-strain relationship.The nonlinear equilibrium equations are solved using an incremental-iterative scheme in conjunction with the modified Newton-Raphson method.A computer program is developed to predict the mechanical responses of tensegrity systems under tensile,compressive and flexural loadings.Numerical results obtained are compared with those reported in the literature to demonstrate the accuracy and efficiency of the proposed program.The flexural behavior of the double layer quadruplex tensegrity grid is sufficiently good for lightweight large-span structural applications.On the other hand,its bending strength capacity is not sensitive to the self-stress level.
基金National Natural Science Foundation of China for Innovative Research Groups Under Grant No.50321803 & 50621062National Natural Science Foundation of China Under Grant No.50808113 & 10872148
文摘This paper introduces an orthogonal expansion method for general stochastic processes. In the method, a normalized orthogonal function of time variable t is first introduced to carry out the decomposition of a stochastic process and then a correlated matrix decomposition technique, which transforms a correlated random vector into a vector of standard uncorrelated random variables, is used to complete a double orthogonal decomposition of the stochastic processes. Considering the relationship between the Hartley transform and Fourier transform of a real-valued function, it is suggested that the first orthogonal expansion in the above process is carried out using the Hartley basis function instead of the trigonometric basis function in practical applications. The seismic ground motion is investigated using the above method. In order to capture the main probabilistic characteristics of the seismic ground motion, it is proposed to directly carry out the orthogonal expansion of the seismic displacements. The case study shows that the proposed method is feasible to represent the seismic ground motion with only a few random variables. In the second part of the paper, the probability density evolution method (PDEM) is employed to study the stochastic response of nonlinear structures subjected to earthquake excitations. In the PDEM, a completely uncoupled one-dimensional partial differential equation, the generalized density evolution equation, plays a central role in governing the stochastic seismic responses of the nonlinear structure. The solution to this equation will yield the instantaneous probability density function of the responses. Computational algorithms to solve the probability density evolution equation are described. An example, which deals with a nonlinear frame structure subjected to stochastic ground motions, is illustrated to validate the above approach.
基金Projects(50935002, 11002039) supported by the National Natural Science Foundation of ChinaProject(HIT.KLOF.2009062) supported by Key Laboratory Opening Funding of Aerospace Mechanism and Control Technology,Chinasupport by "111 Project" (Grant No.B07018)
文摘The dynamic equivalent continuum modeling method of the mast which is based on energy equivalency principle was investigated. And three kinds of mast dynamic model were established, which were equivalent continuum model, finite element model and simulation model, respectively. The mast frequencies and mode shapes were calculated by these models and compared with each other. The error between the equivalent continuum model and the finite element model is less than 5% when the mast length is longer. Dynamic responses of the mast with different lengths are tested, the mode frequencies and mode shapes are compared with finite element model. The mode shapes match well with each other, while the frequencies tested by experiments are lower than the results of the finite element model, which reflects the joints lower the mast stiffness. The nonlinear dynamic characteristics are presented in the dynamic responses of the mast under different excitation force levels. The joint nonlinearities in the deployable mast are identified as nonlinear hysteresis contributed by the coulomb friction which soften the mast stiffness and lower the mast frequencies.
文摘The offshore reinforced concrete structures are always subject to cyclic load, such as wave load.In this paper a new finite element analysis model is developed to analyze the stress and strain state of reinforced concrete structures including offshore concrete structures, subject to any number of the cyclic load. On the basis of the anal ysis of the experimental data,this model simplifies the number of cycles-total cyclic strain curve of concrete as three straight line segments,and it is assumed that the stress-strain curves of different cycles in each segment are the same, thus the elastoplastic analysis is only needed for the first cycle of each segment, and the stress or strain corresponding to any number of cycles can be obtained by superposition of stress or strain obtained by the above e lastoplastic analysis based on the cyclic numbers in each segment.This model spends less computer time,and can obtain the stress and strain states of the structures after any number of cycles.The endochronic-damage and ideal offshore concrete platform subject to cyclic loading are experimented and analyzed by the finite element method based on the model proposed in this paper. The results between the experiment and the finite element analysis are in good agreement,which demonstrates the validity and accuracy of the proposed model.
基金Aeronautical Science Foundation of China(2010ZA04001)National Natural Science Foundation of China (61073013,90818024)
文摘The fast-growing demand of computational fluid dynamics(CFD) application for computing resources stimulates the development of high performance computing(HPC) and meanwhile raises new requirements for the technology of parallel application performance monitor and analysis.In response to large-scale and long-time running for the application of CFD,online and scalable performance analysis technology is required to optimize the parallel programs as well as to improve their operational efficiency.As a result,this research implements a scalable infrastructure for online performance analysis on CFD application with homogeneous or heterogeneous system.The infrastructure is part of the parallel application performance monitor and analysis system(PAPMAS) and is composed of two modules which are scalable data transmission module and data storage module.The paper analyzes and elaborates this infrastructure in detail with respect to its design and implementation.Furthermore,some experiments are carried out to verify the rationality and high efficiency of this infrastructure that could be adopted to meet the practical needs.
文摘Super-highly reinforced concrete tube in tube structure is a developing structure system of high-rise building. The more reasonable derivation process of the multi-vertical-line-element model stiffness matrix is given.On the premise of pointing out the problems of present multi-spring element model, combined with present multivertical-line-element model for analyzing on shear wall, the model is expanded to spatial one, and the stiffness matrix of which is derived. Combined with hysteretic axial model and hysteretic shear model, it is suitable for columns,wall limbs and beams with all kinds of section form. Some examples are calculated and compared with test results,which shows that the models have relatively good accuracy. On the base of the experimental phenomenon and failure mechanism for tube in tube structure specimen, nonlinear seismic responses analysis program on the basis of the advantaged element model for tube in tube structure is developed. Calculation results are in good agreement with those of the pseudo-dynamic tests and the failure mechanism can be well reflected.
文摘Structural analysis problems can be formulized as either root finding problems,or optimization problems.The general practice is to choose the first option directly or to convert the second option again to a root finding problem by taking relevant derivatives and equating them to zero.The second alternative is used very randomly as it is and only for some simple demonstrative problems,most probably due to difficulty in solving optimization problems by classical methods.The method called TPO/MA(Total Potential Optimization using Metaheuristic Algorithms)described in this study successfully enables to handle structural problems with optimization formulation.Using metaheuristic algorithms provides additional advantages in dealing with all kinds of constraints.
基金Supported by the National Natural Science Foundation of China(61273160)the Natural Science Foundation of Shandong Province of China(ZR2011FM014)+1 种基金the Doctoral Fund of Shandong Province(BS2012ZZ011)the Postgraduate Innovation Funds of China University of Petroleum(CX2013060)
文摘Kernel independent component analysis(KICA) is a newly emerging nonlinear process monitoring method,which can extract mutually independent latent variables called independent components(ICs) from process variables. However, when more than one IC have Gaussian distribution, it cannot extract the IC feature effectively and thus its monitoring performance will be degraded drastically. To solve such a problem, a kernel time structure independent component analysis(KTSICA) method is proposed for monitoring nonlinear process in this paper. The original process data are mapped into a feature space nonlinearly and then the whitened data are calculated in the feature space by the kernel trick. Subsequently, a time structure independent component analysis algorithm, which has no requirement for the distribution of ICs, is proposed to extract the IC feature.Finally, two monitoring statistics are built to detect process faults. When some fault is detected, a nonlinear fault identification method is developed to identify fault variables based on sensitivity analysis. The proposed monitoring method is applied in the Tennessee Eastman benchmark process. Applications demonstrate the superiority of KTSICA over KICA.
文摘The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach.
基金Project (50904027) supported by the National Natural Science Foundation of ChinaProject (2013BAB03B05) supported by the National Key Technology R&D Program of China+1 种基金Project (20133BCB23018) supported by the Foundation for Young Scientist(Jinggang Star)of Jiangxi Province,ChinaProject (2012ZBAB206002) supported by the Natural Science Foundation of Jiangxi Province,China
文摘According to the innate characteristic of four types of furnace, the copper flash continuous smelting (CFCS) furnace can be considered a synthetic reactor of two relatively independent processes: flash matte smelting process (FMSP) and copper continuous converting process (CCCP). Then, the CFCS thermodynamic model was proposed by establishing the multi-phase equilibrium model of FMSP and the local-equilibrium model of CCCP, respectively, and by combining them through the smelting intermediates. Subsequently, the influences of the furnace structures were investigated using the model on the formation of blister copper, the Fe3O4 behavior, the copper loss in slag and the copper recovery rate. The results show that the type D furnace, with double flues and a slag partition wall, is an ideal CFCS reactor compared with the other three types furnaces. For CFCS, it is effective to design a partition wall in the furnace to make FMSP and CCCP perform in two relatively independent zones, respectively, and to make smelting gas and converting gas discharge from respective flues.
文摘Objective:This project has mainly studied the online learning engagement of undergraduate nursing students and analyzes influencing factors of online learning and teaching mode during the Novel Coronavirus(COVID-19).This research has significant references for improving the efficiency and quality of the online learning mode of students.Methods:In this study,212 undergraduate nursing students were selected from a comprehensive university in Jilin Province by combining convenience sampling and cluster sampling methods.And these students were conducted with a general information questionnaire,Online Academic Emotion Scale,and Online Learning Engagement Scale.The influencing factors of this teaching mode were analyzed by multiple linear stepwise regression.Results:The total score of online learning engagement of undergraduate students was 53.85±7.38,which positively correlated with positive high arousal emotion and negative high arousal emotion,but weakly negatively correlated with negative low arousal emotion(r=0.661,0.246,-0.187,P<0.001).Grade,type of online class,online learning time,and positively high arousal emotion were mainly affected the online learning engagement of undergraduate nursing students,which explained 78.5%of the total variation(P<0.001).Conclusion:The online learning engagement of undergraduate nursing students was above the middle level under the background of the COVID-19 pandemic.Lectures and professors who teach undergraduate nursing students,should integrate the individuation characters of nursing students,and motivate their positively high arousal emotion to improve online learning engagement of students to ensure the quality of online teaching mode.
基金supported by the National Key Research and Development Program of China(No.2016YFB 0200703).
文摘In this paper,a framework is established for nonlinear flutter and gust response analyses based on an efficient Reduced Order Model(ROM).The proposed method can be used to solve the aeroelastic response problems of wings containing geometric nonlinearities.A structural modeling approach presented herein describes the stiffness nonlinearities with a modal formulation.Two orthogonal spanwise modes describe the foreshortening effects of the wing.Dynamic linearization of the ROM under nonlinear equilibrium states is applied to a nonlinear flutter analysis,and the fully nonlinear ROM coupled with the non-planar Unsteady Vortex Lattice Method(UVLM)is applied to gust response analysis.Furthermore,extended Precise Integration Method(PIM)ensures accuracy of the dynamic equation solutions.To demonstrate applicability and accuracy of the method presented,a wind tunnel test is conducted and good agreements between theoretical and test results of nonlinear flutter speed and gust response deflection are reached.The method described in this paper is suitable for predicting the nonlinear flutter speed and calculating the gust responses of a large-aspect-ratio wing in time domain.Meanwhile,the results derived highlight the effects of geometric nonlinearities obviously.
基金supported by National Natural Science Foundation of China(Nos.61705064,11647122)the Natural Science Foundation of Hubei Province(Nos.2018CFB773,2018CFB672)the Project of the Hubei Provincial Department of Education(No.T201617)。
文摘A mobile fiber-optic laser-induced breakdown spectrometer(FO-LIBS) prototype was developed to rapidly detect a large quantity of steel material online and quantitatively analyze the trace elements in a large-diameter steel tube.Twenty-four standard samples and a polynomial fitting method were used to establish calibration curve models.The R^2 factors of the calibration curves were all above 0.99,except for Cu,indicating the elements’ strong self-absorption effect.Five special steel materials were rapidly detected in the steel mill.The average absolute errors of Mn,Cr,Ni,V,Cu,and Mo in the special steel materials were 0.039,0.440,0.033,0.057,0.003,and0.07 wt%,respectively,and their average relative errors fluctuated from 2.9% to 15.7%.The results demonstrated that the performance of this mobile FO-LIBS prototype can be compared with that of most conventional LIBS systems,but the more robust and flexible characteristics of the FO-LIBS prototype provide a feasible approach for promoting LIBS from the laboratory to the industry.
基金supported by Ministry of Science and Technology of the People's Republic of China(Grant No.:2022YFC3502300)Beijing Natural Science Foundation(Grant No.:L222150)+2 种基金the National Natural Science Foundation of China(Grant No.:82072247)the second batch of“Ten thousand plan”National High Level Talents Special Support Plan(Grant No.:W02020052)Beijing University of Chinese Medicine(Grant Nos.:XJYS21005,JY21024,MSGZF-202001,2022-syjs-05,and 2022-syjs-10).
文摘The automation of traditional Chinese medicine(TCM)pharmaceuticals has driven the development of process analysis from offline to online.Most of common online process analytical technologies are based on spectroscopy,making the identification and quantification of specific ingredients still a challenge.Herein,we developed a quality control(QC)system for monitoring TCM pharmaceuticals based on paper spray ionization miniature mass spectrometry(mini-MS).It enabled real-time online qualitative and quantitative detection of target ingredients in herbal extracts using mini-MS without chromatographic separation for the first time.Dynamic changes of alkaloids in Aconiti Lateralis Radix Praeparata(Fuzi)during decoction were used as examples,and the scientific principle of Fuzi compatibility was also investigated.Finally,the system was verified to work stably at the hourly level for pilot-scale extraction.This mini-MS based online analytical system is expected to be further developed for QC applications in a wider range of pharmaceutical processes.
基金funded by the National Key Research and Development Plan(Grant No.2017YFD0101805)the National Science and Technology Foundation(Grant No.31501761)+2 种基金the National Modern Agricultural Industry Technology System Construction Special Fund Project(Grant No.CARS-23-A8)the Chinese Academy of Agricultural Sciences Science and Technology Innovation Project(Grant No.CAAS-ASTIP-IVF-CAAS)the State Key Laboratory of Vegetable Germplasm Innovation.
文摘To better understand the genetic diversity and population structure of broccoli cultivars planted in China,a total of 161 representative broccoli cultivars in the past 25 years were collected and analysed based on single nucleotide polymorphism(SNP)markers.Ten pairs of primers with good polymorphism and high resolution were screened from 315 pairs of SNP primers by 3 broccoli accessions(inbred lines)with different phenotypes and maturity.The 10 pairs of SNP primers were selected,producing 78 alleles.The diversity analysis indicated that the polymorphism information content(PIC)of SNP primer ranged from 0.64 to 0.90.The observed number of alleles(Na)was 2.00,the effective number of alleles(Ne)was 1.11–2.00,the Nei’s gene diversity(H)was 0.10–0.50,and Shannon information index(I)was 0.20–0.70 using PopGene32 software.The clustering results showed that the 161 broccoli cultivars could be divided into 4 major subgroups(A,B,C and D),foreign cultivars were all assigned to subgroup A,and domestic cultivars were assigned to 3 subgroups of B,C,and D.This study indicated that some domestic cultivars and foreign cultivars were similar in genetic background,but most domestic cultivars were still different from the Japanese cultivars.When K=2,the population structure result presented that 161 broccoli cultivars could be divided into 1 simple group(2 groups)and 1 mixed group.When Q≥0.6,143(88.82%)broccoli cultivars belonged to the simple groups.In simple groups 68(42.24%)broccoli cultivars of group 1 were derived from Japan,the United States,Switzerland,the Netherlands,China-Taiwan,and China-Mainland;75(46.58%)broccoli cultivars belonged to group 2;when Q<0.6,18(11.18%)broccoli cultivars belonged to the mixed groups.This study is helpful to understand the diversity and resolution of broccoli cultivars from worldwide,which is beneficial to plant breeding and materials innovation.And meanwhile,this result is also used for construction of broccoli fingerprint serving for cultivar identification.
基金Supported by the Natural Science Foundation of China(11201428,11471286,11701518)the Natural Science Foundation of Zhejiang Province(Y6110091)the Graduate Innovation Project of Zhejiang Sci-Tech University(YCX12001,YCX13005)
文摘In this paper,a new price is given to the online decision maker at the beginning of each day.The trader must decide how many items to purchase according to the current price.We present three variants and an online algorithm based on cost function.The competitive ratio of the online algorithm is given for each variant,which is a performance measure of an online algorithm.More importantly,we show that the online algorithm is optimal.
基金Supported by the National Science and Technology Key Supporting Project(2013BAF08B05)the National Natural Science Foundation of China(21176137)
文摘Dynamic characteristics of UV enhanced gas–solid PVC chlorination process were revealed by a UV–Vis spectral online analysis method. Experimental results showed an instantaneous increase of the chlorination rate as soon as UV light was affiliated, which demonstrated the intensified effect of UV radiation on PVC chlorination directly.Different affiliation methods of UV light were then studied, proving that continuous UV radiation could enhance the chlorination process significantly while intermittent UV radiation was able to initiate the chlorination reaction once it was conducted. Besides, experiments were carried out to study the influences of parameters on the chlorination process such as UV wavelength, chlorination temperature, partial pressure of chlorine gas and PVC raw materials. Among all the parameters, chlorination temperature and partial pressure of chlorine gas were testified as two key factors to determine the chlorination performance. Thermal analysis of CPVC products showed that their corresponding properties such as the glass transition temperature(Tg) and the homogeneity of chlorine distribution in polymer phase were improved with the increase of chlorine content.
文摘A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a three-dimensional membrane–cable fabric model to represent a parachute system at a highly folded configuration. The large shape change during parachute inflation is computed by the nonlinear Newton–Raphson iteration and the linear system equation is solved by the generalized minimal residual(GMRES) method. A membrane wrinkling algorithm is also utilized to evaluate the special uniaxial tension state of membrane elements on the parachute canopy. In order to avoid large time expenses during structural nonlinear iteration, the implicit Hilber–Hughes–Taylor(HHT) time integration method is employed. For the fluid dynamic simulations, the Roe and HLLC(Harten–Lax–van Leer contact) scheme has been modified and extended to compute flow problems at all speeds. The lower–upper symmetric Gauss–Seidel(LUSGS) approximate factorization is applied to accelerate the numerical convergence speed. Finally,the test model of a highly folded C-9 parachute is simulated at a prescribed speed and the results show similar characteristics compared with experimental results and previous literature.
基金supported by the National Nature Science Foundation of China(Nos.51274104,50874052)National Key Basic Research Program of China(973,No.2011CB933700)
文摘The adsorption behavior of butyl xanthate on the surface of lead oxide was investigated using continuous online in situ attenuated total reflectance Fourier transform infrared(ATR-FTIR) spectroscopy technique and two dimensional(2D) correlation analysis.The adsorbed layer studied was prepared by coating α-PbO particles onto the surfaces of the ZnSe crystal.The appearance of spectral peaks at 1203 cm^-1,1033 cm^-1 and their red shift indicated the formation and aggregation of xanthate at the surface of α-PbO.According to 1R intensity changes after rinsing with deionized water and a NaOH solution,the adsorption was proved to be a chemisorption type.The competition between xanthate and OH^- for the surfaces leads to desorption of xanthate at higher pH.The technique of 2D correlation ATR-FTIR spectroscopy was used to evaluate the changing order of spectral intensities in the adsorption process,and the results indicated that xanthate micelles were formed at the surfaces.The adsorption kinetics of butyl xanthate was found to be a pseudo-second-order reaction model and the adsorption capacity of butyl xanthate at α-PbO was as high as 281 mg g^-1 after 150 min.
基金supported by the Teaching Research Major Projects of Anhui Province(2018jyxm1446)the Natural Scientific Project of Anhui Provincial Department of Education(KJ2019A0371)+1 种基金the Anhui Demonstration Experiment Training Center Project(2018sxzx58)the Demonstration Projects for Massive Open Online Course of Anhui Province(2018mooc278)。
文摘Purpose:Opinion mining and sentiment analysis in Online Learning Community can truly reflect the students’learning situation,which provides the necessary theoretical basis for following revision of teaching plans.To improve the accuracy of topic-sentiment analysis,a novel model for topic sentiment analysis is proposed that outperforms other state-of-art models.Methodology/approach:We aim at highlighting the identification and visualization of topic sentiment based on learning topic mining and sentiment clustering at various granularitylevels.The proposed method comprised data preprocessing,topic detection,sentiment analysis,and visualization.Findings:The proposed model can effectively perceive students’sentiment tendencies on different topics,which provides powerful practical reference for improving the quality of information services in teaching practice.Research limitations:The model obtains the topic-terminology hybrid matrix and the document-topic hybrid matrix by selecting the real user’s comment information on the basis of LDA topic detection approach,without considering the intensity of students’sentiments and their evolutionary trends.Practical implications:The implication and association rules to visualize the negative sentiment in comments or reviews enable teachers and administrators to access a certain plaint,which can be utilized as a reference for enhancing the accuracy of learning content recommendation,and evaluating the quality of their services.Originality/value:The topic-sentiment analysis model can clarify the hierarchical dependencies between different topics,which lay the foundation for improving the accuracy of teaching content recommendation and optimizing the knowledge coherence of related courses.