Aiming to address the challenge of directly measuring the real-time adhesion coefficient between wheels and rails,this paper proposes an online estimation algorithm for the adhesion coefficient based on parameter esti...Aiming to address the challenge of directly measuring the real-time adhesion coefficient between wheels and rails,this paper proposes an online estimation algorithm for the adhesion coefficient based on parameter estimation.Firstly,a force analysis of the single-wheel pair model of the train is conducted to derive the calculation relationship for the wheel-rail adhesion coefficient in train dynamics.Then,an estimator based on parameter estimation is designed,and its stability is verified.This estimator is combined with the wheelset force analysis to estimate the wheel-rail adhesion coefficient.Finally,the approach is validated through joint simulations on the MATLAB/Simulink and AMESim platforms,as well as a hardware-in-the-loop semi-physical simulation experimental platform that accounts for system delay and noise conditions.The results indicate that the proposed algorithm effectively tracks changes in the adhesion coefficient during train braking,including the decrease in adhesion when the train brakes and slides,and the overall increase as the train speed decreases.The effectiveness of the algorithm was verified by setting different test conditions.The results show that the estimation algorithm can accurately estimate the adhesion coefficient,and through error analysis,it is found that the error between the estimated value of the adhesion coefficient and the theoretical value of the adhesion coefficient is within 5%.The adhesion coefficient obtained through the online estimation method based on the parameter estimation proposed in this paper demonstrates strong followability in both simulation and practical applications.展开更多
This paper proposes a novel quantum-behaved particle swarm optimization (NQPSO) for the estimation of chaos' unknown parameters by transforming them into nonlinear functions' optimization. By means of the techniqu...This paper proposes a novel quantum-behaved particle swarm optimization (NQPSO) for the estimation of chaos' unknown parameters by transforming them into nonlinear functions' optimization. By means of the techniques in the following three aspects: contracting the searching space self-adaptively; boundaries restriction strategy; substituting the particles' convex combination for their centre of mass, this paper achieves a quite effective search mechanism with fine equilibrium between exploitation and exploration. Details of applying the proposed method and other methods into Lorenz systems are given, and experiments done show that NQPSO has better adaptability, dependability and robustness. It is a successful approach in unknown parameter estimation online especially in the cases with white noises.展开更多
The orbital pursuit-evasion game is typically formulated as a complete-information game,which assumes the payoff functions of the two players are common knowledge.However,realistic pursuit-evasion games typically have...The orbital pursuit-evasion game is typically formulated as a complete-information game,which assumes the payoff functions of the two players are common knowledge.However,realistic pursuit-evasion games typically have incomplete information,in which the lack of payoff information limits the player’s ability to play optimally.To address this problem,this paper proposes a currently optimal escape strategy based on estimation for the evader.In this strategy,the currently optimal evasive controls are first derived based on the evader’s guess of the pursuer’s payoff weightings.Then an online parameter estimation method based on a modified strong tracking unscented Kalman filter is employed to modify the guess and update the strategy during the game.As the estimation becomes accurate,the currently optimal strategy gets closer to the actually optimal strategy.Simulation results show the proposed strategy can achieve optimal evasive controls progressively and the evader’s payoff of the strategy is lower than that of the zero-sum escape strategy.Meanwhile,the proposed strategy is also effective in the case where the pursuer changes its payoff function halfway during the game.展开更多
基金supported by the National Natural Science Foundation of China(grant/award number 52072266).
文摘Aiming to address the challenge of directly measuring the real-time adhesion coefficient between wheels and rails,this paper proposes an online estimation algorithm for the adhesion coefficient based on parameter estimation.Firstly,a force analysis of the single-wheel pair model of the train is conducted to derive the calculation relationship for the wheel-rail adhesion coefficient in train dynamics.Then,an estimator based on parameter estimation is designed,and its stability is verified.This estimator is combined with the wheelset force analysis to estimate the wheel-rail adhesion coefficient.Finally,the approach is validated through joint simulations on the MATLAB/Simulink and AMESim platforms,as well as a hardware-in-the-loop semi-physical simulation experimental platform that accounts for system delay and noise conditions.The results indicate that the proposed algorithm effectively tracks changes in the adhesion coefficient during train braking,including the decrease in adhesion when the train brakes and slides,and the overall increase as the train speed decreases.The effectiveness of the algorithm was verified by setting different test conditions.The results show that the estimation algorithm can accurately estimate the adhesion coefficient,and through error analysis,it is found that the error between the estimated value of the adhesion coefficient and the theoretical value of the adhesion coefficient is within 5%.The adhesion coefficient obtained through the online estimation method based on the parameter estimation proposed in this paper demonstrates strong followability in both simulation and practical applications.
基金Project supported by the National Natural Science Foundation of China (Grant No 10647141)
文摘This paper proposes a novel quantum-behaved particle swarm optimization (NQPSO) for the estimation of chaos' unknown parameters by transforming them into nonlinear functions' optimization. By means of the techniques in the following three aspects: contracting the searching space self-adaptively; boundaries restriction strategy; substituting the particles' convex combination for their centre of mass, this paper achieves a quite effective search mechanism with fine equilibrium between exploitation and exploration. Details of applying the proposed method and other methods into Lorenz systems are given, and experiments done show that NQPSO has better adaptability, dependability and robustness. It is a successful approach in unknown parameter estimation online especially in the cases with white noises.
基金the National Natural Science Foundation of China(Grant Nos.11572345&11972044)the Program of National University of Defense Technology(Grant No.ZK18-03-07)。
文摘The orbital pursuit-evasion game is typically formulated as a complete-information game,which assumes the payoff functions of the two players are common knowledge.However,realistic pursuit-evasion games typically have incomplete information,in which the lack of payoff information limits the player’s ability to play optimally.To address this problem,this paper proposes a currently optimal escape strategy based on estimation for the evader.In this strategy,the currently optimal evasive controls are first derived based on the evader’s guess of the pursuer’s payoff weightings.Then an online parameter estimation method based on a modified strong tracking unscented Kalman filter is employed to modify the guess and update the strategy during the game.As the estimation becomes accurate,the currently optimal strategy gets closer to the actually optimal strategy.Simulation results show the proposed strategy can achieve optimal evasive controls progressively and the evader’s payoff of the strategy is lower than that of the zero-sum escape strategy.Meanwhile,the proposed strategy is also effective in the case where the pursuer changes its payoff function halfway during the game.