Based on stress-and strain-controlled cyclic tension-unloading-heat-cooling tests,cyclic degradation of the one-way shape memory effect(OWSME)of NiTi shape memory alloys(SMAs)was investigated.It was seen,in thermo-mec...Based on stress-and strain-controlled cyclic tension-unloading-heat-cooling tests,cyclic degradation of the one-way shape memory effect(OWSME)of NiTi shape memory alloys(SMAs)was investigated.It was seen,in thermo-mechanical coupled cyclic tests,that residual strain after each cycle accumulated,but the martensite reorientation stress and dissipation energy-per-cycle decreased as the number of cycles increased.Meanwhile,the cyclic degradation of OWSME was aggravated by increasing the stress/strain amplitude.In addition,the stress-strain response of NiTi SMAs was further investigated by performing simultaneous thermo-mechanical coupled cyclic tests with various phase-angle differences between the mechanical and thermal cyclic loadings.It can be concluded that such cyclic response depends significantly on prescribed phase-angle differences.Obtained experimental results are helpful for both the development of constitutive models and engineering applications of NiTi SMAs.展开更多
The emergence of additive manufacturing technology,particularly laser powder bed fusion,has revitalized NiTi alloy production.However,challenges arise regarding its mechanical properties and diminishing shape memory e...The emergence of additive manufacturing technology,particularly laser powder bed fusion,has revitalized NiTi alloy production.However,challenges arise regarding its mechanical properties and diminishing shape memory effect,which hinder its widespread application.Heat treatment has been identified as a method to enhance the performance of metallic materials in the realm of additive manufacturing.This process eliminates residual stress and enhances performance through precipitation strengthening.This study conducted a comprehensive annealing investigation on NiTi alloys to explore the impact of annealing time and temperature on the phase transformation behavior and shape memory performance.The mechanism underlying the performance enhancement was analyzed using scanning electron microscopy,energy-dispersive X-ray spectroscopy,electron backscatter diffraction,and transmission electron microscopy.The findings revealed that different annealing conditions resulted in multistep phase transformation behavior,with the 500℃-5 h sample exhibiting the best mechanical properties owing to the formation of nanoscale dispersed precipitates like Ni_(4)Ti_(3).However,higher temperatures led to larger precipitates,significantly weakening the properties of the NiTi alloy.Additionally,the annealing treatment did not have a notable impact on the grain size,texture strength,or direction.This study provides valuable insights for optimizing the heat treatment process of LPBF-NiTi alloys.展开更多
Functional fatigue in the superelastic NiTi shape memory alloys occurs due to the accumulation of dislocations and retention of martensite with the cyclic loading.These mechanisms reduce the amount of the material ava...Functional fatigue in the superelastic NiTi shape memory alloys occurs due to the accumulation of dislocations and retention of martensite with the cyclic loading.These mechanisms reduce the amount of the material available for the stress-induced transformation and,thus,lower the elastocaloric effect that originates from the stress-induced latent heat variations.In this study,the individual contributions of the micromechanisms responsible for the functional fatigue in superelastic NiTi at different maximum tensile stress(σ_(max))are critically examined.Results show that the elastocaloric effect degrades significantly with cycling,and the saturated degraded value increases with σ_(max);the steady-state adiabatic temperature change is unexpectedly non-proportional to σ_(max).An overheating treatment(‘healing’)after mechanical fatigue reverts the retained martensite into austenite,making it available for subsequent transformation and restoring the elastocaloric effect significantly.Such a restoration increases exponentially with σ_(max).Consequently,the steady-state elastocaloric effect of the healed NiTi is proportional to σ_(max) and can reach more than twice that of NiTi without healing.The work sheds light on the physical origins of elastocaloric degradation of superelastic NiTi and also provides a feasible method for ameliorating functional fatigue.展开更多
By choosing the dissipation energy as the damage variable,corresponding damage evolution equations are established,respectively,for the mechanical cyclic loading part and the thermal one during the thermo-mechanical c...By choosing the dissipation energy as the damage variable,corresponding damage evolution equations are established,respectively,for the mechanical cyclic loading part and the thermal one during the thermo-mechanical cyclic loading of NiTi shape memory alloys(SMAs)involving one-way shape memory effect(simply denoted as the OWSME cycling).And then,the evolution law of total damage is obtained by a superposition of such two damage parts.Finally,the uniaxial OWSME fatigue lives of NiTi SMA micro-tubes are predicted by combining the proposed damage model with an adopted failure criterion.The results show that all the predicted fatigue lives are located within the twice scatter band with regard to the experimental ones,and most of them are located within a scatter band of 1.5 times.It is indicated that the predicted OWSME fatigue lives are in good agreement with the experimental ones.展开更多
It is a challenge to develop complex-shaped Ni Ti shape memory alloy parts by traditional processing methods, due to the poor machinability of Ni Ti alloy. It is reported that selective laser melting(SLM) of additive ...It is a challenge to develop complex-shaped Ni Ti shape memory alloy parts by traditional processing methods, due to the poor machinability of Ni Ti alloy. It is reported that selective laser melting(SLM) of additive manufacturing could overcome this problem. However, the reported SLM-produced Ni Ti exhibits poor tensile ductility due to the inner defects and adverse unidirectional columnar grains from SLM process. In this work, the defect-less SLM-Ni Ti with nondirective columnar grains was fabricated by optimizing the intraformational laser scanning length and interformational laser scanning direction. The obtained lath-shaped SLM-Ni Ti sample exhibits tensile strain of 15.6%, more than twice of the reported maximum result(7%). Besides, the SLM-Ni Ti part with complex geometry displays a shape memory recovery of 99% under compressive deformation of 50%.展开更多
Martensitic transformations,mechanical properties,shape memory effect and superelasticity of Ti-xZr-(30-x)Nb-4Ta(x=15,16,17 and 18;at%) alloys were investigated.X-ray diffraction(XRD),optical microscopy(OM) and transm...Martensitic transformations,mechanical properties,shape memory effect and superelasticity of Ti-xZr-(30-x)Nb-4Ta(x=15,16,17 and 18;at%) alloys were investigated.X-ray diffraction(XRD),optical microscopy(OM) and transmission electron microscopy(TEM) results indicated that the Ti-16Zr-14Nb-4Ta,Ti-17Zr-13Nb-4Ta and Ti-18Zr-12Nb4Ta alloys were mainly composed of α″-martensite,while the Ti-15Zr-15Nb-4Ta alloy was characterized by predominant p phase.The reverse martensitic transformation temperatures increased when Nb was replaced by Zr,indicating stronger p-stabilizing effect for the former.The Ti-15Zr-15Nb-4Ta alloy displayed superelasticity during tensile deformation with a recovery strain of 3.51%.For the other three alloys with higher Zr content,the martensitic reorientation occurred during tensile deformation,resulting in shape memory recovery upon subsequent heating.The maximum shape memory effect was 3.46% in the Ti-18Zr-12Nb-4Ta alloy.展开更多
SMPU (shape memory polyurethane) non-ionomers and ionomers, synthesized with poly(c-caprolactone) (PCL), 4, 4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (BDO), dimethylolpropionic acid (DMPA) wer...SMPU (shape memory polyurethane) non-ionomers and ionomers, synthesized with poly(c-caprolactone) (PCL), 4, 4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (BDO), dimethylolpropionic acid (DMPA) were measured with cyclic tensile test and strain recovery test. The relations between the structure and shape memory effect of these two series were studied with respect to the ionic group content and the effect of neutralization. The resulting data indicate that, with the introduction of asymmetrical extender, the stress at 100% elongation is decreased for PU non-ionomer and ionomer series, especially lowered sharply for non-ionomer series; the fixation ratio of ionomer series is not affected obviously by the ionic group content; the total recovery ratio of ionomer series is decreased greatly. After sufficient relaxation time for samples stretched beforehand, the switching temperature is raised slightly, whereas the recovery ratio measured with strain recovery test method is lowered with increased DMPA content. The characterization with FT-IR, DSC, DMA elucidated that, the ordered hard domain of the two series is disrupted with the introduction of DMPA which causes more hard segments to dissolve in soft phase; ionic groups on hard segment enhance the cohesion between hard segments especially at high ionic group content and significantly facilitate the phase separation compared with the corresponding non-ionomer at moderate ionic group content.展开更多
A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic defor...A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic deformation of NiTi shape memory alloys (SMAs). Three phases, austenite A, twinned martensite and detwinned martensite , as well as the phase transitions occurring between each pair of phases (, , , , and are considered in the proposed model. Meanwhile, two kinds of inelastic deformation mechanisms, martensite transformation-induced plasticity and reorientation-induced plasticity, are used to explain the degeneration of shape memory effects of NiTi SMAs. The evolution equations of internal variables are proposed by attributing the degeneration of shape memory effect to the interaction between the three phases (A, , and and plastic deformation. Finally, the capability of the proposed model is verified by comparing the predictions with the experimental results of NiTi SMAs. It is shown that the degeneration of shape memory effect and its dependence on the loading level can be reasonably described by the proposed model.展开更多
Shape memory polymers(SMPs)usually have a one-way shape memory effect.In this paper,an easy-operating method to realize a two-way shape memory effect was demonstrated in a ring-shaped bilayer structure where the two l...Shape memory polymers(SMPs)usually have a one-way shape memory effect.In this paper,an easy-operating method to realize a two-way shape memory effect was demonstrated in a ring-shaped bilayer structure where the two layers are SMPs with different thermal transition temperatures.By designing specific thermomechanical processes,the mismatched deformation between the two layers leads to a morphology change of ring-shaped bilayer structures from a smooth ring to a gear-like buckling shape under cooling and a reversible recovery to the smooth shape under heating.Such a morphology change is ascribed to occurrence and recovery of thermoelastic buckling.This method was validated by finite element simulation.We experimentally investigated the influence of pre-strain on buckling,and it was found that both the buckling occurrence and recovery temperature vary with pre-strain.Furthermore,considering a ring-shaped SMP-SMP bilayer structure,finite element analysis was conducted to study the influence of film thickness and modulus ratio of two layers on buckling behavior.The results showed that the critical buckling wavelength was greatly influenced by film thickness and modulus ratio.W e made a theoretical analysis that accorded well with the numerical results.展开更多
Laser additive manufacturing (AM) of lattice structures with light weight, excellent impact resistance, and energy absorption performance is receiving considerable attention in aerospace, transportation, and mechanica...Laser additive manufacturing (AM) of lattice structures with light weight, excellent impact resistance, and energy absorption performance is receiving considerable attention in aerospace, transportation, and mechanical equipment application fields. In this study, we designed four gradient lattice structures (GLSs) using the topology optimization method, including the unidirectional GLS, the bi-directional increasing GLS, the bi-directional decreasing GLS and the none-GLS. All GLSs were manufactureed by laser powder bed fusion (LPBF). The uniaxial compression tests and finite element analysis were conducted to investigate the influence of gradient distribution features on deformation modes and energy absorption performance of GLSs. The results showed that, compared with the 45° shear fracture characteristic of the none-GLS, the unidirectional GLS, the bi-directional increasing GLS and the bi-directional decreasing GLS had the characteristics of the layer-by-layer fracture, showing considerably improved energy absorption capacity. The bi-directional increasing GLS showed a unique combination of shear fracture and layer-by-layer fracture, having the optimal energy absorption performance with energy absorption and specific energy absorption of 235.6 J and 9.5 J g-1 at 0.5 strain, respectively. Combined with the shape memory effect of NiTi alloy, multiple compression-heat recovery experiments were carried out to verify the shape memory function of LPBF-processed NiTi GLSs. These findings have potential value for the future design of GLSs and the realization of shape memory function of NiTi components through laser AM.展开更多
DSC was used to study the effects of predeformation on the reverse martensitic transformation of near-equiatomic TiNi alloy. Both the start temperature As and the finish temperature Af of the reverse transformation in...DSC was used to study the effects of predeformation on the reverse martensitic transformation of near-equiatomic TiNi alloy. Both the start temperature As and the finish temperature Af of the reverse transformation increased with increasing degree of predeformation, but the algebraic difference between As and Af decreased with increasing predeformation until it reached a minimum value, then remained unchanged with further deformation. Transformation heat also increased with increasing predeformation until it reached a maximum value, then decreased with further predeformation. All the phenomena above were considered to be closely related with the release of elastic strain energy during predeformation.展开更多
An intrinsic two-way shape memory effect with a fully recoverable strain of 1.0%was achieved in an as-prepared Ni50Mn37.5Sn12.5 metamagnetic shape memory microwire fabricated by Taylor-Ulitovsky method.This two-way sh...An intrinsic two-way shape memory effect with a fully recoverable strain of 1.0%was achieved in an as-prepared Ni50Mn37.5Sn12.5 metamagnetic shape memory microwire fabricated by Taylor-Ulitovsky method.This two-way shape memory effect is mainly owing to the internal stress caused by the retained martensite in austenite matrix,as revealed by transmission electron microscopy observations and highenergy X-ray diffraction experiments.After superelastic training for 30 loading/unloading cycles at room temperature,the amount of retained martensite increased and the recoverable strain of two-way shape memory effect increased significantly to 2.2%.Furthermore,a giant recoverable strain of 11.2%was attained under a bias stress of 300 MPa in the trained microwire.These properties confer this microwire great potential for micro-actuation applications.展开更多
The influence of aging on the microstructure and mechanical properties of Cu-11.6wt%Al-3.9wt%Ni-2.5wt%Mn shape memory alloy(SMA) was studied by means of scanning electron microscopy(SEM),transmission electron micr...The influence of aging on the microstructure and mechanical properties of Cu-11.6wt%Al-3.9wt%Ni-2.5wt%Mn shape memory alloy(SMA) was studied by means of scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffractometer,and differential scanning calorimeter(DSC).Experimental results show that bainite,γ2,and α phase precipitates occur with the aging effect in the alloy.After aging at 300°C,the bainitic precipitates appear at the early stages of aging,while the precipitates of γ2 phase are observed for a longer aging time.When the aging temperature increases,the bainite gradually evolves into γ2 phase and equilibrium α phase(bcc) precipitates from the remaining parent phase.Thus,the bainite,γ2,and α phases appear,while the martensite phase disappears progressively in the alloy.The bainitic precipitates decrease the reverse transformation temperature while the γ2 phase precipitates increase these temperatures with a decrease of solute content in the retained parent phase.On the other hand,these precipitations cause an increasing in hardness of the alloy.展开更多
A NiTi shape memory alloy (SMA) modified by Ta ion implantation was subjected to oxidation treatment in air at 723 and 873 K. Atomic force microscopy (AFM), Auger electron spectroscopy (AES), and grazing inciden...A NiTi shape memory alloy (SMA) modified by Ta ion implantation was subjected to oxidation treatment in air at 723 and 873 K. Atomic force microscopy (AFM), Auger electron spectroscopy (AES), and grazing incidence X-ray diffraction (GIXRD) measurements were conducted to investigate the surface characteristics, including surface topography, elemental depth profiles, and surface phase structures. The surface roughness of the Ta-implanted NiTi increases after oxidation, and the higher the oxidation temperature is, the larger the value is. The surface of the Ta-implanted NiTi oxidized at 723 K is a nanolayer mainly composed of TiO2/Ta2O5 and TiO with depressed Ni content. The Ta-implanted NiTi oxidized at 873 K is mainly covered by rutile TiO2 in several micrometers of thickness. Potentiodynamic polarization tests indicated that the corrosion resistance of the Ta-implanted NiTi was improved after thermal oxidation at 723 K, but a negative impact was found for the Ta-implanted NiTi oxidized at 873 K.展开更多
Improvement of shape, memory effect (SME) in Fe-Mn-Si based alloys has been investigated, compared with that by conventional 'training' treatment. It is found that SME in Fe-Mn-Si alloy can be greatly improved...Improvement of shape, memory effect (SME) in Fe-Mn-Si based alloys has been investigated, compared with that by conventional 'training' treatment. It is found that SME in Fe-Mn-Si alloy can be greatly improved by ausforming and 3.8%recovery strain and 2.2% complete recovery strain can be reached by ausforming at 973 K when dynamic recrystallization has just occurred. The mechanism for the improvement of SME is proposed.展开更多
The effect of Ta addition on the martensitic transformation characteristics and the X-ray visibility on NiTi shape memory alloy have been studied in (Ni51Ti49)1-xTax system. It was found that the transformation temper...The effect of Ta addition on the martensitic transformation characteristics and the X-ray visibility on NiTi shape memory alloy have been studied in (Ni51Ti49)1-xTax system. It was found that the transformation temperatures of the Ni51Ti49 binary alloy increased drastically by an addition of 0~4 at. pet Ta, but only slightly when the concentration exceeded 4 at. pct; the addition of Ta greatly decreases the sensitivity of the martensitic transformations to the variation in the Ni-Ti ratio. The addition of Ta to the NiTi binary alloy can improve its X-ray visibility.展开更多
Ti–51at%Ni shape memory alloys(SMAs) were successfully produced via a powder metallurgy and microwave sintering technique.The influence of sintering parameters on porosity reduction,microstructure,phase transformatio...Ti–51at%Ni shape memory alloys(SMAs) were successfully produced via a powder metallurgy and microwave sintering technique.The influence of sintering parameters on porosity reduction,microstructure,phase transformation temperatures,and mechanical properties were investigated by optical microscopy,field-emission scanning electron microscopy(FE-SEM),X-ray diffraction(XRD),differential scanning calorimetry(DSC),compression tests,and microhardness tests.Varying the microwave temperature and holding time was found to strongly affect the density of porosity,presence of precipitates,transformation temperatures,and mechanical properties.The lowest density and smallest pore size were observed in the Ti–51at%Ni samples sintered at 900°C for 5 min or at 900°C for 30 min.The predominant martensite phases of β2 and β19′ were observed in the microstructure of Ti–51at%Ni,and their existence varied in accordance with the sintering temperature and the holding time.In the DSC thermograms,multi-transformation peaks were observed during heating,whereas a single peak was observed during cooling;these peaks correspond to the presence of the β2,R,and β19′ phases.The maximum strength and strain among the Ti–51at%Ni SMAs were 1376 MPa and 29%,respectively,for the sample sintered at 900°C for 30 min because of this sample's minimal porosity.展开更多
The Effect of the thermal cycling training under constant strain on the two-way shape memory effect (TWSME) in a Ti36l\li49Hf15 high temperature shape memory alloy (SMA) has been investigated by bending tests. The res...The Effect of the thermal cycling training under constant strain on the two-way shape memory effect (TWSME) in a Ti36l\li49Hf15 high temperature shape memory alloy (SMA) has been investigated by bending tests. The results indicated that the training procedure is beneficial to get the better TWSME. The two-way shape memory strain increases with increasing the training strain. And it decreases with increasing the training temperature. The TWSME obtained in the present alloy shows poorer stability compared with that obtained in the TiNi alloys.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 11532010 and 11602203)Fundamental Research Funds for the Central Universities of China (No. 2682018CX43)
文摘Based on stress-and strain-controlled cyclic tension-unloading-heat-cooling tests,cyclic degradation of the one-way shape memory effect(OWSME)of NiTi shape memory alloys(SMAs)was investigated.It was seen,in thermo-mechanical coupled cyclic tests,that residual strain after each cycle accumulated,but the martensite reorientation stress and dissipation energy-per-cycle decreased as the number of cycles increased.Meanwhile,the cyclic degradation of OWSME was aggravated by increasing the stress/strain amplitude.In addition,the stress-strain response of NiTi SMAs was further investigated by performing simultaneous thermo-mechanical coupled cyclic tests with various phase-angle differences between the mechanical and thermal cyclic loadings.It can be concluded that such cyclic response depends significantly on prescribed phase-angle differences.Obtained experimental results are helpful for both the development of constitutive models and engineering applications of NiTi SMAs.
基金supported by National Key R&D Program of China(Grant No.2022YFB4601701)74th Batch of General Funding from the China Postdoctoral Science Foundation(Grant No.2023M741341)+7 种基金5th Batch of Special Grants from the China Postdoctoral Science Foundation(before the station,Grant No.2023TQ0129)Postdoctoral Fellowship Program of CPSF(Grant No.GZB20230257)National Natural Science Foundation of China(Grant Nos.52375289,52205310)Natural Science Foundation of Shandong Province(Grant No.ZR2021QE263)Science and Technology Development Program of Jilin Province(Grant No.20230508045RC)Capital Construction Fund plan within the budget of Jilin Province(Grant No.2023C041-4)Chongqing Natural Science Foundation(Grant No.CSTB2022NSCQ-MSX0225)the Shandong Postdoctoral Science Foundation(Grant No.SDCX-ZG-202400238).
文摘The emergence of additive manufacturing technology,particularly laser powder bed fusion,has revitalized NiTi alloy production.However,challenges arise regarding its mechanical properties and diminishing shape memory effect,which hinder its widespread application.Heat treatment has been identified as a method to enhance the performance of metallic materials in the realm of additive manufacturing.This process eliminates residual stress and enhances performance through precipitation strengthening.This study conducted a comprehensive annealing investigation on NiTi alloys to explore the impact of annealing time and temperature on the phase transformation behavior and shape memory performance.The mechanism underlying the performance enhancement was analyzed using scanning electron microscopy,energy-dispersive X-ray spectroscopy,electron backscatter diffraction,and transmission electron microscopy.The findings revealed that different annealing conditions resulted in multistep phase transformation behavior,with the 500℃-5 h sample exhibiting the best mechanical properties owing to the formation of nanoscale dispersed precipitates like Ni_(4)Ti_(3).However,higher temperatures led to larger precipitates,significantly weakening the properties of the NiTi alloy.Additionally,the annealing treatment did not have a notable impact on the grain size,texture strength,or direction.This study provides valuable insights for optimizing the heat treatment process of LPBF-NiTi alloys.
基金financially supported by the Agency for Science,Technology and Research(A*STAR)of Singapore via the Structural Metal Alloys Programme(No.A18B1b0061).
文摘Functional fatigue in the superelastic NiTi shape memory alloys occurs due to the accumulation of dislocations and retention of martensite with the cyclic loading.These mechanisms reduce the amount of the material available for the stress-induced transformation and,thus,lower the elastocaloric effect that originates from the stress-induced latent heat variations.In this study,the individual contributions of the micromechanisms responsible for the functional fatigue in superelastic NiTi at different maximum tensile stress(σ_(max))are critically examined.Results show that the elastocaloric effect degrades significantly with cycling,and the saturated degraded value increases with σ_(max);the steady-state adiabatic temperature change is unexpectedly non-proportional to σ_(max).An overheating treatment(‘healing’)after mechanical fatigue reverts the retained martensite into austenite,making it available for subsequent transformation and restoring the elastocaloric effect significantly.Such a restoration increases exponentially with σ_(max).Consequently,the steady-state elastocaloric effect of the healed NiTi is proportional to σ_(max) and can reach more than twice that of NiTi without healing.The work sheds light on the physical origins of elastocaloric degradation of superelastic NiTi and also provides a feasible method for ameliorating functional fatigue.
基金Financial support of the National Natural Science Foundation of China(No.11532010)is appreciated。
文摘By choosing the dissipation energy as the damage variable,corresponding damage evolution equations are established,respectively,for the mechanical cyclic loading part and the thermal one during the thermo-mechanical cyclic loading of NiTi shape memory alloys(SMAs)involving one-way shape memory effect(simply denoted as the OWSME cycling).And then,the evolution law of total damage is obtained by a superposition of such two damage parts.Finally,the uniaxial OWSME fatigue lives of NiTi SMA micro-tubes are predicted by combining the proposed damage model with an adopted failure criterion.The results show that all the predicted fatigue lives are located within the twice scatter band with regard to the experimental ones,and most of them are located within a scatter band of 1.5 times.It is indicated that the predicted OWSME fatigue lives are in good agreement with the experimental ones.
基金supported by the National Key R&D Program of China (No. 2018YFB1105100)the Science Foundation of China University of Petroleum, Beijing (No. 2462018BJC005)+1 种基金the Joint Fund of Ministry of Education for Pre-research of Equipment (No. 6141A020222)the fourth batch of pre-research projects for manned spaceflight (No. 040202)
文摘It is a challenge to develop complex-shaped Ni Ti shape memory alloy parts by traditional processing methods, due to the poor machinability of Ni Ti alloy. It is reported that selective laser melting(SLM) of additive manufacturing could overcome this problem. However, the reported SLM-produced Ni Ti exhibits poor tensile ductility due to the inner defects and adverse unidirectional columnar grains from SLM process. In this work, the defect-less SLM-Ni Ti with nondirective columnar grains was fabricated by optimizing the intraformational laser scanning length and interformational laser scanning direction. The obtained lath-shaped SLM-Ni Ti sample exhibits tensile strain of 15.6%, more than twice of the reported maximum result(7%). Besides, the SLM-Ni Ti part with complex geometry displays a shape memory recovery of 99% under compressive deformation of 50%.
基金financially supported by the National Key R&D Program of China (No.2018YFC1106600)the Funding from the Industrial Transformation and Upgrading of Strong Base Project of China (No.TC150B5C0/03)
文摘Martensitic transformations,mechanical properties,shape memory effect and superelasticity of Ti-xZr-(30-x)Nb-4Ta(x=15,16,17 and 18;at%) alloys were investigated.X-ray diffraction(XRD),optical microscopy(OM) and transmission electron microscopy(TEM) results indicated that the Ti-16Zr-14Nb-4Ta,Ti-17Zr-13Nb-4Ta and Ti-18Zr-12Nb4Ta alloys were mainly composed of α″-martensite,while the Ti-15Zr-15Nb-4Ta alloy was characterized by predominant p phase.The reverse martensitic transformation temperatures increased when Nb was replaced by Zr,indicating stronger p-stabilizing effect for the former.The Ti-15Zr-15Nb-4Ta alloy displayed superelasticity during tensile deformation with a recovery strain of 3.51%.For the other three alloys with higher Zr content,the martensitic reorientation occurred during tensile deformation,resulting in shape memory recovery upon subsequent heating.The maximum shape memory effect was 3.46% in the Ti-18Zr-12Nb-4Ta alloy.
基金This work was supported by Hong Kong ITF research project (No. ITS 098/02).
文摘SMPU (shape memory polyurethane) non-ionomers and ionomers, synthesized with poly(c-caprolactone) (PCL), 4, 4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (BDO), dimethylolpropionic acid (DMPA) were measured with cyclic tensile test and strain recovery test. The relations between the structure and shape memory effect of these two series were studied with respect to the ionic group content and the effect of neutralization. The resulting data indicate that, with the introduction of asymmetrical extender, the stress at 100% elongation is decreased for PU non-ionomer and ionomer series, especially lowered sharply for non-ionomer series; the fixation ratio of ionomer series is not affected obviously by the ionic group content; the total recovery ratio of ionomer series is decreased greatly. After sufficient relaxation time for samples stretched beforehand, the switching temperature is raised slightly, whereas the recovery ratio measured with strain recovery test method is lowered with increased DMPA content. The characterization with FT-IR, DSC, DMA elucidated that, the ordered hard domain of the two series is disrupted with the introduction of DMPA which causes more hard segments to dissolve in soft phase; ionic groups on hard segment enhance the cohesion between hard segments especially at high ionic group content and significantly facilitate the phase separation compared with the corresponding non-ionomer at moderate ionic group content.
基金Financial supports by the National Natural Science Foundation of China (Grant 11532010)the project for Sichuan Provincial Youth Science and Technology Innovation Team, China (Grant 2013TD0004)
文摘A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic deformation of NiTi shape memory alloys (SMAs). Three phases, austenite A, twinned martensite and detwinned martensite , as well as the phase transitions occurring between each pair of phases (, , , , and are considered in the proposed model. Meanwhile, two kinds of inelastic deformation mechanisms, martensite transformation-induced plasticity and reorientation-induced plasticity, are used to explain the degeneration of shape memory effects of NiTi SMAs. The evolution equations of internal variables are proposed by attributing the degeneration of shape memory effect to the interaction between the three phases (A, , and and plastic deformation. Finally, the capability of the proposed model is verified by comparing the predictions with the experimental results of NiTi SMAs. It is shown that the degeneration of shape memory effect and its dependence on the loading level can be reasonably described by the proposed model.
基金This work was supported by the National Natural Science Foundations of China(Grant 11272044)the Fundamental Research Funds for the Central Universities(Grant 2018JBM305).
文摘Shape memory polymers(SMPs)usually have a one-way shape memory effect.In this paper,an easy-operating method to realize a two-way shape memory effect was demonstrated in a ring-shaped bilayer structure where the two layers are SMPs with different thermal transition temperatures.By designing specific thermomechanical processes,the mismatched deformation between the two layers leads to a morphology change of ring-shaped bilayer structures from a smooth ring to a gear-like buckling shape under cooling and a reversible recovery to the smooth shape under heating.Such a morphology change is ascribed to occurrence and recovery of thermoelastic buckling.This method was validated by finite element simulation.We experimentally investigated the influence of pre-strain on buckling,and it was found that both the buckling occurrence and recovery temperature vary with pre-strain.Furthermore,considering a ring-shaped SMP-SMP bilayer structure,finite element analysis was conducted to study the influence of film thickness and modulus ratio of two layers on buckling behavior.The results showed that the critical buckling wavelength was greatly influenced by film thickness and modulus ratio.W e made a theoretical analysis that accorded well with the numerical results.
基金supported by the financial support from the National Natural Science Foundation of China(Nos.51735005 and U1930207)the Basic Strengthening Program(No.2019-JCJQ-JJ-331)+1 种基金National Natural Science Founda-tion of China for Creative Research Groups(No.51921003)the 15th Batch of‘Six Talents Peaks’Innovative Talents Team Program(No.TD-GDZB-001).
文摘Laser additive manufacturing (AM) of lattice structures with light weight, excellent impact resistance, and energy absorption performance is receiving considerable attention in aerospace, transportation, and mechanical equipment application fields. In this study, we designed four gradient lattice structures (GLSs) using the topology optimization method, including the unidirectional GLS, the bi-directional increasing GLS, the bi-directional decreasing GLS and the none-GLS. All GLSs were manufactureed by laser powder bed fusion (LPBF). The uniaxial compression tests and finite element analysis were conducted to investigate the influence of gradient distribution features on deformation modes and energy absorption performance of GLSs. The results showed that, compared with the 45° shear fracture characteristic of the none-GLS, the unidirectional GLS, the bi-directional increasing GLS and the bi-directional decreasing GLS had the characteristics of the layer-by-layer fracture, showing considerably improved energy absorption capacity. The bi-directional increasing GLS showed a unique combination of shear fracture and layer-by-layer fracture, having the optimal energy absorption performance with energy absorption and specific energy absorption of 235.6 J and 9.5 J g-1 at 0.5 strain, respectively. Combined with the shape memory effect of NiTi alloy, multiple compression-heat recovery experiments were carried out to verify the shape memory function of LPBF-processed NiTi GLSs. These findings have potential value for the future design of GLSs and the realization of shape memory function of NiTi components through laser AM.
基金the National Natural Science Foundation of China under grant No. 59601004,59731030.
文摘DSC was used to study the effects of predeformation on the reverse martensitic transformation of near-equiatomic TiNi alloy. Both the start temperature As and the finish temperature Af of the reverse transformation increased with increasing degree of predeformation, but the algebraic difference between As and Af decreased with increasing predeformation until it reached a minimum value, then remained unchanged with further deformation. Transformation heat also increased with increasing predeformation until it reached a maximum value, then decreased with further predeformation. All the phenomena above were considered to be closely related with the release of elastic strain energy during predeformation.
基金the National Natural Science Foundation of China(Nos.51731005,51822102 and 51527801)the Fundamental Research Funds for the Central Universities(grant No.FRF-TP-18-008C1)Use of the Advanced Photon Source was supported by the U.S.Department of Energy,Office of Science,Office of Basic Energy Science,under Contract No.DE-AC02-06CH11357.
文摘An intrinsic two-way shape memory effect with a fully recoverable strain of 1.0%was achieved in an as-prepared Ni50Mn37.5Sn12.5 metamagnetic shape memory microwire fabricated by Taylor-Ulitovsky method.This two-way shape memory effect is mainly owing to the internal stress caused by the retained martensite in austenite matrix,as revealed by transmission electron microscopy observations and highenergy X-ray diffraction experiments.After superelastic training for 30 loading/unloading cycles at room temperature,the amount of retained martensite increased and the recoverable strain of two-way shape memory effect increased significantly to 2.2%.Furthermore,a giant recoverable strain of 11.2%was attained under a bias stress of 300 MPa in the trained microwire.These properties confer this microwire great potential for micro-actuation applications.
文摘The influence of aging on the microstructure and mechanical properties of Cu-11.6wt%Al-3.9wt%Ni-2.5wt%Mn shape memory alloy(SMA) was studied by means of scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffractometer,and differential scanning calorimeter(DSC).Experimental results show that bainite,γ2,and α phase precipitates occur with the aging effect in the alloy.After aging at 300°C,the bainitic precipitates appear at the early stages of aging,while the precipitates of γ2 phase are observed for a longer aging time.When the aging temperature increases,the bainite gradually evolves into γ2 phase and equilibrium α phase(bcc) precipitates from the remaining parent phase.Thus,the bainite,γ2,and α phases appear,while the martensite phase disappears progressively in the alloy.The bainitic precipitates decrease the reverse transformation temperature while the γ2 phase precipitates increase these temperatures with a decrease of solute content in the retained parent phase.On the other hand,these precipitations cause an increasing in hardness of the alloy.
基金supported by the National Natural Science Foundation of China (No.50971007)the Program for New Century Excellent Talents in Universities from the Ministry of Education of China (No.NCET-09-0024)
文摘A NiTi shape memory alloy (SMA) modified by Ta ion implantation was subjected to oxidation treatment in air at 723 and 873 K. Atomic force microscopy (AFM), Auger electron spectroscopy (AES), and grazing incidence X-ray diffraction (GIXRD) measurements were conducted to investigate the surface characteristics, including surface topography, elemental depth profiles, and surface phase structures. The surface roughness of the Ta-implanted NiTi increases after oxidation, and the higher the oxidation temperature is, the larger the value is. The surface of the Ta-implanted NiTi oxidized at 723 K is a nanolayer mainly composed of TiO2/Ta2O5 and TiO with depressed Ni content. The Ta-implanted NiTi oxidized at 873 K is mainly covered by rutile TiO2 in several micrometers of thickness. Potentiodynamic polarization tests indicated that the corrosion resistance of the Ta-implanted NiTi was improved after thermal oxidation at 723 K, but a negative impact was found for the Ta-implanted NiTi oxidized at 873 K.
文摘Improvement of shape, memory effect (SME) in Fe-Mn-Si based alloys has been investigated, compared with that by conventional 'training' treatment. It is found that SME in Fe-Mn-Si alloy can be greatly improved by ausforming and 3.8%recovery strain and 2.2% complete recovery strain can be reached by ausforming at 973 K when dynamic recrystallization has just occurred. The mechanism for the improvement of SME is proposed.
基金Shanxi Province Natural Science FOundation State Key Laboratory of Solidilication Processing.
文摘The effect of Ta addition on the martensitic transformation characteristics and the X-ray visibility on NiTi shape memory alloy have been studied in (Ni51Ti49)1-xTax system. It was found that the transformation temperatures of the Ni51Ti49 binary alloy increased drastically by an addition of 0~4 at. pet Ta, but only slightly when the concentration exceeded 4 at. pct; the addition of Ta greatly decreases the sensitivity of the martensitic transformations to the variation in the Ni-Ti ratio. The addition of Ta to the NiTi binary alloy can improve its X-ray visibility.
基金financial support under the University Research Grant No.Q.J130000.3024.00M57
文摘Ti–51at%Ni shape memory alloys(SMAs) were successfully produced via a powder metallurgy and microwave sintering technique.The influence of sintering parameters on porosity reduction,microstructure,phase transformation temperatures,and mechanical properties were investigated by optical microscopy,field-emission scanning electron microscopy(FE-SEM),X-ray diffraction(XRD),differential scanning calorimetry(DSC),compression tests,and microhardness tests.Varying the microwave temperature and holding time was found to strongly affect the density of porosity,presence of precipitates,transformation temperatures,and mechanical properties.The lowest density and smallest pore size were observed in the Ti–51at%Ni samples sintered at 900°C for 5 min or at 900°C for 30 min.The predominant martensite phases of β2 and β19′ were observed in the microstructure of Ti–51at%Ni,and their existence varied in accordance with the sintering temperature and the holding time.In the DSC thermograms,multi-transformation peaks were observed during heating,whereas a single peak was observed during cooling;these peaks correspond to the presence of the β2,R,and β19′ phases.The maximum strength and strain among the Ti–51at%Ni SMAs were 1376 MPa and 29%,respectively,for the sample sintered at 900°C for 30 min because of this sample's minimal porosity.
文摘The Effect of the thermal cycling training under constant strain on the two-way shape memory effect (TWSME) in a Ti36l\li49Hf15 high temperature shape memory alloy (SMA) has been investigated by bending tests. The results indicated that the training procedure is beneficial to get the better TWSME. The two-way shape memory strain increases with increasing the training strain. And it decreases with increasing the training temperature. The TWSME obtained in the present alloy shows poorer stability compared with that obtained in the TiNi alloys.