A class of nonidentical parallel machine scheduling problems are considered in which the goal is to minimize the total weighted completion time. Models and relaxations are collected. Most of these problems are NP-hard...A class of nonidentical parallel machine scheduling problems are considered in which the goal is to minimize the total weighted completion time. Models and relaxations are collected. Most of these problems are NP-hard, in the strong sense, or open problems, therefore approximation algorithms are studied. The review reveals that there exist some potential areas worthy of further research.展开更多
In this paper,we established a class of parallel algorithm for solving low-rank tensor completion problem.The main idea is that N singular value decompositions are implemented in N different processors for each slice ...In this paper,we established a class of parallel algorithm for solving low-rank tensor completion problem.The main idea is that N singular value decompositions are implemented in N different processors for each slice matrix under unfold operator,and then the fold operator is used to form the next iteration tensor such that the computing time can be decreased.In theory,we analyze the global convergence of the algorithm.In numerical experiment,the simulation data and real image inpainting are carried out.Experiment results show the parallel algorithm outperform its original algorithm in CPU times under the same precision.展开更多
An improved Gaussian mixture model (GMM)- based clustering method is proposed for the difficult case where the true distribution of data is against the assumed GMM. First, an improved model selection criterion, the ...An improved Gaussian mixture model (GMM)- based clustering method is proposed for the difficult case where the true distribution of data is against the assumed GMM. First, an improved model selection criterion, the completed likelihood minimum message length criterion, is derived. It can measure both the goodness-of-fit of the candidate GMM to the data and the goodness-of-partition of the data. Secondly, by utilizing the proposed criterion as the clustering objective function, an improved expectation- maximization (EM) algorithm is developed, which can avoid poor local optimal solutions compared to the standard EM algorithm for estimating the model parameters. The experimental results demonstrate that the proposed method can rectify the over-fitting tendency of representative GMM-based clustering approaches and can robustly provide more accurate clustering results.展开更多
Early water breakthrough and a rapid increase in water cut are always observed in high- permeability completion intervals when perforations are uniformly distributed in the wellbore in heterogeneous reservoirs. Optimi...Early water breakthrough and a rapid increase in water cut are always observed in high- permeability completion intervals when perforations are uniformly distributed in the wellbore in heterogeneous reservoirs. Optimization of perforating parameters in partitioned sections in horizontal intervals helps homogenize the inflow from the reservoir and thus is critically important for enhanced oil recovery. This paper derives a coupled reservoir-wellbore flow model based on inflow controlling theory. Genetic algorithms are applied to solving the model as they excel in obtaining the global optimum of discrete functions. The optimized perforating strategy applies a low perforation density in high- permeability intervals and a high perforation density in low-permeability intervals. As a result, the inflow profile is homogenized and idealized.展开更多
In order to solve the parallel algorithm of Petri net system with concurrent function, so as to achieve the parallel control and simulation operation of this system, this paper proposes the function partition complete...In order to solve the parallel algorithm of Petri net system with concurrent function, so as to achieve the parallel control and simulation operation of this system, this paper proposes the function partition completeness theory and algorithms of Petri net parallelization, thereby providing the theoretical support for the realization of Petri parallel algorithms. Firstly, according to the concurrent characteristics of Petri net model, we analyze the parallelism of Petri net system; then, by giving the solving process of place invariants and the function partitioning of Petri net, we propose the function partitioning conditions and determination theorem of Petri net parallelization, and conduct its theoretical proof and practical verification. On this basis, we conduct the theoretical study and analysis on the situation that Petri net system has several kinds of parallel function partitioning, propose the completeness theorem of parallelism function partitioning in Petri net system, and verify it. Finally, we give the algorithms, application examples and simulation experiment results of parallel function partitioning of Petri net systems based on place invariant. The theoretical proof and experimental results show that the function partitioning conditions and completeness theory of Petri net parallelization based on place invariant are correct, and the parallel algorithms under such theoretical basis are also correct and effective.展开更多
This paper develops an integrating algorithm for fully rheonomous affine constraints and gives theoretical analysis of the algorithm for the completely integrable case. First, some preliminaries on the fully rheonomou...This paper develops an integrating algorithm for fully rheonomous affine constraints and gives theoretical analysis of the algorithm for the completely integrable case. First, some preliminaries on the fully rheonomous affine constraints are shown. Next, an integrating algorithm that calculates independent first integrals is derived. In addition, the existence of an inverse function utilized in the algorithm is investigated. Then, an example is shown in order to evaluate the effectiveness of the proposed method. By using the proposed integrating algorithm, we can easily calculate independent first integrals for given constraints, and hence it can be utilized for various research fields.展开更多
Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed sy...Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed systems. In general, multi-constrained path selection with or without optimization is a NP-complete problem that can not be exactly solved in polynomial time. Hence, accurate constraints-based routing algorithms with a fast running time are scarce, perhaps even non-existent. The expected impact of such a constrained-based routing algorithm has resulted in the proposal of numerous heuristics and a few exact QoS algorithms. This paper aims to give a thorough, concise and fair evaluation of the most important multiple constraint-based QoS multicast routing algorithms known today, and it provides a descriptive overview and simulation results of these multi-constrained routing algorithms.展开更多
This study introduces a novel methodology and makes case studies for anomaly detection in multivariate oil production time-series data,utilizing a supervised Transformer algorithm to identify spurious events related t...This study introduces a novel methodology and makes case studies for anomaly detection in multivariate oil production time-series data,utilizing a supervised Transformer algorithm to identify spurious events related to interval control valves(ICVs)in intelligent well completions(IWC).Transformer algorithms present significant advantages in time-series anomaly detection,primarily due to their ability to handle data drift and capture complex patterns effectively.Their self-attention mechanism allows these models to adapt to shifts in data distribution over time,ensuring resilience against changes that can occur in time-series data.Additionally,Transformers excel at identifying intricate temporal dependencies and long-range interactions,which are often challenging for traditional models.Field tests conducted in the ultradeep water subsea wells of the Santos Basin further validate the model’s capability for early anomaly identification of ICVs,minimizing non-productive time and safeguarding well integrity.The model achieved an accuracy of 0.9544,a balanced accuracy of 0.9694 and an F1-Score of 0.9574,representing significant improvements over previous literature models.展开更多
MATLAB software and optimal complete subgraph algorithm were used to extract and reveal the microsatellite distribution features in the complete genomes of the tobacco vein clearing virus (NC-003 378.1) from the NCB...MATLAB software and optimal complete subgraph algorithm were used to extract and reveal the microsatellite distribution features in the complete genomes of the tobacco vein clearing virus (NC-003 378.1) from the NCBI database.The results showed that the repetitions number and their location of the N-base group has been extracted and displayed.The largest repetitions of N-base group in the complete genomes of the tobacco vein clearing virus was decreased as the exponential function with the increasing of N.The method used in this study could be applied to the extraction and revealing of the microsatellite distribution features in the complete genomes of other viruses,thereby provided a basis for the research of the structure and the law of function,inheritance and variation by the using of the microsatellite distribution features.展开更多
The environment modeling algorithm named rectangular decomposition, which is composed of cellular nodes and interleaving networks, is proposed. The principle of environment modeling is to divide the environment into i...The environment modeling algorithm named rectangular decomposition, which is composed of cellular nodes and interleaving networks, is proposed. The principle of environment modeling is to divide the environment into individual square sub-areas. Each sub-area is orientated by the central point of the sub-areas called a node. The rectangular map based on the square map can enlarge the square area side size to increase the coverage efficiency in the case of there being an adjacent obstacle. Based on this algorithm, a new coverage algorithm, which includes global path planning and local path planning, is introduced. In the global path planning, uncovered subspaces are found by using a special rule. A one-dimensional array P, which is used to obtain the searching priority of node in every direction, is defined as the search rule. The array P includes the condition of coverage towards the adjacent cells, the condition of connectivity and the priorities defined by the user in all eight directions. In the local path planning, every sub-area is covered by using template models according to the shape of the environment. The simulation experiments show that the coverage algorithm is simple, efficient and adapted for complex two- dimensional environments.展开更多
Considering the existing problems of current Thevenin equivalent algorithms,a tracing algorithm of Thevenin equivalent that is applicable to power systems with large disturbance is presented.First,the potential voltag...Considering the existing problems of current Thevenin equivalent algorithms,a tracing algorithm of Thevenin equivalent that is applicable to power systems with large disturbance is presented.First,the potential voltage amplitude of Thevenin equivalent at the moment of fault is calculated with the parameters before fault.Then the resistance before fault and the potential voltage amplitude of the moment of fault is used to calculate other parameters of the moment of fault.The main steps of this algorithm are as follows:1)The resistance and reactance of Thevenin equivalent before fault are used as initial parameters.展开更多
As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optim...As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optimization(DLSO) algorithm is proposed to solve the TSP. Firstly, we introduce discrete coding and order crossover operators in DLSO. Secondly, we use the complete 2-opt(C2-opt) algorithm to enhance the local search ability.Then in order to enhance the efficiency of the algorithm, a parallel discrete lion swarm optimization(PDLSO) algorithm is proposed.The PDLSO has multiple populations, and each sub-population independently runs the DLSO algorithm in parallel. We use the ring topology to transfer information between sub-populations. Experiments on some benchmarks TSP problems show that the DLSO algorithm has a better accuracy than other algorithms, and the PDLSO algorithm can effectively shorten the running time.展开更多
Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm ...Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm is proposed for the urban rescue search or military search in outdoor environment.Due to flexible control of small UAVs, it can be considered that all UAVs fly at the same altitude, that is, they perform search tasks on a two-dimensional plane. Based on the agents’ motion characteristics and environmental information, a mathematical model of CCPP problem is established. The minimum time for UAVs to complete the CCPP is the objective function, and complete coverage constraint, no-fly constraint, collision avoidance constraint, and communication constraint are considered. Four motion strategies and two communication strategies are designed. Then a distributed CCPP algorithm is designed based on hybrid strategies. Simulation results compared with patternbased genetic algorithm(PBGA) and random search method show that the proposed method has stronger real-time performance and better scalability and can complete the complete CCPP task more efficiently and stably.展开更多
Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been...Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms.展开更多
Matrix completion is the extension of compressed sensing.In compressed sensing,we solve the underdetermined equations using sparsity prior of the unknown signals.However,in matrix completion,we solve the underdetermin...Matrix completion is the extension of compressed sensing.In compressed sensing,we solve the underdetermined equations using sparsity prior of the unknown signals.However,in matrix completion,we solve the underdetermined equations based on sparsity prior in singular values set of the unknown matrix,which also calls low-rank prior of the unknown matrix.This paper firstly introduces basic concept of matrix completion,analyses the matrix suitably used in matrix completion,and shows that such matrix should satisfy two conditions:low rank and incoherence property.Then the paper provides three reconstruction algorithms commonly used in matrix completion:singular value thresholding algorithm,singular value projection,and atomic decomposition for minimum rank approximation,puts forward their shortcoming to know the rank of original matrix.The Projected Gradient Descent based on Soft Thresholding(STPGD),proposed in this paper predicts the rank of unknown matrix using soft thresholding,and iteratives based on projected gradient descent,thus it could estimate the rank of unknown matrix exactly with low computational complexity,this is verified by numerical experiments.We also analyze the convergence and computational complexity of the STPGD algorithm,point out this algorithm is guaranteed to converge,and analyse the number of iterations needed to reach reconstruction error.Compared the computational complexity of the STPGD algorithm to other algorithms,we draw the conclusion that the STPGD algorithm not only reduces the computational complexity,but also improves the precision of the reconstruction solution.展开更多
This article presents an optimized approach of mathematical techniques in themedical domain by manoeuvring the phenomenon of ant colony optimization algorithm(also known as ACO).A complete graph of blood banks and a p...This article presents an optimized approach of mathematical techniques in themedical domain by manoeuvring the phenomenon of ant colony optimization algorithm(also known as ACO).A complete graph of blood banks and a path that covers all the blood banks without repeating any link is required by applying the Travelling Salesman Problem(often TSP).The wide use promises to accelerate and offers the opportunity to cultivate health care,particularly in remote or unmerited environments by shrinking lab testing reversal times,empowering just-in-time lifesaving medical supply.展开更多
Multi-constrained Quality-of-Service (QoS) routing is a big challenge for Mobile Ad hoc Networks (MANETs) where the topology may change constantly. In this paper a novel QoS Routing Algorithm based on Simulated Anneal...Multi-constrained Quality-of-Service (QoS) routing is a big challenge for Mobile Ad hoc Networks (MANETs) where the topology may change constantly. In this paper a novel QoS Routing Algorithm based on Simulated Annealing (SA_RA) is proposed. This algorithm first uses an energy function to translate multiple QoS weights into a single mixed metric and then seeks to find a feasible path by simulated annealing. The pa- per outlines simulated annealing algorithm and analyzes the problems met when we apply it to Qos Routing (QoSR) in MANETs. Theoretical analysis and experiment results demonstrate that the proposed method is an effective approximation algorithms showing better performance than the other pertinent algorithm in seeking the (approximate) optimal configuration within a period of polynomial time.展开更多
基金the National Natural Science Foundation of China (70631003)the Hefei University of Technology Foundation (071102F).
文摘A class of nonidentical parallel machine scheduling problems are considered in which the goal is to minimize the total weighted completion time. Models and relaxations are collected. Most of these problems are NP-hard, in the strong sense, or open problems, therefore approximation algorithms are studied. The review reveals that there exist some potential areas worthy of further research.
基金Supported by National Nature Science Foundation(12371381)Nature Science Foundation of Shanxi(202403021222270)。
文摘In this paper,we established a class of parallel algorithm for solving low-rank tensor completion problem.The main idea is that N singular value decompositions are implemented in N different processors for each slice matrix under unfold operator,and then the fold operator is used to form the next iteration tensor such that the computing time can be decreased.In theory,we analyze the global convergence of the algorithm.In numerical experiment,the simulation data and real image inpainting are carried out.Experiment results show the parallel algorithm outperform its original algorithm in CPU times under the same precision.
基金The National Natural Science Foundation of China(No.61105048,60972165)the Doctoral Fund of Ministry of Education of China(No.20110092120034)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK2010240)the Technology Foundation for Selected Overseas Chinese Scholar,Ministry of Human Resources and Social Security of China(No.6722000008)the Open Fund of Jiangsu Province Key Laboratory for Remote Measuring and Control(No.YCCK201005)
文摘An improved Gaussian mixture model (GMM)- based clustering method is proposed for the difficult case where the true distribution of data is against the assumed GMM. First, an improved model selection criterion, the completed likelihood minimum message length criterion, is derived. It can measure both the goodness-of-fit of the candidate GMM to the data and the goodness-of-partition of the data. Secondly, by utilizing the proposed criterion as the clustering objective function, an improved expectation- maximization (EM) algorithm is developed, which can avoid poor local optimal solutions compared to the standard EM algorithm for estimating the model parameters. The experimental results demonstrate that the proposed method can rectify the over-fitting tendency of representative GMM-based clustering approaches and can robustly provide more accurate clustering results.
基金supported by National Scientific Project(No. 2008ZX05024-03)
文摘Early water breakthrough and a rapid increase in water cut are always observed in high- permeability completion intervals when perforations are uniformly distributed in the wellbore in heterogeneous reservoirs. Optimization of perforating parameters in partitioned sections in horizontal intervals helps homogenize the inflow from the reservoir and thus is critically important for enhanced oil recovery. This paper derives a coupled reservoir-wellbore flow model based on inflow controlling theory. Genetic algorithms are applied to solving the model as they excel in obtaining the global optimum of discrete functions. The optimized perforating strategy applies a low perforation density in high- permeability intervals and a high perforation density in low-permeability intervals. As a result, the inflow profile is homogenized and idealized.
基金Supported by the National Natural Science Foundation of China(61866006,61741203)the Natural Science Foundation of Guangxi Province(2016GXNSFAA380243)+1 种基金the Guangxi Innovation-Driven Development of Special Funds Project(Gui Ke AA17204091)the Guangxi Nanning Science and Technology Development Planning Project(2018015-5)
文摘In order to solve the parallel algorithm of Petri net system with concurrent function, so as to achieve the parallel control and simulation operation of this system, this paper proposes the function partition completeness theory and algorithms of Petri net parallelization, thereby providing the theoretical support for the realization of Petri parallel algorithms. Firstly, according to the concurrent characteristics of Petri net model, we analyze the parallelism of Petri net system; then, by giving the solving process of place invariants and the function partitioning of Petri net, we propose the function partitioning conditions and determination theorem of Petri net parallelization, and conduct its theoretical proof and practical verification. On this basis, we conduct the theoretical study and analysis on the situation that Petri net system has several kinds of parallel function partitioning, propose the completeness theorem of parallelism function partitioning in Petri net system, and verify it. Finally, we give the algorithms, application examples and simulation experiment results of parallel function partitioning of Petri net systems based on place invariant. The theoretical proof and experimental results show that the function partitioning conditions and completeness theory of Petri net parallelization based on place invariant are correct, and the parallel algorithms under such theoretical basis are also correct and effective.
文摘This paper develops an integrating algorithm for fully rheonomous affine constraints and gives theoretical analysis of the algorithm for the completely integrable case. First, some preliminaries on the fully rheonomous affine constraints are shown. Next, an integrating algorithm that calculates independent first integrals is derived. In addition, the existence of an inverse function utilized in the algorithm is investigated. Then, an example is shown in order to evaluate the effectiveness of the proposed method. By using the proposed integrating algorithm, we can easily calculate independent first integrals for given constraints, and hence it can be utilized for various research fields.
文摘Constraint-based multicast routing, which aims at identifying a path that satisfies a set of quality of service (QoS) constraints, has became a very important research issue in the areas of networks and distributed systems. In general, multi-constrained path selection with or without optimization is a NP-complete problem that can not be exactly solved in polynomial time. Hence, accurate constraints-based routing algorithms with a fast running time are scarce, perhaps even non-existent. The expected impact of such a constrained-based routing algorithm has resulted in the proposal of numerous heuristics and a few exact QoS algorithms. This paper aims to give a thorough, concise and fair evaluation of the most important multiple constraint-based QoS multicast routing algorithms known today, and it provides a descriptive overview and simulation results of these multi-constrained routing algorithms.
文摘This study introduces a novel methodology and makes case studies for anomaly detection in multivariate oil production time-series data,utilizing a supervised Transformer algorithm to identify spurious events related to interval control valves(ICVs)in intelligent well completions(IWC).Transformer algorithms present significant advantages in time-series anomaly detection,primarily due to their ability to handle data drift and capture complex patterns effectively.Their self-attention mechanism allows these models to adapt to shifts in data distribution over time,ensuring resilience against changes that can occur in time-series data.Additionally,Transformers excel at identifying intricate temporal dependencies and long-range interactions,which are often challenging for traditional models.Field tests conducted in the ultradeep water subsea wells of the Santos Basin further validate the model’s capability for early anomaly identification of ICVs,minimizing non-productive time and safeguarding well integrity.The model achieved an accuracy of 0.9544,a balanced accuracy of 0.9694 and an F1-Score of 0.9574,representing significant improvements over previous literature models.
基金Supported by the Eleventh Five-year Development Planning Project for Instructional Science in Hubei Province (2006B131)~~
文摘MATLAB software and optimal complete subgraph algorithm were used to extract and reveal the microsatellite distribution features in the complete genomes of the tobacco vein clearing virus (NC-003 378.1) from the NCBI database.The results showed that the repetitions number and their location of the N-base group has been extracted and displayed.The largest repetitions of N-base group in the complete genomes of the tobacco vein clearing virus was decreased as the exponential function with the increasing of N.The method used in this study could be applied to the extraction and revealing of the microsatellite distribution features in the complete genomes of other viruses,thereby provided a basis for the research of the structure and the law of function,inheritance and variation by the using of the microsatellite distribution features.
基金The National Natural Science Foundation of China(No.50475076)the National High Technology Research and Development Pro-gram of China(863Program)(No.2006AA04Z234)
文摘The environment modeling algorithm named rectangular decomposition, which is composed of cellular nodes and interleaving networks, is proposed. The principle of environment modeling is to divide the environment into individual square sub-areas. Each sub-area is orientated by the central point of the sub-areas called a node. The rectangular map based on the square map can enlarge the square area side size to increase the coverage efficiency in the case of there being an adjacent obstacle. Based on this algorithm, a new coverage algorithm, which includes global path planning and local path planning, is introduced. In the global path planning, uncovered subspaces are found by using a special rule. A one-dimensional array P, which is used to obtain the searching priority of node in every direction, is defined as the search rule. The array P includes the condition of coverage towards the adjacent cells, the condition of connectivity and the priorities defined by the user in all eight directions. In the local path planning, every sub-area is covered by using template models according to the shape of the environment. The simulation experiments show that the coverage algorithm is simple, efficient and adapted for complex two- dimensional environments.
文摘Considering the existing problems of current Thevenin equivalent algorithms,a tracing algorithm of Thevenin equivalent that is applicable to power systems with large disturbance is presented.First,the potential voltage amplitude of Thevenin equivalent at the moment of fault is calculated with the parameters before fault.Then the resistance before fault and the potential voltage amplitude of the moment of fault is used to calculate other parameters of the moment of fault.The main steps of this algorithm are as follows:1)The resistance and reactance of Thevenin equivalent before fault are used as initial parameters.
基金supported by the National Natural Science Foundation of China(61771293)the Key Project of Shangdong Province(2019JZZY010111)。
文摘As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optimization(DLSO) algorithm is proposed to solve the TSP. Firstly, we introduce discrete coding and order crossover operators in DLSO. Secondly, we use the complete 2-opt(C2-opt) algorithm to enhance the local search ability.Then in order to enhance the efficiency of the algorithm, a parallel discrete lion swarm optimization(PDLSO) algorithm is proposed.The PDLSO has multiple populations, and each sub-population independently runs the DLSO algorithm in parallel. We use the ring topology to transfer information between sub-populations. Experiments on some benchmarks TSP problems show that the DLSO algorithm has a better accuracy than other algorithms, and the PDLSO algorithm can effectively shorten the running time.
基金supported by the National Natural Science Foundation of China (61903036, 61822304)Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100)。
文摘Collaborative coverage path planning(CCPP) refers to obtaining the shortest paths passing over all places except obstacles in a certain area or space. A multi-unmanned aerial vehicle(UAV) collaborative CCPP algorithm is proposed for the urban rescue search or military search in outdoor environment.Due to flexible control of small UAVs, it can be considered that all UAVs fly at the same altitude, that is, they perform search tasks on a two-dimensional plane. Based on the agents’ motion characteristics and environmental information, a mathematical model of CCPP problem is established. The minimum time for UAVs to complete the CCPP is the objective function, and complete coverage constraint, no-fly constraint, collision avoidance constraint, and communication constraint are considered. Four motion strategies and two communication strategies are designed. Then a distributed CCPP algorithm is designed based on hybrid strategies. Simulation results compared with patternbased genetic algorithm(PBGA) and random search method show that the proposed method has stronger real-time performance and better scalability and can complete the complete CCPP task more efficiently and stably.
文摘Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms.
基金Supported by the National Natural Science Foundation ofChina(No.61271240)Jiangsu Province Natural Science Fund Project(No.BK2010077)Subject of Twelfth Five Years Plans in Jiangsu Second Normal University(No.417103)
文摘Matrix completion is the extension of compressed sensing.In compressed sensing,we solve the underdetermined equations using sparsity prior of the unknown signals.However,in matrix completion,we solve the underdetermined equations based on sparsity prior in singular values set of the unknown matrix,which also calls low-rank prior of the unknown matrix.This paper firstly introduces basic concept of matrix completion,analyses the matrix suitably used in matrix completion,and shows that such matrix should satisfy two conditions:low rank and incoherence property.Then the paper provides three reconstruction algorithms commonly used in matrix completion:singular value thresholding algorithm,singular value projection,and atomic decomposition for minimum rank approximation,puts forward their shortcoming to know the rank of original matrix.The Projected Gradient Descent based on Soft Thresholding(STPGD),proposed in this paper predicts the rank of unknown matrix using soft thresholding,and iteratives based on projected gradient descent,thus it could estimate the rank of unknown matrix exactly with low computational complexity,this is verified by numerical experiments.We also analyze the convergence and computational complexity of the STPGD algorithm,point out this algorithm is guaranteed to converge,and analyse the number of iterations needed to reach reconstruction error.Compared the computational complexity of the STPGD algorithm to other algorithms,we draw the conclusion that the STPGD algorithm not only reduces the computational complexity,but also improves the precision of the reconstruction solution.
文摘This article presents an optimized approach of mathematical techniques in themedical domain by manoeuvring the phenomenon of ant colony optimization algorithm(also known as ACO).A complete graph of blood banks and a path that covers all the blood banks without repeating any link is required by applying the Travelling Salesman Problem(often TSP).The wide use promises to accelerate and offers the opportunity to cultivate health care,particularly in remote or unmerited environments by shrinking lab testing reversal times,empowering just-in-time lifesaving medical supply.
基金Supported by the National Natural Science Foundation of China (No.60472104), the Natural Science Research Program of Jiangsu Province (No.04KJB510094).
文摘Multi-constrained Quality-of-Service (QoS) routing is a big challenge for Mobile Ad hoc Networks (MANETs) where the topology may change constantly. In this paper a novel QoS Routing Algorithm based on Simulated Annealing (SA_RA) is proposed. This algorithm first uses an energy function to translate multiple QoS weights into a single mixed metric and then seeks to find a feasible path by simulated annealing. The pa- per outlines simulated annealing algorithm and analyzes the problems met when we apply it to Qos Routing (QoSR) in MANETs. Theoretical analysis and experiment results demonstrate that the proposed method is an effective approximation algorithms showing better performance than the other pertinent algorithm in seeking the (approximate) optimal configuration within a period of polynomial time.