A distributed model predictive control(MPC) scheme with one-step delay communication is proposed for on-line optimization and control of large-scale systems in this paper. Cooperation between subsystems is achieved by...A distributed model predictive control(MPC) scheme with one-step delay communication is proposed for on-line optimization and control of large-scale systems in this paper. Cooperation between subsystems is achieved by exchanging information with neighbor-to-neighbor communication and by optimizing the local problem with the improved performance index in the neighborhood. A distributed MPC algorithm with one-step delay communication is developed for the situation that there is a one-step delay in the information available from its neighbors when a subsystem solves the local optimization problem. The nominal stability is employed for the whole system under the distributed MPC algorithm without the inequality constraints. Finally, the case study of the reactor-storage-separator(RSS) system is illustrated to test the practicality of the presented control algorithm.展开更多
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di...Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.展开更多
Oxygen release and electrolyte decomposition under high voltage endlessly exacerbate interfacial ramifications and structu ral degradation of high energy-density Li-rich layered oxide(LLO),leading to voltage and capac...Oxygen release and electrolyte decomposition under high voltage endlessly exacerbate interfacial ramifications and structu ral degradation of high energy-density Li-rich layered oxide(LLO),leading to voltage and capacity fading.Herein,the dual-strategy of Cr,B complex coating and local gradient doping is simultaneously achieved on LLO surface by a one-step wet chemical reaction at room temperature.Density functional theory(DFT)calculations prove that stable B-O and Cr-O bonds through the local gradient doping can significantly reduce the high-energy O 2p states of interfacial lattice O,which is also effective for the near-surface lattice O,thus greatly stabilizing the LLO surface,Besides,differential electrochemical mass spectrometry(DEMS)indicates that the Cr_(x)B complex coating can adequately inhibit oxygen release and prevents the migration or dissolution of transition metal ions,including allowing speedy Li^(+)migration,The voltage and capacity fading of the modified cathode(LLO-C_(r)B)are adequately suppressed,which are benefited from the uniformly dense cathode electrolyte interface(CEI)composed of balanced organic/inorganic composition.Therefore,the specific capacity of LLO-CrB after 200 cycles at 1C is 209.3 mA h g^(-1)(with a retention rate of 95.1%).This dual-strategy through a one-step wet chemical reaction is expected to be applied in the design and development of other anionic redox cathode materials.展开更多
The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled p...The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled phased array antenna system is a necessary trend for the future development of the phased array,and it is also a major focus and difficulty in the current research of integrated microwave photonics.This paper firstly introduces the basic principle and development history of optical true time delay phased array antenna system based on microwave photonics,and briefly introduces the main implementation methods and integration platform of optical true time delay.Then,the application and development prospect of optical true time delay technology in beam control of phased array antenna system are mainly presented.Finally,according to the current research progress,the possible research directions of integrated optically controlled phased array antenna systems in the future are proposed.展开更多
In this paper,we investigate the periodic traveling wave solutions problem for a single population model with advection and distributed delay.By the bifurcation analysis method,we can obtain periodic traveling wave so...In this paper,we investigate the periodic traveling wave solutions problem for a single population model with advection and distributed delay.By the bifurcation analysis method,we can obtain periodic traveling wave solutions for this model under the influence of advection term and distributed delay.The obtained results indicate that weak kernel and strong kernel can both deduce the existence of periodic traveling wave solutions.Finally,we apply the main results in this paper to Logistic model and Nicholson’s blowflies model.展开更多
The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivativ...The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivative operator.Additionally,time delays in the potential field force and coupling force transmission are both considered.Firstly,based on the delay decoupling formula,combined with statistical mean method and the fractional-order Shapiro–Loginov formula,the“statistic synchronization”among particles is obtained,revealing the statistical equivalence between the mean field behavior of the system and the behavior of individual particles.Due to the existence of the coupling delay,the impact of the coupling force on synchronization exhibits non-monotonic,which is different from the previous monotonic effects.Then,two kinds of theoretical expression of output amplitude gains G and G are derived by time-delay decoupling formula and small delay approximation theorem,respectively.Compared to G,G is an exact theoretical solution,which means that G is not only more accurate in the region of small delay,but also applies to the region of large delay.Finally,the study of the output amplitude gain G and its resonance behavior are explored.Due to the presence of the potential field delay,a new resonance phenomenon termed“periodic resonance”is discovered,which arises from the periodic matching between the potential field delay and the driving frequency.This resonance phenomenon is analyzed qualitatively and quantitatively,uncovering undiscovered characteristics in previous studies.展开更多
Objective:The neurotoxicity of carbon monoxide(CO)to the central nervous system is a key pathogenesis of delayed encephalopathy after acute carbon monoxide poisoning(DEACMP).Our previous study found that retinoic acid...Objective:The neurotoxicity of carbon monoxide(CO)to the central nervous system is a key pathogenesis of delayed encephalopathy after acute carbon monoxide poisoning(DEACMP).Our previous study found that retinoic acid(RA)can suppress the neurotoxic effects of CO.This study further explores,in vivo and in vitro,the molecular mechanisms by which RA alleviates CO-induced central nervous system damage.Methods:A cytotoxic model was established using the mouse hippocampal neuronal cell line HT22 and primary oligodendrocytes exposed to CO,and a DEACMP animal model was established in adult Kunming mice.Cell viability and apoptosis of hippocampal neurons and oligodendrocytes were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assay and Annexin V/propidium iodide(PI)double staining.The transcriptional and protein expression of each gene was detected using real time fluorescence quantitative PCR(RT-qPCR)and Western blotting.Long noncoding RNA(lncRNA)SNHG15 and LINGO-1 were knocked down or overexpressed to observe changes in neurons and oligodendrocytes.In DEACMP mice,SNHG15 or LINGO-1 were knocked down to assess changes in central nervous tissue and downstream protein expression.Results:RA at 10 and 20μmol/L significantly reversed CO-induced apoptosis of hippocampal neurons and oligodendrocytes,downregulation of SNHG15 and LINGO-1,and upregulation of brain-derived neurotrophic factor(BDNF)and tyrosine kinase receptor B(TrkB)(all P<0.05).Overexpression of SNHG15 or LINGO-1 weakened the protective effect of RA against CO-induced cytotoxicity(all P<0.05).Knockdown of SNHG15 or LINGO-1 alleviated CO-induced apoptosis of hippocampal neurons and oligodendrocytes and upregulated BDNF and TrkB expression levels(all P<0.05).Experiments in DEACMP model mice showed that knockdown of SNHG15 or LINGO-1 mitigated central nervous system injury in DEACMP(all P<0.05).Conclusion:RA alleviates CO-induced apoptosis of hippocampal neurons and oligodendrocytes,thereby reducing central nervous system injury and exerting neuroprotective effects.LncRNA SNHG15 and LINGO-1 are key molecules mediating RA induced inhibition of neuronal apoptosis and are associated with the BDNF/TrkB pathway.These findings provide a theoretical framework for optimizing the clinical treatment of DEACMP and lay an experimental foundation for elucidating its molecular mechanisms.展开更多
The development of circularly polarized luminescence (CPL) materials from simple organic molecules is of critical importance for advancing their practical applications, yet it remains hindered by challenges such as lo...The development of circularly polarized luminescence (CPL) materials from simple organic molecules is of critical importance for advancing their practical applications, yet it remains hindered by challenges such as low dissymmetry factors (glum) and complex synthetic process. Herein, we report a facile one-step [2+2] condensation strategy to access a Schiff-base pyrene dimer featuring 1,6-substituted pyrenes and trans-1,2-diaminocyclohexane units in 77% yield. Taking advantages of face-to-face π-π stacking of pyrene rings in the constrained D_(2) symmetric structure, intense excimer CPL was successfully realized with a |glum| value of 0.021 and a CPL brightness, BCPL, value of 154.5 M-1·cm-1. The optimized excited state structures reveal that the high |glum| value arises from the parallel arrangement of electric and magnetic dipole transition moments. Importantly, the rigid pyrene dimer architecture ensures robust CPL performance invariant under diverse conditions, including changes in temperature, concentration, and solvents, as well as in polymer films.展开更多
In this work,one-step growth models using hyperspectral imaging(HSI)(400-1000 nm)were successfully developed in order to estimate the microbial loads,minimum growth temperature(T_(min))and maximum specific growth rate...In this work,one-step growth models using hyperspectral imaging(HSI)(400-1000 nm)were successfully developed in order to estimate the microbial loads,minimum growth temperature(T_(min))and maximum specific growth rate(μ_(max))of Brochothrix thermosphacta in chilled beef at isothermal temperatures(4-25℃).Three different methods were compared for model development,particularly using(Model Ⅰ)the predicted microbial loads from partial least squares regression of the whole spectral variables;(Model Ⅱ)the selected spectral variables related to microbial loads;and(Model Ⅲ)the first principal scores of HSI spectra by principal component analysis.Consequently,Model Ⅰ showed the best ability to predict the microbial loads of B.thermosphacta,with the coefficient of determination(R_(v)^(2))and root mean square error in internal validation(RMSEV)of 0.921 and 0.498(lg(CFU/g)).The T_(min)(-12.32℃)andμmax can be well estimated with R^(2) and root mean square error(RMSE)of 0.971 and 0.276(lg(CFU/g)),respectively.The upward trend ofμmax with temperature was similar to that of the plate count method.HSI technique thus can be used as a simple method for one-step growth simulation of B.thermosphacta in chilled beef during storage.展开更多
BACKGROUND Inflammatory bowel disease(IBD)is a common chronic intestinal inflammatory disease.High oxidative stress is a treatment target for IBD.Cerium oxide(CeO2)nanomaterials as nanozymes with antioxidant activity ...BACKGROUND Inflammatory bowel disease(IBD)is a common chronic intestinal inflammatory disease.High oxidative stress is a treatment target for IBD.Cerium oxide(CeO2)nanomaterials as nanozymes with antioxidant activity are potential drugs for the treatment of colitis.AIM To synthesize hollow cerium(H-CeO2)nanoparticles by one-step method and to validate the therapeutic efficacy of H-CeO2 in IBD.METHODS H-CeO2 was synthesized by one-step method and examined its characterization and nanoenzymatic activity.Subsequently,we constructed dextran sulfate so-dium(DSS)-induced colitis in mice to observe the effects of H-CeO2 on colonic inflammation.The effects of H-CeO2 on colon inflammation and reactive oxygen species(ROS)levels in IBD mice were detected by hematoxylin and eosin staining and dichlorofluorescein diacetate staining,respectively.Finally,the biological sa-fety of H-CeO2 on mice was evaluated by hematoxylin and eosin staining,blood routine,and blood biochemistry.RESULTS H-CeO2 nanoparticles prepared by the one-step method were uniform,monodi-sperse and hollow.H-CeO2 had a good ability to scavenge ROS,∙OH and∙OOH.H-CeO2 reduced DSS-induced decreases in body weight and colon length,colonic epithelial damage,inflammatory infiltration,and ROS accumulation.H-CeO2 administration reduced the disease activity index of DSS-induced animals from about 8 to 5.H-CeO2 had no significant effect on body weight,total platelet count,hemoglobin,white blood cell,and red blood cell counts in healthy mice.No significant damage to major organs was observed in healthy mice following H-CeO2 administration.CONCLUSION The one-step synthesis of H-CeO2 nanomaterials had good antioxidant activity,biosafety,and inhibited deve-lopment of DSS-induced IBD in mice by scavenging ROS.展开更多
Building a superhydrophobic coating on a carbon steel substrate is an effective strategy for enhancing metal protection.A practical approach to producing a series of superhydrophobic Ni/SiO_(2)composite coatings(SSN)u...Building a superhydrophobic coating on a carbon steel substrate is an effective strategy for enhancing metal protection.A practical approach to producing a series of superhydrophobic Ni/SiO_(2)composite coatings(SSN)using one-step electrodeposition method is shown.The effect of processing parameters on surface structure and wettability was thoroughly explored,resulting in the identification of three typical surface morphologies.The prepared coating with petal-like structure(SSN-3)obtained under the optimum parameters exhibited the best water repellency,achieving a contact angle of 162.7°and a sliding angle of 4.1°.The droplet bouncing behavior on SSN coatings surface was studied,and the delayed icing time was recorded.Meanwhile,the mechanical stability and chemical corrosion resistance of SSN coatings were focused.The superhydrophobic SSN-3 coating with unique surface structure exhibited excellent reliability.The anticorrosion mechanism of SSN-3 coating was discussed,and its corrosion protection efficiency was up to 98.5%.The superior properties of the superhydrophobic SSN-3 coating make it suitable for diverse applications.展开更多
To provide an energy-efficient and slab-demand-compliant rolling delay strategy,the simulation software is utilized to calculate the rolling delay process of the reheating furnace.Based on energy consumption evaluatio...To provide an energy-efficient and slab-demand-compliant rolling delay strategy,the simulation software is utilized to calculate the rolling delay process of the reheating furnace.Based on energy consumption evaluation,two optimization methods were employed.The bisection approach uses the needs of the slab to estimate the rolling delay temperature,and the golden section search method uses the energy consumption analysis of the slab to determine the high-temperature insulation duration.Generally,the slab closest to the discharge position in the control zone is selected as the optimization target.The optimized slab does not show a significant temperature rise after the end of the rolling delay process.When comparing the optimized rolling delay strategies with the traditional ones,the optimized rolling delay strategies not only meet the output requirements for slabs but also offer significant advantages in terms of energy efficiency,and this advantage increases with rolling delay time.展开更多
A solid,fast-dissolving sodium silicate was used as an alkaline activator.Granulated blast furnace slag(GGBS),metakaolin(MK),and steel slag(SS)were used as the cementious components to prepare a ternary composite ceme...A solid,fast-dissolving sodium silicate was used as an alkaline activator.Granulated blast furnace slag(GGBS),metakaolin(MK),and steel slag(SS)were used as the cementious components to prepare a ternary composite cementitious material known as alkali-activated steel slag composite cementitious material(ASCM)by the"one-step method".The impacts of cementitious components,alkali activator modulus,and Na_(2)O%on the mechanical strength were investigated,and the hydration products and hydration kinetics of ASCM were analyzed.The experimental results reveal that XRD,FTIR,SEM,EDS,and exothermic heat of hydration show that when GGBS:MK:SS=60wt%:10wt%:30wt%,the activator modulus is 1.2,and the alkali content is 5.5wt%,the 28 d flexural strength of ASCM mortar is 12.6 MPa,and the compressive strength is 53.3 MPa,the hydration products consist of C-S-H gel/C-A-S-H gel,mullite(3Al_(2)O_(3)-2SiO_(2)),calcite(CaCO_(3)),quartz,etc.ASCM has a large initial hydration exotherm rate but a small cumulative exotherm.展开更多
We report the fabrication of an 8-meter-long thin-flm lithium niobate optical true delay line using the photolithography-assisted chemomechanical etching technique,showing a low transmission loss of 0.036 dB/cm in the...We report the fabrication of an 8-meter-long thin-flm lithium niobate optical true delay line using the photolithography-assisted chemomechanical etching technique,showing a low transmission loss of 0.036 dB/cm in the conventional telecom band.展开更多
In this article,the global attractors of 2D g-Navier-Stokes equations are obtained in the space of C_(Hg) and CVg respectively.When the external force f is sufficiently small,the studies indicate that the global attra...In this article,the global attractors of 2D g-Navier-Stokes equations are obtained in the space of C_(Hg) and CVg respectively.When the external force f is sufficiently small,the studies indicate that the global attractor in C_(Hg) is equal to the global attractor in C_(Vg).展开更多
We present a compact optical delay line(ODL)with wide-range continuous tunability on thin-film lithium niobate platform.The proposed device integrates an unbalanced Mach-Zehnder interferometer(MZI)architecture with du...We present a compact optical delay line(ODL)with wide-range continuous tunability on thin-film lithium niobate platform.The proposed device integrates an unbalanced Mach-Zehnder interferometer(MZI)architecture with dual tunable couplers,where each coupler comprises two 2×2 multimode interferometers and a MZI phase-tuning section.Experimental results demonstrate continuous delay tuning from 0 to 293 ps through synchronized control of coupling coefficients,corresponding to a 4 cm path difference between interferometer arms.The measured delay range exhibits excellent agreement with theoretical predictions derived from ODL waveguide parameters.This result addresses critical challenges in integrated photonic systems that require precise temporal control,particularly for applications in optical communications and quantum information processing,where a wide tuning range is paramount.展开更多
BACKGROUND Visual impairment during early childhood can hinder motor,language,and social development,yet data on its developmental impact across common pediatric ocular diseases remain limited.AIM To investigate the d...BACKGROUND Visual impairment during early childhood can hinder motor,language,and social development,yet data on its developmental impact across common pediatric ocular diseases remain limited.AIM To investigate the developmental impact of low vision and blindness on children under six with common ocular diseases.METHODS This retrospective study reviewed records of new patients under six with visual impairment at Siriraj Hospital’s low vision rehabilitation center(January 2017-October 2022).We collected ocular,systemic,and developmental data;recorded visual acuity in the better-seeing eye after refractive correction;and assessed developmental domains with the DenverⅡ.Univariable and multi-variable logistic regression identified factors associated with developmental delay.RESULTS A total of 161 pediatric patients(mean age 24.9±18.9 months)were enrolled and evaluated based on their ability to fix on and follow an object or light source.Some were further assessed using the Allen picture chart and all had visual acuity worse than 1.07±0.58 LogMAR,and 83.2%were identified as having global developmental delay(GDD).The three most common ocular causes were cortical visual impairment(CVI),optic neuropathy/atrophy,and optic nerve hypoplasia.Extremely poor visual acuity(inability to fixate and follow)was significantly associated with GDD[adjusted odds ratio(AOR)41.0]and delays in all developmental domains:Gross motor(AOR 10.0),fine motor(AOR 12.8),language(AOR 5.3),and personal-social skills(AOR 13.4)(P≤0.002).Multiple disabilities,most often visual impairment with cerebral palsy,were also significantly associated with gross motor delays(AOR 7.7)and fine motor delays(AOR 4.0)(P<0.05).CVI was also related to delays in language and personal-social skills(AOR 9.1 each)(P<0.05).CONCLUSION This study underscores the developmental issues in children with visual impairment,especially those with poorer acuity,CVI,and multiple disabilities.Significant delays were observed in all domains,including GDD.A timely referral to specialists is strongly recommended.展开更多
This paper considers the fundamental channel estimation problem for the multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)system in the presence of multi-cell interference.Specificall...This paper considers the fundamental channel estimation problem for the multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)system in the presence of multi-cell interference.Specifically,this paper focuses on both channel modelling and receiver design for interference estimation and mitigation.We propose a delay-calibrated block-wise linear model,which extracts the delay of the dominant tap of each interference as a key parameter and approximates the residual channel coefficients by the recently developed blockwise linear model.Based on the delay-calibrated block-wise linear model and the angle-domain channel sparsity,we further conceive a message passing algorithm to solve the channel estimation problem.Numerical results demonstrate the superior performance of the proposed algorithm over the state-of-the-art algorithms.展开更多
Through systematic analysis of risk factors associated with postoperative delayed discharge following retrograde intrarenal surgery(RIRS)with flexible ureteroscopic holmium laser lithotripsy under ambulatory surgery p...Through systematic analysis of risk factors associated with postoperative delayed discharge following retrograde intrarenal surgery(RIRS)with flexible ureteroscopic holmium laser lithotripsy under ambulatory surgery protocols,this study aims to develop and validate a risk prediction model for discharge delay.The ultimate objectives include establishing evidence-based clinical guidelines for urolithiasis management,enabling proactive intervention strategies,and optimizing physician-patient communication efficiency.METHODS:This retrospective cohort study analyzed clinical data from 253 patients undergoing ambulatory retrograde intrarenal surgery(RIRS)with flexible ureteroscopic holmium laser lithotripsy at the Day Surgery Unit and Urology Department of Hunan Provincial People's Hospital between January 2023 and December 2024.To identify predictors of discharge delay,Lasso-regularized logistic regression analysis was implemented for variable selection,followed by multivariable logistic regression modeling via R statistical software(version 4.3.1).A clinical prediction nomogram was developed to visualize risk stratification,with model performance evaluated through receiver operating characteristic(ROC)curve analysis,calibration plots,and decision curve analysis(DCA).Internal validation was conducted using 1,000-cycle bootstrap resampling to ensure model generalizability.展开更多
基金the National Natural Science Foundation of China(No.61203110)the Shanghai Natural Science Foundation(No.13ZR1418900)the Innovation Programs of Shanghai Municipal Education Commission(Nos.12ZZ155 and 14YZ107)
文摘A distributed model predictive control(MPC) scheme with one-step delay communication is proposed for on-line optimization and control of large-scale systems in this paper. Cooperation between subsystems is achieved by exchanging information with neighbor-to-neighbor communication and by optimizing the local problem with the improved performance index in the neighborhood. A distributed MPC algorithm with one-step delay communication is developed for the situation that there is a one-step delay in the information available from its neighbors when a subsystem solves the local optimization problem. The nominal stability is employed for the whole system under the distributed MPC algorithm without the inequality constraints. Finally, the case study of the reactor-storage-separator(RSS) system is illustrated to test the practicality of the presented control algorithm.
文摘Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.
基金financially supported by the National Natural Science Foundation of China(No.12304077)the Natural Science Foundation of Science and Technology Department of Sichuan Province(No.23NSFSC6224)+3 种基金Sichuan Science and Technology Program(No.2024NSFSC0989)the Key Laboratory of Computational Physics of Sichuan Province(No.YBUJSWL-YB-2022-03)the Material Corrosion and Protection Key Laboratory of Sichuan Province(No.2023CL14 and No.2023CL01)the National Innovation Practice Project(No.202411079005S).
文摘Oxygen release and electrolyte decomposition under high voltage endlessly exacerbate interfacial ramifications and structu ral degradation of high energy-density Li-rich layered oxide(LLO),leading to voltage and capacity fading.Herein,the dual-strategy of Cr,B complex coating and local gradient doping is simultaneously achieved on LLO surface by a one-step wet chemical reaction at room temperature.Density functional theory(DFT)calculations prove that stable B-O and Cr-O bonds through the local gradient doping can significantly reduce the high-energy O 2p states of interfacial lattice O,which is also effective for the near-surface lattice O,thus greatly stabilizing the LLO surface,Besides,differential electrochemical mass spectrometry(DEMS)indicates that the Cr_(x)B complex coating can adequately inhibit oxygen release and prevents the migration or dissolution of transition metal ions,including allowing speedy Li^(+)migration,The voltage and capacity fading of the modified cathode(LLO-C_(r)B)are adequately suppressed,which are benefited from the uniformly dense cathode electrolyte interface(CEI)composed of balanced organic/inorganic composition.Therefore,the specific capacity of LLO-CrB after 200 cycles at 1C is 209.3 mA h g^(-1)(with a retention rate of 95.1%).This dual-strategy through a one-step wet chemical reaction is expected to be applied in the design and development of other anionic redox cathode materials.
基金supported by Fund of State Key Laboratory of IPOC(BUPT)(No.IPOC2021ZT16),China.
文摘The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled phased array antenna system is a necessary trend for the future development of the phased array,and it is also a major focus and difficulty in the current research of integrated microwave photonics.This paper firstly introduces the basic principle and development history of optical true time delay phased array antenna system based on microwave photonics,and briefly introduces the main implementation methods and integration platform of optical true time delay.Then,the application and development prospect of optical true time delay technology in beam control of phased array antenna system are mainly presented.Finally,according to the current research progress,the possible research directions of integrated optically controlled phased array antenna systems in the future are proposed.
基金Supported by the National Natural Science Foundation of China(12261050)Science and Technology Project of Department of Education of Jiangxi Province(GJJ2201612 and GJJ211027)Natural Science Foundation of Jiangxi Province of China(20212BAB202021)。
文摘In this paper,we investigate the periodic traveling wave solutions problem for a single population model with advection and distributed delay.By the bifurcation analysis method,we can obtain periodic traveling wave solutions for this model under the influence of advection term and distributed delay.The obtained results indicate that weak kernel and strong kernel can both deduce the existence of periodic traveling wave solutions.Finally,we apply the main results in this paper to Logistic model and Nicholson’s blowflies model.
基金supported by the Natural Science Foundation of Sichuan Province,China(Youth Science Foundation)(Grant No.2022NSFSC1952).
文摘The collective dynamic of a fractional-order globally coupled system with time delays and fluctuating frequency is investigated.The power-law memory of the system is characterized using the Caputo fractional derivative operator.Additionally,time delays in the potential field force and coupling force transmission are both considered.Firstly,based on the delay decoupling formula,combined with statistical mean method and the fractional-order Shapiro–Loginov formula,the“statistic synchronization”among particles is obtained,revealing the statistical equivalence between the mean field behavior of the system and the behavior of individual particles.Due to the existence of the coupling delay,the impact of the coupling force on synchronization exhibits non-monotonic,which is different from the previous monotonic effects.Then,two kinds of theoretical expression of output amplitude gains G and G are derived by time-delay decoupling formula and small delay approximation theorem,respectively.Compared to G,G is an exact theoretical solution,which means that G is not only more accurate in the region of small delay,but also applies to the region of large delay.Finally,the study of the output amplitude gain G and its resonance behavior are explored.Due to the presence of the potential field delay,a new resonance phenomenon termed“periodic resonance”is discovered,which arises from the periodic matching between the potential field delay and the driving frequency.This resonance phenomenon is analyzed qualitatively and quantitatively,uncovering undiscovered characteristics in previous studies.
基金supported by the Natural Science Foundation of Hunan Province(2021JJ31089)the Scientific Research Project of Health Commission of Hunan Province(202203104548),China。
文摘Objective:The neurotoxicity of carbon monoxide(CO)to the central nervous system is a key pathogenesis of delayed encephalopathy after acute carbon monoxide poisoning(DEACMP).Our previous study found that retinoic acid(RA)can suppress the neurotoxic effects of CO.This study further explores,in vivo and in vitro,the molecular mechanisms by which RA alleviates CO-induced central nervous system damage.Methods:A cytotoxic model was established using the mouse hippocampal neuronal cell line HT22 and primary oligodendrocytes exposed to CO,and a DEACMP animal model was established in adult Kunming mice.Cell viability and apoptosis of hippocampal neurons and oligodendrocytes were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assay and Annexin V/propidium iodide(PI)double staining.The transcriptional and protein expression of each gene was detected using real time fluorescence quantitative PCR(RT-qPCR)and Western blotting.Long noncoding RNA(lncRNA)SNHG15 and LINGO-1 were knocked down or overexpressed to observe changes in neurons and oligodendrocytes.In DEACMP mice,SNHG15 or LINGO-1 were knocked down to assess changes in central nervous tissue and downstream protein expression.Results:RA at 10 and 20μmol/L significantly reversed CO-induced apoptosis of hippocampal neurons and oligodendrocytes,downregulation of SNHG15 and LINGO-1,and upregulation of brain-derived neurotrophic factor(BDNF)and tyrosine kinase receptor B(TrkB)(all P<0.05).Overexpression of SNHG15 or LINGO-1 weakened the protective effect of RA against CO-induced cytotoxicity(all P<0.05).Knockdown of SNHG15 or LINGO-1 alleviated CO-induced apoptosis of hippocampal neurons and oligodendrocytes and upregulated BDNF and TrkB expression levels(all P<0.05).Experiments in DEACMP model mice showed that knockdown of SNHG15 or LINGO-1 mitigated central nervous system injury in DEACMP(all P<0.05).Conclusion:RA alleviates CO-induced apoptosis of hippocampal neurons and oligodendrocytes,thereby reducing central nervous system injury and exerting neuroprotective effects.LncRNA SNHG15 and LINGO-1 are key molecules mediating RA induced inhibition of neuronal apoptosis and are associated with the BDNF/TrkB pathway.These findings provide a theoretical framework for optimizing the clinical treatment of DEACMP and lay an experimental foundation for elucidating its molecular mechanisms.
基金the financial support of the National Natural Science Foundation of China(No.22471057)Natural Science Foundation of Hebei Province(Nos.226Z1501G,B2024205039)+2 种基金Young Scientific and Technological Talents Support Project of Jiangsu Province(JSTJ-2024-426)Jiangsu FundingProgram for Excellent Postdoctoral Talent(2024zB630)We also gratefully acknowledge the support from the National Demonstration Center for Experimental Chemistry Education of Hebei Normal University.
文摘The development of circularly polarized luminescence (CPL) materials from simple organic molecules is of critical importance for advancing their practical applications, yet it remains hindered by challenges such as low dissymmetry factors (glum) and complex synthetic process. Herein, we report a facile one-step [2+2] condensation strategy to access a Schiff-base pyrene dimer featuring 1,6-substituted pyrenes and trans-1,2-diaminocyclohexane units in 77% yield. Taking advantages of face-to-face π-π stacking of pyrene rings in the constrained D_(2) symmetric structure, intense excimer CPL was successfully realized with a |glum| value of 0.021 and a CPL brightness, BCPL, value of 154.5 M-1·cm-1. The optimized excited state structures reveal that the high |glum| value arises from the parallel arrangement of electric and magnetic dipole transition moments. Importantly, the rigid pyrene dimer architecture ensures robust CPL performance invariant under diverse conditions, including changes in temperature, concentration, and solvents, as well as in polymer films.
基金supported by Key Research&Development Program of Jiangsu Province in China(BE2020693)Major Project of Science and Technology of Anhui Province(201903a06020010)+1 种基金Joint Key Project of Science and Technology Innovation of Yangtze River Delta in Anhui Province(202004g01020009)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘In this work,one-step growth models using hyperspectral imaging(HSI)(400-1000 nm)were successfully developed in order to estimate the microbial loads,minimum growth temperature(T_(min))and maximum specific growth rate(μ_(max))of Brochothrix thermosphacta in chilled beef at isothermal temperatures(4-25℃).Three different methods were compared for model development,particularly using(Model Ⅰ)the predicted microbial loads from partial least squares regression of the whole spectral variables;(Model Ⅱ)the selected spectral variables related to microbial loads;and(Model Ⅲ)the first principal scores of HSI spectra by principal component analysis.Consequently,Model Ⅰ showed the best ability to predict the microbial loads of B.thermosphacta,with the coefficient of determination(R_(v)^(2))and root mean square error in internal validation(RMSEV)of 0.921 and 0.498(lg(CFU/g)).The T_(min)(-12.32℃)andμmax can be well estimated with R^(2) and root mean square error(RMSE)of 0.971 and 0.276(lg(CFU/g)),respectively.The upward trend ofμmax with temperature was similar to that of the plate count method.HSI technique thus can be used as a simple method for one-step growth simulation of B.thermosphacta in chilled beef during storage.
文摘BACKGROUND Inflammatory bowel disease(IBD)is a common chronic intestinal inflammatory disease.High oxidative stress is a treatment target for IBD.Cerium oxide(CeO2)nanomaterials as nanozymes with antioxidant activity are potential drugs for the treatment of colitis.AIM To synthesize hollow cerium(H-CeO2)nanoparticles by one-step method and to validate the therapeutic efficacy of H-CeO2 in IBD.METHODS H-CeO2 was synthesized by one-step method and examined its characterization and nanoenzymatic activity.Subsequently,we constructed dextran sulfate so-dium(DSS)-induced colitis in mice to observe the effects of H-CeO2 on colonic inflammation.The effects of H-CeO2 on colon inflammation and reactive oxygen species(ROS)levels in IBD mice were detected by hematoxylin and eosin staining and dichlorofluorescein diacetate staining,respectively.Finally,the biological sa-fety of H-CeO2 on mice was evaluated by hematoxylin and eosin staining,blood routine,and blood biochemistry.RESULTS H-CeO2 nanoparticles prepared by the one-step method were uniform,monodi-sperse and hollow.H-CeO2 had a good ability to scavenge ROS,∙OH and∙OOH.H-CeO2 reduced DSS-induced decreases in body weight and colon length,colonic epithelial damage,inflammatory infiltration,and ROS accumulation.H-CeO2 administration reduced the disease activity index of DSS-induced animals from about 8 to 5.H-CeO2 had no significant effect on body weight,total platelet count,hemoglobin,white blood cell,and red blood cell counts in healthy mice.No significant damage to major organs was observed in healthy mice following H-CeO2 administration.CONCLUSION The one-step synthesis of H-CeO2 nanomaterials had good antioxidant activity,biosafety,and inhibited deve-lopment of DSS-induced IBD in mice by scavenging ROS.
基金the Natural Science Foundation of Chongqing of China(Nos.CSTB2024NSCQ-MSX1013 and cstc2021jcyj-msxmX1139)the Science and Technology Research Program of Chongqing Education Commission(Nos.KJZD-K202304502,KJQN202201214,KJQN202001243 and KJZD-M202301201)the Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan province(No.2024CL05).
文摘Building a superhydrophobic coating on a carbon steel substrate is an effective strategy for enhancing metal protection.A practical approach to producing a series of superhydrophobic Ni/SiO_(2)composite coatings(SSN)using one-step electrodeposition method is shown.The effect of processing parameters on surface structure and wettability was thoroughly explored,resulting in the identification of three typical surface morphologies.The prepared coating with petal-like structure(SSN-3)obtained under the optimum parameters exhibited the best water repellency,achieving a contact angle of 162.7°and a sliding angle of 4.1°.The droplet bouncing behavior on SSN coatings surface was studied,and the delayed icing time was recorded.Meanwhile,the mechanical stability and chemical corrosion resistance of SSN coatings were focused.The superhydrophobic SSN-3 coating with unique surface structure exhibited excellent reliability.The anticorrosion mechanism of SSN-3 coating was discussed,and its corrosion protection efficiency was up to 98.5%.The superior properties of the superhydrophobic SSN-3 coating make it suitable for diverse applications.
文摘To provide an energy-efficient and slab-demand-compliant rolling delay strategy,the simulation software is utilized to calculate the rolling delay process of the reheating furnace.Based on energy consumption evaluation,two optimization methods were employed.The bisection approach uses the needs of the slab to estimate the rolling delay temperature,and the golden section search method uses the energy consumption analysis of the slab to determine the high-temperature insulation duration.Generally,the slab closest to the discharge position in the control zone is selected as the optimization target.The optimized slab does not show a significant temperature rise after the end of the rolling delay process.When comparing the optimized rolling delay strategies with the traditional ones,the optimized rolling delay strategies not only meet the output requirements for slabs but also offer significant advantages in terms of energy efficiency,and this advantage increases with rolling delay time.
基金Funded by the Scientific Research Program of Jilin Provincial Science and Technology Development(No.20250203184SF)。
文摘A solid,fast-dissolving sodium silicate was used as an alkaline activator.Granulated blast furnace slag(GGBS),metakaolin(MK),and steel slag(SS)were used as the cementious components to prepare a ternary composite cementitious material known as alkali-activated steel slag composite cementitious material(ASCM)by the"one-step method".The impacts of cementitious components,alkali activator modulus,and Na_(2)O%on the mechanical strength were investigated,and the hydration products and hydration kinetics of ASCM were analyzed.The experimental results reveal that XRD,FTIR,SEM,EDS,and exothermic heat of hydration show that when GGBS:MK:SS=60wt%:10wt%:30wt%,the activator modulus is 1.2,and the alkali content is 5.5wt%,the 28 d flexural strength of ASCM mortar is 12.6 MPa,and the compressive strength is 53.3 MPa,the hydration products consist of C-S-H gel/C-A-S-H gel,mullite(3Al_(2)O_(3)-2SiO_(2)),calcite(CaCO_(3)),quartz,etc.ASCM has a large initial hydration exotherm rate but a small cumulative exotherm.
基金supported by the National Natural Science Foundation of China(Grant Nos.12192251,12334014,92480001,12134001,12304418,12274130,12274133,12474378,and 12404378)the National Key R&D Program of China(Grant Nos.2022YFA1404600 and 2022YFA1205100)+2 种基金Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301403)the Engineering Research Center for Nanophotonics&Advanced Instrument,Ministry of Education,East China Normal University(Grant No.2023nmc005)。
文摘We report the fabrication of an 8-meter-long thin-flm lithium niobate optical true delay line using the photolithography-assisted chemomechanical etching technique,showing a low transmission loss of 0.036 dB/cm in the conventional telecom band.
基金Supported by the National Natural Science Foundation of China(11971378)Shaanxi Fundamental Science Research Project for Mathematics and Physics(23JSY050)Shaanxi Innovative Training Program for College Students(S202410719114)。
文摘In this article,the global attractors of 2D g-Navier-Stokes equations are obtained in the space of C_(Hg) and CVg respectively.When the external force f is sufficiently small,the studies indicate that the global attractor in C_(Hg) is equal to the global attractor in C_(Vg).
基金supported by the National Natural Science Foundation of China(Grant Nos.12192251,12334014,12404378,92480001,12134001,12174113,12174107,12474325,12404379,and 12474378)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301403)+1 种基金Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)Fundamental Research Funds for the Central Universities,the Engineering Research Center for Nanophotonics&Advanced Instrument,Ministry of Education,East China Normal University(Grant No.2023nmc005).
文摘We present a compact optical delay line(ODL)with wide-range continuous tunability on thin-film lithium niobate platform.The proposed device integrates an unbalanced Mach-Zehnder interferometer(MZI)architecture with dual tunable couplers,where each coupler comprises two 2×2 multimode interferometers and a MZI phase-tuning section.Experimental results demonstrate continuous delay tuning from 0 to 293 ps through synchronized control of coupling coefficients,corresponding to a 4 cm path difference between interferometer arms.The measured delay range exhibits excellent agreement with theoretical predictions derived from ODL waveguide parameters.This result addresses critical challenges in integrated photonic systems that require precise temporal control,particularly for applications in optical communications and quantum information processing,where a wide tuning range is paramount.
文摘BACKGROUND Visual impairment during early childhood can hinder motor,language,and social development,yet data on its developmental impact across common pediatric ocular diseases remain limited.AIM To investigate the developmental impact of low vision and blindness on children under six with common ocular diseases.METHODS This retrospective study reviewed records of new patients under six with visual impairment at Siriraj Hospital’s low vision rehabilitation center(January 2017-October 2022).We collected ocular,systemic,and developmental data;recorded visual acuity in the better-seeing eye after refractive correction;and assessed developmental domains with the DenverⅡ.Univariable and multi-variable logistic regression identified factors associated with developmental delay.RESULTS A total of 161 pediatric patients(mean age 24.9±18.9 months)were enrolled and evaluated based on their ability to fix on and follow an object or light source.Some were further assessed using the Allen picture chart and all had visual acuity worse than 1.07±0.58 LogMAR,and 83.2%were identified as having global developmental delay(GDD).The three most common ocular causes were cortical visual impairment(CVI),optic neuropathy/atrophy,and optic nerve hypoplasia.Extremely poor visual acuity(inability to fixate and follow)was significantly associated with GDD[adjusted odds ratio(AOR)41.0]and delays in all developmental domains:Gross motor(AOR 10.0),fine motor(AOR 12.8),language(AOR 5.3),and personal-social skills(AOR 13.4)(P≤0.002).Multiple disabilities,most often visual impairment with cerebral palsy,were also significantly associated with gross motor delays(AOR 7.7)and fine motor delays(AOR 4.0)(P<0.05).CVI was also related to delays in language and personal-social skills(AOR 9.1 each)(P<0.05).CONCLUSION This study underscores the developmental issues in children with visual impairment,especially those with poorer acuity,CVI,and multiple disabilities.Significant delays were observed in all domains,including GDD.A timely referral to specialists is strongly recommended.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFB1804800。
文摘This paper considers the fundamental channel estimation problem for the multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM)system in the presence of multi-cell interference.Specifically,this paper focuses on both channel modelling and receiver design for interference estimation and mitigation.We propose a delay-calibrated block-wise linear model,which extracts the delay of the dominant tap of each interference as a key parameter and approximates the residual channel coefficients by the recently developed blockwise linear model.Based on the delay-calibrated block-wise linear model and the angle-domain channel sparsity,we further conceive a message passing algorithm to solve the channel estimation problem.Numerical results demonstrate the superior performance of the proposed algorithm over the state-of-the-art algorithms.
文摘Through systematic analysis of risk factors associated with postoperative delayed discharge following retrograde intrarenal surgery(RIRS)with flexible ureteroscopic holmium laser lithotripsy under ambulatory surgery protocols,this study aims to develop and validate a risk prediction model for discharge delay.The ultimate objectives include establishing evidence-based clinical guidelines for urolithiasis management,enabling proactive intervention strategies,and optimizing physician-patient communication efficiency.METHODS:This retrospective cohort study analyzed clinical data from 253 patients undergoing ambulatory retrograde intrarenal surgery(RIRS)with flexible ureteroscopic holmium laser lithotripsy at the Day Surgery Unit and Urology Department of Hunan Provincial People's Hospital between January 2023 and December 2024.To identify predictors of discharge delay,Lasso-regularized logistic regression analysis was implemented for variable selection,followed by multivariable logistic regression modeling via R statistical software(version 4.3.1).A clinical prediction nomogram was developed to visualize risk stratification,with model performance evaluated through receiver operating characteristic(ROC)curve analysis,calibration plots,and decision curve analysis(DCA).Internal validation was conducted using 1,000-cycle bootstrap resampling to ensure model generalizability.