期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
One-Signed Periodic Solutions of First-Order Functional Difference Equations with Parameter
1
作者 Yanqiong LU Ruyun MA Bo LU 《Journal of Mathematical Research with Applications》 CSCD 2018年第4期384-392,共9页
In this paper,the authors obtain the existence of one-signed periodic solutions of the first-order functional difference equation ?u(n) = a(n)u(n)-λb(n)f(u(n-τ(n))),n ∈ Z by using global bifurcation ... In this paper,the authors obtain the existence of one-signed periodic solutions of the first-order functional difference equation ?u(n) = a(n)u(n)-λb(n)f(u(n-τ(n))),n ∈ Z by using global bifurcation techniques,where a,b:Z → [0,∞) are T-periodic functions with ∑T n=1 a(n) 〉 0,∑T n=1 b(n) 〉 0;τ:Z → Z is T-periodic function,λ 〉 0 is a parameter;f ∈ C(R,R) and there exist two constants s2 〈 0 〈 s1 such that f(s2) = f(0) = f(s1) = 0,f(s) 〉 0 for s ∈(0,s1) ∪(s1,∞),and f(s) 〈 0 for s ∈(-∞,s2) ∪(s2,0). 展开更多
关键词 one-signed periodic solutions EXISTENCE functional difference equations bifurcationfrom infinity
原文传递
Exact Multiplicity of One-Sign Solutions for a Class of Quasilinear Eigenvalue Problems 被引量:2
2
作者 Guowei DAI Xiaoling HAN 《Journal of Mathematical Research with Applications》 CSCD 2014年第1期84-88,共5页
This paper concerns the exact multiplicity of one-sign solutions of a class of quasilinear elliptic eigenvalue problems with asymptotical nonlinearity at 0 and ∞. The proofs of our main results are based upon bifurca... This paper concerns the exact multiplicity of one-sign solutions of a class of quasilinear elliptic eigenvalue problems with asymptotical nonlinearity at 0 and ∞. The proofs of our main results are based upon bifurcation techniques and stability analysis. 展开更多
关键词 BIFURCATION one-sign solution exact multiplicity.
原文传递
Unilateral Global Bifurcation and One-Sign Solutions for Kirchhoff Type Problem inR^(N)
3
作者 SHEN Wenguo 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2024年第4期365-373,共9页
In this paper,we study the following Kirchhoff type problem:{-M(∫_(R^(N))|▽u|^(2)dx)△u=λa(x)f(u),x∈R^(N),u=0 as|x|→+∞.Unilateral global bifurcation result is established for this problem.As applications of the ... In this paper,we study the following Kirchhoff type problem:{-M(∫_(R^(N))|▽u|^(2)dx)△u=λa(x)f(u),x∈R^(N),u=0 as|x|→+∞.Unilateral global bifurcation result is established for this problem.As applications of the bifurcation result,we determine the intervals ofλfor the existence,nonexistence,and exact multiplicity of one-sign solutions for this problem. 展开更多
关键词 unilateral global bifurcation one-sign solutions Kirchhoff type problem
原文传递
Unilateral global interval bifurcation for problem with mean curvature operator in Minkowski space and its applications
4
作者 SHEN Wen-guo 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2022年第2期159-176,共18页
In this paper,we establish a unilateral global bifurcation result from interval for a class problem with mean curvature operator in Minkowski space with non-differentiable nonlinearity.As applications of the above res... In this paper,we establish a unilateral global bifurcation result from interval for a class problem with mean curvature operator in Minkowski space with non-differentiable nonlinearity.As applications of the above result,we shall prove the existence of one-sign solutions to the following problem{−div(√∇v 1−|∇v|^(2))=α(x)v^(+)+β(x)v^(−)+λa(x)f(v),in B_(R)(0),v(x)=0,on∂B_(R)(0),whereλ≠=0 is a parameter,R is a positive constant and BR(0)={x∈RN:|x|<R}is the standard open ball in the Euclidean space RN(N≥1)which is centered at the origin and has radius R.v^(+)=max{v,0},v−=−min{v,0},a(x)∈C(BR(0),(0,+∞)),α(x),β(x)∈C(BR(0)),a(x),α(x)andβ(x)are radially symmetric with respect to x;f∈C(R,R),sf(s)>0 for s≠=0,and f_(0)∈[0,∞],where f0=lim_(|s|)→0 f(s)/s.We use unilateral global bifurcation techniques and the approximation of connected components to prove our main results.We also study the asymptotic behaviors of positive radial solutions asλ→+∞. 展开更多
关键词 interval bifurcation unilateral global bifurcation one-sign solutions mean curvature operator
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部