A one-equation turbulence model which relies on the turbulent kinetic energy transport equation has been developed to predict the flow properties of the recirculating flows. The turbulent eddy-viscosity coefficient is...A one-equation turbulence model which relies on the turbulent kinetic energy transport equation has been developed to predict the flow properties of the recirculating flows. The turbulent eddy-viscosity coefficient is computed from a recalibrated Bradshaw's assumption that the constant a1= 0.31 is recalibrated to a function based on a set of direct numerical simulation(DNS) data. The values of dissipation of turbulent kinetic energy consist of the near-wall part and isotropic part, and the isotropic part involves the von Karman length scale as the turbulent length scale. The performance of the new model is evaluated by the results from DNS for fully developed turbulence channel flow with a wide range of Reynolds numbers. However, the computed result of the recirculating flow at the separated bubble of NACA4412 demonstrates that an increase is needed on the turbulent dissipation, and this leads to an advanced tuning on the self-adjusted function. The improved model predicts better results in both the non-equilibrium and equilibrium flows, e.g. channel flows, backward-facing step flow and hump in a channel.展开更多
We introduce a framework for statistical inference of the closure coefficients using machine learning methods.The objective of this framework is to quantify the epistemic uncertainty associated with the closure model ...We introduce a framework for statistical inference of the closure coefficients using machine learning methods.The objective of this framework is to quantify the epistemic uncertainty associated with the closure model by using experimental data via Bayesian statistics.The framework is tailored towards cases for which a limited amount of experimental data is available.It consists of two components.First,by treating all latent variables(non-observed variables)in the model as stochastic variables,all sources of uncertainty of the probabilistic closure model are quantified by a fully Bayesian approach.The probabilistic model is defined to consist of the closure coefficients as parameters and other parameters incorporating noise.Then,the uncertainty associated with the closure coefficients is extracted from the overall uncertainty by considering the noise being zero.The overall uncertainty is rigorously evaluated by using Markov-Chain Monte Carlo sampling assisted by surrogate models.We apply the framework to the Spalart-Allmars one-equation turbulence model.Two test cases are considered,including an industrially relevant full aircraft model at transonic flow conditions,the Airbus XRF1.Eventually,we demonstrate that epistemic uncertainties in the closure coefficients result into uncertainties in flow quantities of interest which are prominent around,and downstream,of the shock occurring over the XRF1 wing.This data-driven approach could help to enhance the predictive capabilities of CFD in terms of reliable turbulence modeling at extremes of the flight envelope if measured data is available,which is important in the context of robust design and towards virtual aircraft certification.The plentiful amount of information about the uncertainties could also assist when it comes to estimating the influence of the measured data on the inferred model coefficients.Finally,the developed framework is flexible and can be applied to different test cases and to various turbulence models.展开更多
The heat transfer and flow characteristics of air jet impingement on a curved surface are investigated with computational fluid dynamics(CFD)approach.The first applied model is a one-equation SGS model for large eddy ...The heat transfer and flow characteristics of air jet impingement on a curved surface are investigated with computational fluid dynamics(CFD)approach.The first applied model is a one-equation SGS model for large eddy simulation(LES)and the second one is the SST-SAS hybrid RANS-LES.These models are utilized to study the flow physics in impinging process on a curved surface for different jet-to-surface(h/B)distances at two Reynolds numbers namely,2960 and 4740 based on the jet exit velocity(U_e)and the hydraulic diameter(2B).The predictions are compared with the experimental data in the literature and also the results from RANS k-εmodel.Comparisons show that both models can produce relatively good results.However,one-equation model(OEM)produced more accurate results especially at impingement region at lower jet-to-surface distances.In terms of heat transfer,the OEM also predicted better at different jet-to-surface spacings.It is also observed that both models show similar performance at higher h/B ratios.展开更多
基金supported by the National Basic Research Program of China(Grant No.2014CB744804)
文摘A one-equation turbulence model which relies on the turbulent kinetic energy transport equation has been developed to predict the flow properties of the recirculating flows. The turbulent eddy-viscosity coefficient is computed from a recalibrated Bradshaw's assumption that the constant a1= 0.31 is recalibrated to a function based on a set of direct numerical simulation(DNS) data. The values of dissipation of turbulent kinetic energy consist of the near-wall part and isotropic part, and the isotropic part involves the von Karman length scale as the turbulent length scale. The performance of the new model is evaluated by the results from DNS for fully developed turbulence channel flow with a wide range of Reynolds numbers. However, the computed result of the recirculating flow at the separated bubble of NACA4412 demonstrates that an increase is needed on the turbulent dissipation, and this leads to an advanced tuning on the self-adjusted function. The improved model predicts better results in both the non-equilibrium and equilibrium flows, e.g. channel flows, backward-facing step flow and hump in a channel.
文摘We introduce a framework for statistical inference of the closure coefficients using machine learning methods.The objective of this framework is to quantify the epistemic uncertainty associated with the closure model by using experimental data via Bayesian statistics.The framework is tailored towards cases for which a limited amount of experimental data is available.It consists of two components.First,by treating all latent variables(non-observed variables)in the model as stochastic variables,all sources of uncertainty of the probabilistic closure model are quantified by a fully Bayesian approach.The probabilistic model is defined to consist of the closure coefficients as parameters and other parameters incorporating noise.Then,the uncertainty associated with the closure coefficients is extracted from the overall uncertainty by considering the noise being zero.The overall uncertainty is rigorously evaluated by using Markov-Chain Monte Carlo sampling assisted by surrogate models.We apply the framework to the Spalart-Allmars one-equation turbulence model.Two test cases are considered,including an industrially relevant full aircraft model at transonic flow conditions,the Airbus XRF1.Eventually,we demonstrate that epistemic uncertainties in the closure coefficients result into uncertainties in flow quantities of interest which are prominent around,and downstream,of the shock occurring over the XRF1 wing.This data-driven approach could help to enhance the predictive capabilities of CFD in terms of reliable turbulence modeling at extremes of the flight envelope if measured data is available,which is important in the context of robust design and towards virtual aircraft certification.The plentiful amount of information about the uncertainties could also assist when it comes to estimating the influence of the measured data on the inferred model coefficients.Finally,the developed framework is flexible and can be applied to different test cases and to various turbulence models.
文摘The heat transfer and flow characteristics of air jet impingement on a curved surface are investigated with computational fluid dynamics(CFD)approach.The first applied model is a one-equation SGS model for large eddy simulation(LES)and the second one is the SST-SAS hybrid RANS-LES.These models are utilized to study the flow physics in impinging process on a curved surface for different jet-to-surface(h/B)distances at two Reynolds numbers namely,2960 and 4740 based on the jet exit velocity(U_e)and the hydraulic diameter(2B).The predictions are compared with the experimental data in the literature and also the results from RANS k-εmodel.Comparisons show that both models can produce relatively good results.However,one-equation model(OEM)produced more accurate results especially at impingement region at lower jet-to-surface distances.In terms of heat transfer,the OEM also predicted better at different jet-to-surface spacings.It is also observed that both models show similar performance at higher h/B ratios.