期刊文献+
共找到8,663篇文章
< 1 2 250 >
每页显示 20 50 100
A study on the numerical prediction method for the vertical thermal structure in the Bohai Sea and the Huanghai Sea-I.One-dimensional numerical prediction model 被引量:1
1
作者 Wang Zongshan, Xu Bochang, Zou Emei, Yang Keqi Li Fanhua First Institute of Oceanography, State Oceanic Administration, Qingdao 266003, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1992年第1期25-34,共10页
In this paper, on the basis of the heat conduction equation without consideration of the advection and turbulence effects, one-dimensional model for describing surface sea temperature ( T1), bottom sea temperature ( T... In this paper, on the basis of the heat conduction equation without consideration of the advection and turbulence effects, one-dimensional model for describing surface sea temperature ( T1), bottom sea temperature ( Tt ) and the thickness of the upper homogeneous layer ( h ) is developed in terms of the dimensionless temperature θT and depth η and self-simulation function θT - f(η) of vertical temperature profile by means of historical temperature data.The results of trial prediction with our one-dimensional model on T, Th, h , the thickness and gradient of thermocline are satisfactory to some extent. 展开更多
关键词 A study on the numerical prediction method for the vertical thermal structure in the Bohai Sea and the Huanghai Sea-I.one-dimensional numerical prediction model
在线阅读 下载PDF
A comprehensive evaluation of RNA secondary structures prediction methods
2
作者 Xinlong Chen En Lou +2 位作者 Zouchenyu Zhou Ya-Lan Tan Zhi-Jie Tan 《Chinese Physics B》 2025年第8期115-127,共13页
RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performa... RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performances of existingtop RNA secondary structure prediction methods, including five deep-learning (DL) based methods and five minimum freeenergy (MFE) based methods. First, we made a brief overview of these RNA secondary structure prediction methods.Afterwards, we built two rigorous test datasets consisting of RNAs with non-redundant sequences and comprehensivelyexamined the performances of the RNA secondary structure prediction methods through classifying the RNAs into differentlength ranges and different types. Our examination shows that the DL-based methods generally perform better thanthe MFE-based methods for RNAs with long lengths and complex structures, while the MFE-based methods can achievegood performance for small RNAs and some specialized MFE-based methods can achieve good prediction accuracy forpseudoknots. Finally, we provided some insights and perspectives in modeling RNA secondary structures. 展开更多
关键词 RNA secondary structure prediction computational methods comprehensive evaluation traditional methods deep-learning-based methods
原文传递
Data-Driven Combination-Interval Prediction for Landslide Displacement Based on Copula and VMD-WOA-KELM Method
3
作者 Longqi Li Yunhuang Yang +1 位作者 Tianzhi Zhou Mengyun Wang 《Journal of Earth Science》 2025年第1期291-306,共16页
To tackle the difficulties of the point prediction in quantifying the reliability of landslide displacement prediction,a data-driven combination-interval prediction method(CIPM)based on copula and variational-mode-dec... To tackle the difficulties of the point prediction in quantifying the reliability of landslide displacement prediction,a data-driven combination-interval prediction method(CIPM)based on copula and variational-mode-decomposition associated with kernel-based-extreme-learningmachine optimized by the whale optimization algorithm(VMD-WOA-KELM)is proposed in this paper.Firstly,the displacement is decomposed by VMD to three IMF components and a residual component of different fluctuation characteristics.The key impact factors of each IMF component are selected according to Copula model,and the corresponding WOA-KELM is established to conduct point prediction.Subsequently,the parametric method(PM)and non-parametric method(NPM)are used to estimate the prediction error probability density distribution(PDF)of each component,whose prediction interval(PI)under the 95%confidence level is also obtained.By means of the differential evolution algorithm(DE),a weighted combination model based on the PIs is built to construct the combination-interval(CI).Finally,the CIs of each component are added to generate the total PI.A comparative case study shows that the CIPM performs better in constructing landslide displacement PI with high performance. 展开更多
关键词 landslide displacement interval prediction combination method COPULA LANDSLIDES VMD-WOA-KELM
原文传递
Advances in RNA contact prediction:a benchmark evaluation of computational methods
4
作者 Ya-Lan Tan Cheng Guo +2 位作者 Jun-Jie Xu Ya-Zhou Shi Zhi-Jie Tan 《Communications in Theoretical Physics》 2025年第12期152-166,共15页
Ribonucleic Acid(RNA)contact prediction holds great significance for modeling RNA 3D structures and further understanding RNA biological functions.The rapid growth of RNA sequencing data has driven the development of ... Ribonucleic Acid(RNA)contact prediction holds great significance for modeling RNA 3D structures and further understanding RNA biological functions.The rapid growth of RNA sequencing data has driven the development of diverse computational methods for RNA contact prediction,and a benchmark evaluation of these methods remains essential.In this work,we first classified RNA contact prediction methods into statistical inference-based and neural networkbased ones.We then evaluated eight state-of-the-art methods on three test sets:a sequencediverse set,a structurally non-redundant set and a CASP RNA targets set.Our evaluation shows that for identifying non-local and long-range contacts,neural network-based methods outperform statistical inference-based ones,with SPOT-RNA-2D achieving the best performance,followed by CoCoNet and RNAcontact.However,for identifying the long-range tertiary contacts,which are vital for stabilizing RNA tertiary structure,statistical inference-based methods exhibit superior performance with GREMLIN emerging as the top performer.This work provides a comprehensive benchmarking of RNA contact prediction methods,highlighting their strengths and limitations to guide further methodological improvements and applications in RNA structure modeling. 展开更多
关键词 RNA contact prediction neural network-based methods statistical inference-based methods long-range tertiary contacts
原文传递
Experimental study and prediction method of solid destabilization and production in deep carbonate reservoir during mining
5
作者 Bo Zhou Changyin Dong +3 位作者 Fansheng Huang Dongyu Xue Haobin Bai Guolong Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期1085-1101,共17页
Wellbore instability is one of the significant challenges in the drilling engineering and during the development of carbonate reservoirs,especially with open-hole completion.The problems of wellbore instability such a... Wellbore instability is one of the significant challenges in the drilling engineering and during the development of carbonate reservoirs,especially with open-hole completion.The problems of wellbore instability such as downhole collapse and silt deposit in the fractured carbonate reservoir of Tarim Basin(Ordovician)are severe.Solid destabilization and production(SDP)was proposed to describe this engineering problem of carbonate reservoirs.To clarify the mechanism and mitigate potential borehole instability problems,we conducted particle size distribution(PSD)analysis,X-ray diffraction(XRD)analysis,triaxial compression tests,and micro-scale sand production tests based on data analysis.We found that the rock fragments and silt in the wellbore came from two sources:one from the wellbore collapse in the upper unplugged layers and the other from the production of sand particles carried by the fluid in the productive layers.Based on the experimental study,a novel method combining a geomechanical model and microscopic sand production model was proposed to predict wellbore instability and analyze its influencing factors.The critical condition and failure zone predicted by the prediction model fit well with the field observations.According to the prediction results,the management and prevention measures of wellbore instability in carbonate reservoirs were proposed.It is suggested to optimize the well track in new drilling wells while upgrading the production system in old wells.This study is of great guiding significance for the optimization of carbonate solid control and it improves the understanding of the sand production problems in carbonate reservoirs. 展开更多
关键词 Sand production Wellbore stability Carbonate reservoir prediction method
在线阅读 下载PDF
An efficient coal and gas outburst hazard prediction method using an improved limit equilibrium model and stress field detection
6
作者 Yingjie Zhao Dazhao Song +5 位作者 Liming Qiu Majid Khan Xueqiu He Zhenlei Li Yujie Peng Anhu Wang 《International Journal of Coal Science & Technology》 2025年第2期108-122,共15页
Accurate prediction of coal and gas outburst(CGO)hazards is paramount in gas disaster prevention and control.This paper endeavors to overcome the constraints posed by traditional prediction indexes when dealing with C... Accurate prediction of coal and gas outburst(CGO)hazards is paramount in gas disaster prevention and control.This paper endeavors to overcome the constraints posed by traditional prediction indexes when dealing with CGO incidents under low gas pressure conditions.In pursuit of this objective,we have studied and established a mechanical model of the working face under abnormal stress and the excitation energy conditions of CGO,and proposed a method for predicting the risk of CGO under abnormal stress.On site application verification shows that when a strong outburst hazard level prediction is issued,there is a high possibility of outburst disasters occurring.In one of the three locations where we predicted strong outburst hazards,a small outburst occurred,and the accuracy of the prediction was higher than the traditional drilling cuttings index S and drilling cuttings gas desorption index q.Finally,we discuss the mechanism of CGO under the action of stress anomalies.Based on the analysis of stress distribution changes and energy accumulation characteristics of coal under abnormal stress,this article believes that the increase in outburst risk caused by high stress abnormal gradient is mainly due to two reasons:(1)The high stress abnormal gradient leads to an increase in the plastic zone of the coal seam.After the working face advances,it indirectly leads to an increase in the gas expansion energy that can be released from the coal seam before reaching a new stress equilibrium.(2)Abnormal stress leads to increased peak stress of coal body in front of working face.When coal body in elastic area transforms to plastic area,its failure speed is accelerated,which induces accelerated gas desorption and aggravates the risk of outburst. 展开更多
关键词 Coal and gas outburst Mechanical model INSTABILITY Seismic wave tomography prediction method
在线阅读 下载PDF
Different mathematical methods for ZTD spatial prediction and their performance in BDS PPP augmentation using GNSS network of China
7
作者 Yongzhao FAN Fengyu XIA +1 位作者 Dezhong CHEN Nana JIANG 《Chinese Journal of Aeronautics》 2025年第8期76-92,共17页
The mathematical method of ZTD(zenith tropospheric delay)spatial prediction is important for precise ZTD derivation and real-time precise point positioning(PPP)augmentation.This paper analyses the performance of the p... The mathematical method of ZTD(zenith tropospheric delay)spatial prediction is important for precise ZTD derivation and real-time precise point positioning(PPP)augmentation.This paper analyses the performance of the popular optimal function coefficient(OFC),sphere cap harmonic analysis(SCHA),kriging and inverse distance weighting(IDW)interpolation in ZTD spatial prediction and Beidou satellite navigation system(BDS)-PPP augmentation over China.For ZTD spatial prediction,the average time consumption of the OFC,kriging,and IDW methods is less than 0.1 s,which is significantly better than that of the SCHA method(63.157 s).The overall ZTD precision of the OFC is 3.44 cm,which outperforms those of the SCHA(9.65 cm),Kriging(10.6 cm),and IDW(11.8 cm)methods.We confirmed that the low performance of kriging and IDW is caused by their weakness in modelling ZTD variation in the vertical direction.To mitigate such deficiencies,an elevation normalization factor(ENF)is introduced into the kriging and IDW models(kriging-ENF and IDW-ENF).The overall ZTD spatial prediction accuracies of IDW-ENF and kriging-ENF are 2.80 cm and 2.01 cm,respectively,which are both superior to those of the OFC and the widely used empirical model GPT3(4.92 cm).For BDS-PPP enhancement,the ZTD provided by the kriging-ENF,IDW-ENF and OFC as prior constraints can effectively reduce the convergence time.Compared with unconstrained BDS-PPP,our proposed kriging-ENF outperforms IDW-ENF and OFC by reducing the horizontal and vertical convergence times by approximately 13.2%and 5.8%in Ningxia and 30.4%and 7.84%in Guangdong,respectively.These results indicate that kriging-ENF is a promising method for ZTD spatial prediction and BDS-PPP enhancement over China. 展开更多
关键词 GNSS Zeni thtropospheric delay Zenith tropospheric delay spatial prediction methods Elevation normalization factor Beidou satellite navigation system Precise point positioning augmentation
原文传递
Remaining Useful Life Prediction of Aeroengine Based on Principal Component Analysis and One-Dimensional Convolutional Neural Network 被引量:5
8
作者 LYU Defeng HU Yuwen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期867-875,共9页
In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based... In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness. 展开更多
关键词 AEROENGINE remaining useful life(RUL) principal component analysis(PCA) one-dimensional convolution neural network(1D-CNN) time series prediction state parameters
在线阅读 下载PDF
Prediction method of highway pavement rutting based on the grey theory 被引量:6
9
作者 周岚 倪富健 赵岩荆 《Journal of Southeast University(English Edition)》 EI CAS 2015年第3期396-400,共5页
In order to make a scientific pavement maintenance decision, a grey-theory-based prediction methodological framework is proposed to predict pavement performance. Based on the field pavement rutting data,analysis of va... In order to make a scientific pavement maintenance decision, a grey-theory-based prediction methodological framework is proposed to predict pavement performance. Based on the field pavement rutting data,analysis of variance (ANOVA)was first used to study the influence of different factors on pavement rutting. Cluster analysis was then employed to investigate the rutting development trend.Based on the clustering results,the grey theory was applied to build pavement rutting models for each cluster, which can effectively reduce the complexity of the predictive model.The results show that axial load and asphalt binder type play important roles in rutting development.The prediction model is capable of capturing the uncertainty in the pavement performance prediction process and can meet the requirements of highway pavement maintenance,and,therefore,has a wide application prospects. 展开更多
关键词 prediction method grey theory cluster analysis analysis of variance pavement rutting
在线阅读 下载PDF
Projectile impact point prediction method based on GRNN 被引量:9
10
作者 黄鑫 赵捍东 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第1期7-12,2,共6页
In order to forecast projectile impact points quickly and accurately,aprojectile impact point prediction method based on generalized regression neural network(GRNN)is presented.Firstly,the model of GRNN forecasting ... In order to forecast projectile impact points quickly and accurately,aprojectile impact point prediction method based on generalized regression neural network(GRNN)is presented.Firstly,the model of GRNN forecasting impact point is established;secondly,the particle swarm algorithm(PSD)is used to optimize the smooth factor in the prediction model and then the optimal GRNN impact point prediction model is obtained.Finally,the numerical simulation of this prediction model is carried out.Simulation results show that the maximum range error is no more than 40 m,and the lateral deviation error is less than0.2m.The average time of impact point prediction is 6.645 ms,which is 1 300.623 ms less than that of numerical integration method.Therefore,it is feasible and effective for the proposed method to forecast projectile impact points,and thus it can provide a theoretical reference for practical engineering applications. 展开更多
关键词 trajectory correction impact point prediction generalized regression neural network(GRNN) numerical integra-tion method
在线阅读 下载PDF
Effects of Mapping Methods on Accuracy of Protein Coding Regions Prediction
11
作者 马玉韬 张成 +2 位作者 杨泽林 李琦 杨婷 《Agricultural Science & Technology》 CAS 2011年第12期1802-1806,1860,共6页
[Objective] To discuss the effects of major mapping methods for DNA sequence on the accuracy of protein coding regions prediction,and to find out the effective mapping methods.[Method] By taking Approximate Correlatio... [Objective] To discuss the effects of major mapping methods for DNA sequence on the accuracy of protein coding regions prediction,and to find out the effective mapping methods.[Method] By taking Approximate Correlation(AC) as the full measure of the prediction accuracy at nucleotide level,the windowed narrow pass-band filter(WNPBF) based prediction algorithm was applied to study the effects of different mapping methods on prediction accuracy.[Result] In DNA data sets ALLSEQ and HMR195,the Voss and Z-Curve methods are proved to be more effective mapping methods than paired numeric(PN),Electron-ion Interaction Potential(EIIP) and complex number methods.[Conclusion] This study lays the foundation to verify the effectiveness of new mapping methods by using the predicted AC value,and it is meaningful to reveal DNA structure by using bioinformatics methods. 展开更多
关键词 prediction accuracy Protein coding regions Mapping method Windowed Narrow pass-band filter
在线阅读 下载PDF
A Model Coupling Method for Shape Prediction 被引量:15
12
作者 WANG Dong-cheng LIU Hong-min 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第2期22-27,共6页
The shape of strip is calculated by iterative method which combines strip plastic deformation model with rolls elastic deformation model through their calculation results, which can be called results coupling method. ... The shape of strip is calculated by iterative method which combines strip plastic deformation model with rolls elastic deformation model through their calculation results, which can be called results coupling method. Be- cause the shape and rolling force distribution are very sensitive to strip thickness transverse distribution% variation, the iterative course is rather unstable and sometimes convergence cannot be achieved. In addition, the calculating speed of results coupling method is low, which restricts its usable range. To solve the problem, a new model cou- pling method is developed, which takes the force distribution between rolls, rolling force distribution and strip's exit transverse displacement distribution as basic unknowns, and integrates strip plastic deformation model and rolls elas- tic deformation model as a unified linear equations through their internal relation, so the iterative calculation between the strip plastic deformation model and rolls elastic deformation model can be avoided. To prove the effectiveness of the model coupling method, two examples are calculated by results coupling method and model coupling method re- spectively. The results of front tension stress, back tension stress, strip^s exit gauge, the force between rolls and rolling force distribution calculated by model coupling method coincide very well with results coupling method. How- ever the calculation course of model coupling method is more steady than results coupling method, and its calculating speed is about ten times as much as the maximal speed of results coupling method, which validates its practicability and reliability. 展开更多
关键词 shape prediction results coupling method model coupling method strip plastic deformation rolls elas-tic deformation
原文传递
A prediction method for the performance of a low-recoil gun with front nozzle 被引量:9
13
作者 Cheng Cheng Chong Wang Xiaobing Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第5期703-712,共10页
One of the greatest challenges in the design of a gun is to balance muzzle velocity and recoil,especially for guns on aircrafts and deployable vehicles.To resolve the conflict between gun power and recoil force,a conc... One of the greatest challenges in the design of a gun is to balance muzzle velocity and recoil,especially for guns on aircrafts and deployable vehicles.To resolve the conflict between gun power and recoil force,a concept of rarefaction wave gun(RAVEN)was proposed to significantly reduce the weapon recoil and the heat in barrel,while minimally reducing the muzzle velocity.The main principle of RAVEN is that the rarefaction wave will not reach the projectile base until the muzzle by delaying the venting time of an expansion nozzle at the breech.Developed on the RAVEN principle,the purpose of this paper is to provide an engineering method for predicting the performance of a low-recoil gun with front nozzle.First,a two-dimensional two-phase flow model of interior ballistic during the RAVEN firing cycle was established.Numerical simulation results were compared with the published data to validate the reliability and accuracy.Next,the effects of the vent opening times and locations were investigated to determine the influence rules on the performance of the RAVEN with front nozzle.Then according to the results above,simple nonlinear fitting formulas were provided to explain how the muzzle velocity and the recoil force change with the vent opening time and location.Finally,a better vent venting opening time corresponding to the vent location was proposed.The findings should make an important contribution to the field of engineering applications of the RAVEN. 展开更多
关键词 INTERIOR BALLISTIC LOW RECOIL RAREFACTION wave prediction method Two-dimensional
在线阅读 下载PDF
A Correction Method Suitable for Dynamical Seasonal Prediction 被引量:13
14
作者 陈红 林朝晖 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第3期425-430,共6页
Based on the hindcast results of summer rainfall anomalies over China for the period 1981-2000 by the Dynamical Climate Prediction System (IAP-DCP) developed by the Institute of Atmospheric Physics, a correction met... Based on the hindcast results of summer rainfall anomalies over China for the period 1981-2000 by the Dynamical Climate Prediction System (IAP-DCP) developed by the Institute of Atmospheric Physics, a correction method that can account for the dependence of model's systematic biases on SST anomalies is proposed. It is shown that this correction method can improve the hindcast skill of the IAP-DCP for summer rainfall anomalies over China, especially in western China and southeast China, which may imply its potential application to real-time seasonal prediction. 展开更多
关键词 correction method dynamical seasonal prediction summer rainfall anomaly
在线阅读 下载PDF
The CALYPSO methodology for structure prediction 被引量:4
15
作者 Qunchao Tong Jian Lv +1 位作者 Pengyue Gao Yanchao Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第10期22-29,共8页
Structure prediction methods have been widely used as a state-of-the-art tool for structure searches and materials discovery, leading to many theory-driven breakthroughs on discoveries of new materials. These methods ... Structure prediction methods have been widely used as a state-of-the-art tool for structure searches and materials discovery, leading to many theory-driven breakthroughs on discoveries of new materials. These methods generally involve the exploration of the potential energy surfaces of materials through various structure sampling techniques and optimization algorithms in conjunction with quantum mechanical calculations. By taking advantage of the general feature of materials potential energy surface and swarm-intelligence-based global optimization algorithms, we have developed the CALYPSO method for structure prediction, which has been widely used in fields as diverse as computational physics, chemistry, and materials science. In this review, we provide the basic theory of the CALYPSO method, placing particular emphasis on the principles of its various structure dealing methods. We also survey the current challenges faced by structure prediction methods and include an outlook on the future developments of CALYPSO in the conclusions. 展开更多
关键词 STRUCTURE prediction CALYPSO method CRYSTAL STRUCTURE POTENTIAL ENERGY surface
原文传递
Casing life prediction using Borda and support vector machine methods 被引量:4
16
作者 Xu Zhiqian Yan Xiangzhen Yang Xiujuan 《Petroleum Science》 SCIE CAS CSCD 2010年第3期416-421,共6页
Eight casing failure modes and 32 risk factors in oil and gas wells are given in this paper. According to the quantitative analysis of the influence degree and occurrence probability of risk factors, the Borda counts ... Eight casing failure modes and 32 risk factors in oil and gas wells are given in this paper. According to the quantitative analysis of the influence degree and occurrence probability of risk factors, the Borda counts for failure modes are obtained with the Borda method. The risk indexes of failure modes are derived from the Borda matrix. Based on the support vector machine (SVM), a casing life prediction model is established. In the prediction model, eight risk indexes are defined as input vectors and casing life is defined as the output vector. The ideal model parameters are determined with the training set from 19 wells with casing failure. The casing life prediction software is developed with the SVM model as a predictor. The residual life of 60 wells with casing failure is predicted with the software, and then compared with the actual casing life. The comparison results show that the casing life prediction software with the SVM model has high accuracy. 展开更多
关键词 Support vector machine method Borda method life prediction model failure modes RISKFACTORS
原文传递
Analogue correction method of errors and its application to numerical weather prediction 被引量:10
17
作者 高丽 任宏利 +1 位作者 李建平 丑纪范 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第4期882-889,共8页
In this paper, an analogue correction method of errors (ACE) based on a complicated atmospheric model is further developed and applied to numerical weather prediction (NWP). The analysis shows that the ACE can eff... In this paper, an analogue correction method of errors (ACE) based on a complicated atmospheric model is further developed and applied to numerical weather prediction (NWP). The analysis shows that the ACE can effectively reduce model errors by combining the statistical analogue method with the dynamical model together in order that the information of plenty of historical data is utilized in the current complicated NWP model, Furthermore, in the ACE, the differences of the similarities between different historical analogues and the current initial state are considered as the weights for estimating model errors. The results of daily, decad and monthly prediction experiments on a complicated T63 atmospheric model show that the performance of the ACE by correcting model errors based on the estimation of the errors of 4 historical analogue predictions is not only better than that of the scheme of only introducing the correction of the errors of every single analogue prediction, but is also better than that of the T63 model. 展开更多
关键词 numerical weather prediction analogue correction method of errors reference state analogue-dynamical model
原文传递
Prediction of properties distribution of 7B50 alloy thick plates after quenching and aging by quench factor analysis method 被引量:3
18
作者 Lei Kang Yi-Ran Zhou +2 位作者 Gang Zhao Kun Liu Ni Tian 《Rare Metals》 SCIE EI CAS CSCD 2019年第11期1043-1050,共8页
In the present work,continuous cooling curves were accurately measured by the modified Jominy specimen of 7B50 alloy during water-spray quenching tests.Besides,the time-temperature-properties(TTP) curves of this alloy... In the present work,continuous cooling curves were accurately measured by the modified Jominy specimen of 7B50 alloy during water-spray quenching tests.Besides,the time-temperature-properties(TTP) curves of this alloy were obtained during isothermal treatments.Based on the accurate cooling curves and TTP curves,the hardness distribution along the thickness direction of 7B50 alloy thick plates was predicted by quench factor analysis method.It is found that the quench sensitive temperature range of 7B50 alloy is 240-410℃,the nose temperature is 335℃,and the incubation period at the nose temperature is about 0.87 s.When 7B50 alloy was isothermal treated at 180-400℃ after solid solution treatment(470℃ for 1 h followed by 483℃ for 2 h),the exponent(n) in the Johnson-Mehl-Avrami equation is close to 1 until transformed fraction of new precipitates is up to 60%,indicating that new precipitates first grow into rodlike shape and then coarsen or thicken.When the distance is less than 65 mm from the spray quenching surface of the modified Jominy specimen,the deviation between the predicted and measured hardness is less than 2.7%,confirming the quench factor analysis method as the feasible way to predict the hardness distribution along the thickness direction of 7B50 alloy thick plates.When the distance from the spray quenching surface is 25 mm,the average cooling rate in quench sensitive temperature range is 9.93 ℃·s^-1,while the quench factor(τ) is 9.89 and the corresponding predicted hardness is HV 185.1 equivalent to 97.3% of the maximum measured hardness of 7B50 alloy in T6 temper. 展开更多
关键词 7B50 aluminum ALLOY QUENCH factor analysis method Time-temperature-properties CURVE Continuous cooling CURVE PROPERTIES prediction
原文传递
An influence function method based subsidence prediction program for longwall mining operations in inclined coal seams 被引量:12
19
作者 LUO Yi CHENG Jian-wei 《Mining Science and Technology》 EI CAS 2009年第5期592-598,共7页
The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though m... The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though many empirical prediction methods have been developed, these methods are inflexible for varying geological and mining conditions. An influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, significant modifications have been made to the original Knothe function to produce an asymmetrical influence function. The empirical equations for final subsidence parameters derived from US subsidence data and Chinese empirical values have been incorpo- rated into the mathematical models to improve the prediction accuracy. A corresponding computer program is developed. A number of subsidence cases for longwall mining operations in coal seams with varying inclination angles have been used to demonstrate the applicability of the developed subsidence prediction model. 展开更多
关键词 subsidence prediction influence function method inclined coal seam longwall mining
在线阅读 下载PDF
Theory and Method of Mineral Resource Prediction Based on Synthetic Information 被引量:3
20
作者 Wang Shicheng Ye Shuisheng Zhou Dongdai Mineral Resources Institute of Comprehensive Information Prediction, Jilin University, Changchun 130026 《Journal of China University of Geosciences》 SCIE CSCD 2003年第3期207-214,共8页
Metallogenic prognosis of synthetic information uses the geological body and the mineral resource body as a statistical unit to interpret synthetically the information of geology, geophysics, geochemistry and remote s... Metallogenic prognosis of synthetic information uses the geological body and the mineral resource body as a statistical unit to interpret synthetically the information of geology, geophysics, geochemistry and remote sensing from the evolution of geology and puts all the information into one entire system by drawing up digitalized interpretation maps of the synthetic information. On such basis, different grades and types of mineral resource prospecting models and predictive models of synthetic information can be established. Hence, a new integrated prediction system will be formed of metallogenic prognosis (qualitative prediction), mineral resources statistic prediction (determining targets) and mineral resources prediction (determining resources amount). 展开更多
关键词 synthetic information mineral resources prediction theory and method
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部