Singular initial value problems arise in solving one-dimensional steady transonic flow of dualmode scramjet. The existing solution method has the problems of large initial value errors in principles. This paper puts f...Singular initial value problems arise in solving one-dimensional steady transonic flow of dualmode scramjet. The existing solution method has the problems of large initial value errors in principles. This paper puts forward an improved algorithm based on variable transformation, and constructs a nonsingular one-dimensional steady transonic flow equation by defining a new variable. The improved algorithm can eliminate the singularity of the differential equation, and can solve the singular initial value problems of one-dimensional steady transonic flow of dual-mode scramjet.展开更多
Based on non-Darcian flow law described by exponent and threshold gradient within a double-layered soil, the classic theory of one-dimensional consolidation of double-layered soil was modified to consider the change o...Based on non-Darcian flow law described by exponent and threshold gradient within a double-layered soil, the classic theory of one-dimensional consolidation of double-layered soil was modified to consider the change of vertical total stress with depth and time together. Because of the complexity of governing equations, the numerical solutions were obtained in detail by finite difference method. Then, the numerical solutions were compared with the analytical solutions in condition that non-Darcian flow law was degenerated to Dary's law, and the comparison results show that numerical solutions are reliable. Finally, consolidation behavior of double-layered soil with different parameters was analyzed, and the results show that the consolidation rate of double-layered soil decreases with increasing the value of exponent and threshold of non-Darcian flow, and the exponent and threshold gradient of the first soil layer greatly influence the consolidation rate of double-layered soil. The larger the ratio of the equivalent water head of external load to the total thickness of double-layered soil, the larger the rate of the consolidation, and the similitude relationship in classical consolidation theory of double-layered soil is not satisfied. The other consolidation behavior of double-layered soil with non-Darcian flow is the same as that with Darcy's law.展开更多
The aim of this study is to investigate CO2 two-phase nozzle flow in terms of both experimental and analytical aspects for the optimum design of two-phase flow nozzle of CO2 two-phase flow ejector. In the experiment, ...The aim of this study is to investigate CO2 two-phase nozzle flow in terms of both experimental and analytical aspects for the optimum design of two-phase flow nozzle of CO2 two-phase flow ejector. In the experiment, it is measured that the temperature profile in the stream-wise direction of a divergent-convergent nozzle through which CO2 in the supercritical pressure condition is blown down into the atmosphere. In the analysis, a one-dimensional model which assumes steady, adiabatic, frictionless, and equilibrium is proposed. In the convergent part of the nozzle the flow is treated as single-phase flow of liquid, whereas in the divergent part the flow is treated as separated two-phase flow with saturated condition. The analytical results indicate that the temperature and the pressure decrease rapidly in the divergent part, and the void fraction increases immediately near the throat. Although this analysis is quite simple, the analytical results can follow the experimental results well within this study.展开更多
Based on non-Darcian flow caused by non-Newtonian liquid, the theory of one-dimensional (1D) consolidation was modified to consider variation in the total vertical stress with depth and time. The finite difference met...Based on non-Darcian flow caused by non-Newtonian liquid, the theory of one-dimensional (1D) consolidation was modified to consider variation in the total vertical stress with depth and time. The finite difference method (FDM) was adopted to obtain numerical solutions for excess pore water pressure and average degree of consolidation. When non-Darcian flow is degenerated into Darcian flow, a comparison between numerical solutions and analytical solutions was made to verify reliability of finite difference solutions. Finally, taking into account the ramp time-dependent loading, consolidation behaviors with non-Darcian flow under various parameters were analyzed. Thus, a comprehensive analysis of 1D consolidation combined with non-Darcian flow caused by non-Newtonian liquid was conducted in this paper.展开更多
In the one-dimensional renewing warranty period,the quality of the spares for product is likely to be improved during the warranty period.Therefore,upgrading maintenance becomes more and more common.Then the manufactu...In the one-dimensional renewing warranty period,the quality of the spares for product is likely to be improved during the warranty period.Therefore,upgrading maintenance becomes more and more common.Then the manufacturers(customers) may have to decide whether or not to provide(buy) the warranty considering upgrading maintenance.This paper presents a mathematical model considering upgrading maintenance for products with multiple failure modes.Upgrading maintenance is taken into account with the assumption that the warranted item is upgraded one time during the warranty cycle.The upgrading maintenance is carried out,when the corrective maintenance is taken place.After upgrading maintenance,the high-quality spares are used to replace the failed item.In the numerical example,the results of the models are calculated.Monte Carlo simulation results are compared with the analytical results to demonstrate the correctness and efficiency of the proposed models considering upgrading maintenance.展开更多
This paper describes a new method of calculation of one-dimensional steady compressible gas flows in channels with possible heat and mass exchange through perforated sidewalls. The channel is divided into small elemen...This paper describes a new method of calculation of one-dimensional steady compressible gas flows in channels with possible heat and mass exchange through perforated sidewalls. The channel is divided into small elements of a finite size for which mass, energy and momentum conservation laws are written in the integral form, assuming linear distribution of the parameters along the length. As a result, the calculation is reduced to finding the roots of a quadratic algebraic equation, thus providing an alternative to numerical methods based on differential equations. The advantage of this method is its high tolerance to coarse discretization of the calculation area as well as its good applicability for transonic flow calculations.展开更多
The degradation of formaldehyde gas was studied using UV/TiO2/O3 process under the condition of continuous flow mode. The effects of humidity, initial formaldehyde concentration, residence time and ozone adding amount...The degradation of formaldehyde gas was studied using UV/TiO2/O3 process under the condition of continuous flow mode. The effects of humidity, initial formaldehyde concentration, residence time and ozone adding amount on degradation of formaldehyde gas were investigated. The experimental results indicated that the combination of ozonation with photocatalytic oxidation on the degradation of formaldehyde showed a synergetic action, e.g,, it could considerably increase decomposing of formaldehyde. The degradation efficiency of formaldehyde was between 73.6% and 79.4% while the initial concentration in the range of 1.84--24 mg/m^3 by O3/TiO2flJV process. The optimal humidity was about 50% in UV/TiO2/O3 processs and degradation of formaldehyde increases from 39.0% to 94.1% when the ozone content increased from 0 to 141 mg/m^3. Furthermore, the kinetics of formaldehyde degradation reaction could be described by Langmuir-Hinshelwood model. The rate constant k of 46.72 mg/(m^3.min) and Langmuir adsorption coefficient K of 0.0268 m^3/mg were obtained.展开更多
Supersonic flows past two-dimensional cavities with/without control are investigated by the direct numerical simulation (DNS). For an uncontrolled cavity, as the thickness of the boundary layer declines, transition ...Supersonic flows past two-dimensional cavities with/without control are investigated by the direct numerical simulation (DNS). For an uncontrolled cavity, as the thickness of the boundary layer declines, transition of the dominant mode from the steady mode to the Rossiter Ⅱ mode and then to the Rossiter III mode is observed due to the change of vortex-corner interactions. Meanwhile, a low frequency mode appears. However, the wake mode observed in a subsonic cavity flow is absent in the current simulation. The oscillation frequencies obtained from a global dynamic mode decomposition (DMD) approach are consistent with the local power spectral density (PSD) analysis. The dominant mode transition is clearly shown by the dynamic modes obtained from the DMD. A passive control technique of substituting the cavity trailing edge with a quarter-circle is studied. As the effective cavity length increases, the dominant mode transition from the Rossiter Ⅱ mode to the Rossiter Ⅲ mode occurs. With the control, the pressure oscillations are reduced significantly. The interaction of the shear layer and the recirculation zone is greatly weakened, combined with weaker shear layer instability, responsible for the suppression of pressure oscillations. Moreover, active control using steady subsonic mass injection upstream of a cavity leading edge can stabilize the flow.展开更多
The present work uses dynamic mode decomposition(DMD) to analyze wake flow of NACA0015 airfoil with Gurney flap.The physics of DMD is first introduced.Then the PIV-measured wake flow velocity field is decomposed into ...The present work uses dynamic mode decomposition(DMD) to analyze wake flow of NACA0015 airfoil with Gurney flap.The physics of DMD is first introduced.Then the PIV-measured wake flow velocity field is decomposed into dynamical modes.The vortex shedding pattern behind the trailing edge and its high-order harmonics have been captured with abundant information such as frequency,wavelength and convection speed.It is observed that high-order dynamic modes convect faster than low-order modes;moreover the wavelength of the dynamic modes scales with the corresponding frequency in power law.展开更多
To improve the measurement performance, a method for diagnosing the state of vortex flowmeter under various flow conditions was presented. The raw sensor signal of the vortex flowmeter was adaptively decomposed into i...To improve the measurement performance, a method for diagnosing the state of vortex flowmeter under various flow conditions was presented. The raw sensor signal of the vortex flowmeter was adaptively decomposed into intrinsic mode functions using the empirical mode decomposition approach. Based on the empirical mode decomposition results, the energy of each intrinsic mode function was extracted, and the vortex energy ratio was proposed to analyze how the perturbation in the flow affected the measurement performance of the vortex flowmeter. The relationship between the vortex energy ratio of the signal and the flow condition was established. The results show that the vortex energy ratio is sensitive to the flow condition and ideal for the characterization of the vortex flowmeter signal. Moreover, the vortex energy ratio under normal flow condition is greater than 80%, which can be adopted as an indicator to diagnose the state of a vortex flowmeter.展开更多
Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department t...Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series.展开更多
Unsteady flow in the hub endwall region has long been a hot topic in the turbomachinery community.However important it is to the performance of the whole engine,the coherent unsteady flow phenomena are still not well ...Unsteady flow in the hub endwall region has long been a hot topic in the turbomachinery community.However important it is to the performance of the whole engine,the coherent unsteady flow phenomena are still not well understood.In this paper,the complex flow field in the hub endwall of a cantilevered compressor cascade has been investigated through numerical approach.The predicted results were validated by experimental data.To highlight the dominant flow structures among irregular and chaotic motions of various vortices,a Dynamic Mode Decomposition(DMD)method was utilized.The results show that there exist three dominant periodic flow structures:the oscillation of the leakage vortex,a circumferential migration of a Breakdown Induced Vortex(BIV)and the fluctuation of the passage vortex.These three coherent structures all together form a self-sustained closed loop which accounts for the flow unsteadiness of the studied cascade.During this process,the BIV plays a key role in inducing the flow unsteadiness.Only if the BIV is strong enough to affect the passage vortex,the flow unsteadiness occurs.This study expands current knowledge base of flow unsteadiness in a compressor environment,and shows the efficacy of the DMD method for revealing the origin of flow unsteadiness.展开更多
Different from previous temporal evolution assumption, the spatially growing mode was employed to analyze the linear stability for the channel flow of fiber suspensions. The stability equation applicable to fiber susp...Different from previous temporal evolution assumption, the spatially growing mode was employed to analyze the linear stability for the channel flow of fiber suspensions. The stability equation applicable to fiber suspensions was established and solutions for a wide range of Reynolds number and angular frequency were given numerically . The results show that, the flow instability is governed by a parameter H which represents a ratio between the axial stretching resistance of fiber and the inertial force of the fluid. An increase of H leads to a raise of the critical Reynolds number, a decrease of corresponding wave number, a slowdown of the decreasing of phase velocity , a growth of the spatial attenuation rate and a diminishment of the peak value of disturbance velocity. Although the unstable region is reduced on the whole, long wave disturbances are susceptible to fibers.展开更多
The reverse flow diverter (RFD) consisting of a nozzle and a diffuser is a key component in pneumatic pulse jet pumps. We investigated the effects of suction gap and diffuser configurations on RFD performance during t...The reverse flow diverter (RFD) consisting of a nozzle and a diffuser is a key component in pneumatic pulse jet pumps. We investigated the effects of suction gap and diffuser configurations on RFD performance during the reverse flow mode. Three suction gap configurations were examined: (1) an axisymmetrical cylinder, (2) a cuboid whose bottom plane had no half-circle groove and was level with the diffuser entrance lower border, and (3) a cuboid with a half-circle groove on the bottom plane. Among them, the second one resulted in the highest RFD pumping capacity. The effect of receiver presence before the diffuser was also examined. RFD pumping efficiency was found to be enhanced in the presence of a receiver before the diffuser when the suction gap length is small and the jet outlet velocity at the nozzle exit is high enough. Based on experimental data, a dimensionless performance curve of the suction factor q versus the ratio of Euler numbers in sections out-out and 0-0 Eu out /Eu 0 was derived. This curve is insensitive to suction gap configurations.展开更多
The transient cavitating flow around the Clark-Y hydrofoil is numerically investigated by the dynamic mode decomposition with criterion.Based on the ranking dominant modes,frequencies of the first four modes are in go...The transient cavitating flow around the Clark-Y hydrofoil is numerically investigated by the dynamic mode decomposition with criterion.Based on the ranking dominant modes,frequencies of the first four modes are in good accordance with those obtained by fast Fourier transform.Furthermore,the cavitating flow field is reconstructed by the first four modes,and the dominant flow features are well captured with the reconstructed error below 12%when compared to the simulated flow field.This paper offers a reference for observing and reconstructing the flow fields,and gives a novel insight into the transient cavitating flow features.展开更多
Electrospinning experiments are performed by using a set of experimental apparatus, a stroboscopic system is adopted for capturing instantaneous images of the cone- jet configuration. The cone and the jet of aqueous s...Electrospinning experiments are performed by using a set of experimental apparatus, a stroboscopic system is adopted for capturing instantaneous images of the cone- jet configuration. The cone and the jet of aqueous solutions of polyethylene oxide (PEO) are formed from an orifice of a capillary tube under the electric field. The viscoelastic con- stitutive relationship of the PEO solution is measured and discussed. The phenomena owing to the jet instability are described, five flow modes and corresponding structures are obtained with variations of the fluid flow rate Q, the electric potential U and the distance h from the orifice of the cap- illary tube to the collector. The flow modes of the cone-jet configuration involves the steady bending mode, the rotat- ing bending mode, the swinging rotating mode, the blurring bending mode and the branching mode. Regimes in the Q-U plane of the flow modes are also obtained. These results may provide the fundamentals to predict the operating conditions expected in practical applications.展开更多
We apply a proper orthogonal decomposition(POD)to data stemming from numerical simulations of a fingering instability in a multiphase flow passing through obstacles in a porous medium,to study water injection processe...We apply a proper orthogonal decomposition(POD)to data stemming from numerical simulations of a fingering instability in a multiphase flow passing through obstacles in a porous medium,to study water injection processes in the production of hydrocarbon reservoirs.We show that the time evolution of a properly defined flow correlation length can be used to identify the onset of the fingering instability.Computation of characteristic lengths for each of the modes resulting from the POD provides further information on the dynamics of the system.Finally,using numerical simulations with different viscosity ratios,we show that the convergence of the POD depends non-trivially on whether the fingering instability develops or not.This result has implications on proposed methods to decrease the dimensionality of the problem by deriving reduced dynamical systems after truncating the system’s governing equations to a few POD modes.展开更多
Generation of zonal flows by small-scale drift-Alfven modes is investigated by adopting the approach of parametric instability with the electron polarization drift included. The zonal mode can be excited by primary mo...Generation of zonal flows by small-scale drift-Alfven modes is investigated by adopting the approach of parametric instability with the electron polarization drift included. The zonal mode can be excited by primary modes propagating at both electron and ion diamagnetic drift directions in contrast to the assertion in previous studies that only primary modes propagating in the ion diamagnetic drift directions can drive zonal instabilities. Generally, the growth rate of the driven zonal mode is in the same order as that in previous study. However, different from the previous work, the growth rate is no longer proportional to the difference between the diamagnetic drift frequencies of electrons and ions.展开更多
Using the self-developed visualization test apparatus, centrifuge model tests at 20 g were carried out to research the macro and microscopic formation mechanism of coarse sand debris flows. The formation mode and soil...Using the self-developed visualization test apparatus, centrifuge model tests at 20 g were carried out to research the macro and microscopic formation mechanism of coarse sand debris flows. The formation mode and soil-water interaction mechanism of the debris flows were analyzed from both macroscopic and microscopic points of view respectively using high digital imaging equipment and micro-structure analysis software Geodip. The test results indicate that the forming process of debris flow mainly consists of three stages, namely the infiltration and softening stage, the overall slide stage, and debris flow stage. The essence of simulated coarse sand slope forming debris flow is that local fluidization cause slope to wholly slide. The movement of small particles forms a transient stagnant layer with increasing saturation, causing soil shear strength lost and local fluidization. When the driving force of the saturated soil exceeds the resisting force, debris flow happens on the coarse sand slope immediately.展开更多
基金Hi TechResearchandDevelopmentProgramofChina(2002AA723011),OutstandingYouthFoundationofHeilongjiang Province
文摘Singular initial value problems arise in solving one-dimensional steady transonic flow of dualmode scramjet. The existing solution method has the problems of large initial value errors in principles. This paper puts forward an improved algorithm based on variable transformation, and constructs a nonsingular one-dimensional steady transonic flow equation by defining a new variable. The improved algorithm can eliminate the singularity of the differential equation, and can solve the singular initial value problems of one-dimensional steady transonic flow of dual-mode scramjet.
基金Projects(50878191,51109092)supported by the National Natural Science Foundation of China
文摘Based on non-Darcian flow law described by exponent and threshold gradient within a double-layered soil, the classic theory of one-dimensional consolidation of double-layered soil was modified to consider the change of vertical total stress with depth and time together. Because of the complexity of governing equations, the numerical solutions were obtained in detail by finite difference method. Then, the numerical solutions were compared with the analytical solutions in condition that non-Darcian flow law was degenerated to Dary's law, and the comparison results show that numerical solutions are reliable. Finally, consolidation behavior of double-layered soil with different parameters was analyzed, and the results show that the consolidation rate of double-layered soil decreases with increasing the value of exponent and threshold of non-Darcian flow, and the exponent and threshold gradient of the first soil layer greatly influence the consolidation rate of double-layered soil. The larger the ratio of the equivalent water head of external load to the total thickness of double-layered soil, the larger the rate of the consolidation, and the similitude relationship in classical consolidation theory of double-layered soil is not satisfied. The other consolidation behavior of double-layered soil with non-Darcian flow is the same as that with Darcy's law.
文摘The aim of this study is to investigate CO2 two-phase nozzle flow in terms of both experimental and analytical aspects for the optimum design of two-phase flow nozzle of CO2 two-phase flow ejector. In the experiment, it is measured that the temperature profile in the stream-wise direction of a divergent-convergent nozzle through which CO2 in the supercritical pressure condition is blown down into the atmosphere. In the analysis, a one-dimensional model which assumes steady, adiabatic, frictionless, and equilibrium is proposed. In the convergent part of the nozzle the flow is treated as single-phase flow of liquid, whereas in the divergent part the flow is treated as separated two-phase flow with saturated condition. The analytical results indicate that the temperature and the pressure decrease rapidly in the divergent part, and the void fraction increases immediately near the throat. Although this analysis is quite simple, the analytical results can follow the experimental results well within this study.
基金Supported by the National Natural Science Foundation of China (51109092,50878191)
文摘Based on non-Darcian flow caused by non-Newtonian liquid, the theory of one-dimensional (1D) consolidation was modified to consider variation in the total vertical stress with depth and time. The finite difference method (FDM) was adopted to obtain numerical solutions for excess pore water pressure and average degree of consolidation. When non-Darcian flow is degenerated into Darcian flow, a comparison between numerical solutions and analytical solutions was made to verify reliability of finite difference solutions. Finally, taking into account the ramp time-dependent loading, consolidation behaviors with non-Darcian flow under various parameters were analyzed. Thus, a comprehensive analysis of 1D consolidation combined with non-Darcian flow caused by non-Newtonian liquid was conducted in this paper.
基金the National Society Science Foundation of China(No.14GJ003-135)the National Natural Science Foundation of China(No.71401173)
文摘In the one-dimensional renewing warranty period,the quality of the spares for product is likely to be improved during the warranty period.Therefore,upgrading maintenance becomes more and more common.Then the manufacturers(customers) may have to decide whether or not to provide(buy) the warranty considering upgrading maintenance.This paper presents a mathematical model considering upgrading maintenance for products with multiple failure modes.Upgrading maintenance is taken into account with the assumption that the warranted item is upgraded one time during the warranty cycle.The upgrading maintenance is carried out,when the corrective maintenance is taken place.After upgrading maintenance,the high-quality spares are used to replace the failed item.In the numerical example,the results of the models are calculated.Monte Carlo simulation results are compared with the analytical results to demonstrate the correctness and efficiency of the proposed models considering upgrading maintenance.
文摘This paper describes a new method of calculation of one-dimensional steady compressible gas flows in channels with possible heat and mass exchange through perforated sidewalls. The channel is divided into small elements of a finite size for which mass, energy and momentum conservation laws are written in the integral form, assuming linear distribution of the parameters along the length. As a result, the calculation is reduced to finding the roots of a quadratic algebraic equation, thus providing an alternative to numerical methods based on differential equations. The advantage of this method is its high tolerance to coarse discretization of the calculation area as well as its good applicability for transonic flow calculations.
基金Project supported by the Science Project of Harbin City(No. H2001-12)the Youth Foundation of School of Municipal and Environmental Engineering in Harbin Institute of Technology(No. 01306914).
文摘The degradation of formaldehyde gas was studied using UV/TiO2/O3 process under the condition of continuous flow mode. The effects of humidity, initial formaldehyde concentration, residence time and ozone adding amount on degradation of formaldehyde gas were investigated. The experimental results indicated that the combination of ozonation with photocatalytic oxidation on the degradation of formaldehyde showed a synergetic action, e.g,, it could considerably increase decomposing of formaldehyde. The degradation efficiency of formaldehyde was between 73.6% and 79.4% while the initial concentration in the range of 1.84--24 mg/m^3 by O3/TiO2flJV process. The optimal humidity was about 50% in UV/TiO2/O3 processs and degradation of formaldehyde increases from 39.0% to 94.1% when the ozone content increased from 0 to 141 mg/m^3. Furthermore, the kinetics of formaldehyde degradation reaction could be described by Langmuir-Hinshelwood model. The rate constant k of 46.72 mg/(m^3.min) and Langmuir adsorption coefficient K of 0.0268 m^3/mg were obtained.
基金supported by the National Natural Science Foundation of China(Nos.11232011 and11402262)the 111 Project of China(No.B07033)+1 种基金the China Postdoctoral Science Foundation(No.2014M561833)the Fundamental Research Funds for the Central Universities
文摘Supersonic flows past two-dimensional cavities with/without control are investigated by the direct numerical simulation (DNS). For an uncontrolled cavity, as the thickness of the boundary layer declines, transition of the dominant mode from the steady mode to the Rossiter Ⅱ mode and then to the Rossiter III mode is observed due to the change of vortex-corner interactions. Meanwhile, a low frequency mode appears. However, the wake mode observed in a subsonic cavity flow is absent in the current simulation. The oscillation frequencies obtained from a global dynamic mode decomposition (DMD) approach are consistent with the local power spectral density (PSD) analysis. The dominant mode transition is clearly shown by the dynamic modes obtained from the DMD. A passive control technique of substituting the cavity trailing edge with a quarter-circle is studied. As the effective cavity length increases, the dominant mode transition from the Rossiter Ⅱ mode to the Rossiter Ⅲ mode occurs. With the control, the pressure oscillations are reduced significantly. The interaction of the shear layer and the recirculation zone is greatly weakened, combined with weaker shear layer instability, responsible for the suppression of pressure oscillations. Moreover, active control using steady subsonic mass injection upstream of a cavity leading edge can stabilize the flow.
基金supported by National Natural Science Foundation of China(Grant No.10832001)Vision Foundation of Beijing University of Aeronautics and Astronautics (Grant No.YWF-10-20-003)
文摘The present work uses dynamic mode decomposition(DMD) to analyze wake flow of NACA0015 airfoil with Gurney flap.The physics of DMD is first introduced.Then the PIV-measured wake flow velocity field is decomposed into dynamical modes.The vortex shedding pattern behind the trailing edge and its high-order harmonics have been captured with abundant information such as frequency,wavelength and convection speed.It is observed that high-order dynamic modes convect faster than low-order modes;moreover the wavelength of the dynamic modes scales with the corresponding frequency in power law.
基金Project(200801346) supported by the China Postdoctoral Science FoundationProject(2008RS4022) supported by the Hunan Postdoctoral Scientific ProgramProject(2008) supported by the Postdoctoral Science Foundation of Central South University
文摘To improve the measurement performance, a method for diagnosing the state of vortex flowmeter under various flow conditions was presented. The raw sensor signal of the vortex flowmeter was adaptively decomposed into intrinsic mode functions using the empirical mode decomposition approach. Based on the empirical mode decomposition results, the energy of each intrinsic mode function was extracted, and the vortex energy ratio was proposed to analyze how the perturbation in the flow affected the measurement performance of the vortex flowmeter. The relationship between the vortex energy ratio of the signal and the flow condition was established. The results show that the vortex energy ratio is sensitive to the flow condition and ideal for the characterization of the vortex flowmeter signal. Moreover, the vortex energy ratio under normal flow condition is greater than 80%, which can be adopted as an indicator to diagnose the state of a vortex flowmeter.
基金Project(61873283)supported by the National Natural Science Foundation of ChinaProject(KQ1707017)supported by the Changsha Science&Technology Project,ChinaProject(2019CX005)supported by the Innovation Driven Project of the Central South University,China。
文摘Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series.
基金supports of National Natural Science Foundation of China(Nos.51790512,52176045)the National Major Science and technology Project of China(No.J2017-Ⅱ-0010-0024)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China(No.CX201911)。
文摘Unsteady flow in the hub endwall region has long been a hot topic in the turbomachinery community.However important it is to the performance of the whole engine,the coherent unsteady flow phenomena are still not well understood.In this paper,the complex flow field in the hub endwall of a cantilevered compressor cascade has been investigated through numerical approach.The predicted results were validated by experimental data.To highlight the dominant flow structures among irregular and chaotic motions of various vortices,a Dynamic Mode Decomposition(DMD)method was utilized.The results show that there exist three dominant periodic flow structures:the oscillation of the leakage vortex,a circumferential migration of a Breakdown Induced Vortex(BIV)and the fluctuation of the passage vortex.These three coherent structures all together form a self-sustained closed loop which accounts for the flow unsteadiness of the studied cascade.During this process,the BIV plays a key role in inducing the flow unsteadiness.Only if the BIV is strong enough to affect the passage vortex,the flow unsteadiness occurs.This study expands current knowledge base of flow unsteadiness in a compressor environment,and shows the efficacy of the DMD method for revealing the origin of flow unsteadiness.
基金Foundation item: the National Natural Science Foundation of China for Outstanding Young Sci-entists (19925210)
文摘Different from previous temporal evolution assumption, the spatially growing mode was employed to analyze the linear stability for the channel flow of fiber suspensions. The stability equation applicable to fiber suspensions was established and solutions for a wide range of Reynolds number and angular frequency were given numerically . The results show that, the flow instability is governed by a parameter H which represents a ratio between the axial stretching resistance of fiber and the inertial force of the fluid. An increase of H leads to a raise of the critical Reynolds number, a decrease of corresponding wave number, a slowdown of the decreasing of phase velocity , a growth of the spatial attenuation rate and a diminishment of the peak value of disturbance velocity. Although the unstable region is reduced on the whole, long wave disturbances are susceptible to fibers.
文摘The reverse flow diverter (RFD) consisting of a nozzle and a diffuser is a key component in pneumatic pulse jet pumps. We investigated the effects of suction gap and diffuser configurations on RFD performance during the reverse flow mode. Three suction gap configurations were examined: (1) an axisymmetrical cylinder, (2) a cuboid whose bottom plane had no half-circle groove and was level with the diffuser entrance lower border, and (3) a cuboid with a half-circle groove on the bottom plane. Among them, the second one resulted in the highest RFD pumping capacity. The effect of receiver presence before the diffuser was also examined. RFD pumping efficiency was found to be enhanced in the presence of a receiver before the diffuser when the suction gap length is small and the jet outlet velocity at the nozzle exit is high enough. Based on experimental data, a dimensionless performance curve of the suction factor q versus the ratio of Euler numbers in sections out-out and 0-0 Eu out /Eu 0 was derived. This curve is insensitive to suction gap configurations.
基金the National Key R&D Program of China(Grants 2016YFC0300800 and 2016YFC0300802)the National Natural Science Foundation of China(Grants 11772340 and 11672315)the Science and Technology on Water Jet Propulsion Laboratory(Grant 6142223190101).
文摘The transient cavitating flow around the Clark-Y hydrofoil is numerically investigated by the dynamic mode decomposition with criterion.Based on the ranking dominant modes,frequencies of the first four modes are in good accordance with those obtained by fast Fourier transform.Furthermore,the cavitating flow field is reconstructed by the first four modes,and the dominant flow features are well captured with the reconstructed error below 12%when compared to the simulated flow field.This paper offers a reference for observing and reconstructing the flow fields,and gives a novel insight into the transient cavitating flow features.
基金supported by the National Natural Science Foundation of China Project (11002139)the China Postdoctoral Science Foundation (20100470854)
文摘Electrospinning experiments are performed by using a set of experimental apparatus, a stroboscopic system is adopted for capturing instantaneous images of the cone- jet configuration. The cone and the jet of aqueous solutions of polyethylene oxide (PEO) are formed from an orifice of a capillary tube under the electric field. The viscoelastic con- stitutive relationship of the PEO solution is measured and discussed. The phenomena owing to the jet instability are described, five flow modes and corresponding structures are obtained with variations of the fluid flow rate Q, the electric potential U and the distance h from the orifice of the cap- illary tube to the collector. The flow modes of the cone-jet configuration involves the steady bending mode, the rotat- ing bending mode, the swinging rotating mode, the blurring bending mode and the branching mode. Regimes in the Q-U plane of the flow modes are also obtained. These results may provide the fundamentals to predict the operating conditions expected in practical applications.
基金support from YPF-Tecnología(YTEC)support from PICT Grant No.2015-3530.
文摘We apply a proper orthogonal decomposition(POD)to data stemming from numerical simulations of a fingering instability in a multiphase flow passing through obstacles in a porous medium,to study water injection processes in the production of hydrocarbon reservoirs.We show that the time evolution of a properly defined flow correlation length can be used to identify the onset of the fingering instability.Computation of characteristic lengths for each of the modes resulting from the POD provides further information on the dynamics of the system.Finally,using numerical simulations with different viscosity ratios,we show that the convergence of the POD depends non-trivially on whether the fingering instability develops or not.This result has implications on proposed methods to decrease the dimensionality of the problem by deriving reduced dynamical systems after truncating the system’s governing equations to a few POD modes.
基金supported by National Natural Science Foundation of China (No. 10775137)by the Ministry of Science and Technology of China (No. 2009CB105001)partly by the JSPS-CAS Core-University Program in the field of Plasma and Nuclear Fusion
文摘Generation of zonal flows by small-scale drift-Alfven modes is investigated by adopting the approach of parametric instability with the electron polarization drift included. The zonal mode can be excited by primary modes propagating at both electron and ion diamagnetic drift directions in contrast to the assertion in previous studies that only primary modes propagating in the ion diamagnetic drift directions can drive zonal instabilities. Generally, the growth rate of the driven zonal mode is in the same order as that in previous study. However, different from the previous work, the growth rate is no longer proportional to the difference between the diamagnetic drift frequencies of electrons and ions.
基金Funded by National Natural Science Foundation of China(Grant No.41272296)
文摘Using the self-developed visualization test apparatus, centrifuge model tests at 20 g were carried out to research the macro and microscopic formation mechanism of coarse sand debris flows. The formation mode and soil-water interaction mechanism of the debris flows were analyzed from both macroscopic and microscopic points of view respectively using high digital imaging equipment and micro-structure analysis software Geodip. The test results indicate that the forming process of debris flow mainly consists of three stages, namely the infiltration and softening stage, the overall slide stage, and debris flow stage. The essence of simulated coarse sand slope forming debris flow is that local fluidization cause slope to wholly slide. The movement of small particles forms a transient stagnant layer with increasing saturation, causing soil shear strength lost and local fluidization. When the driving force of the saturated soil exceeds the resisting force, debris flow happens on the coarse sand slope immediately.