期刊文献+
共找到315篇文章
< 1 2 16 >
每页显示 20 50 100
Conveyor-Belt Detection of Conditional Deep Convolutional Generative Adversarial Network 被引量:2
1
作者 Xiaoli Hao Xiaojuan Meng +2 位作者 Yueqin Zhang JinDong Xue Jinyue Xia 《Computers, Materials & Continua》 SCIE EI 2021年第11期2671-2685,共15页
In underground mining,the belt is a critical component,as its state directly affects the safe and stable operation of the conveyor.Most of the existing non-contact detection methods based on machine vision can only de... In underground mining,the belt is a critical component,as its state directly affects the safe and stable operation of the conveyor.Most of the existing non-contact detection methods based on machine vision can only detect a single type of damage and they require pre-processing operations.This tends to cause a large amount of calculation and low detection precision.To solve these problems,in the work described in this paper a belt tear detection method based on a multi-class conditional deep convolutional generative adversarial network(CDCGAN)was designed.In the traditional DCGAN,the image generated by the generator has a certain degree of randomness.Here,a small number of labeled belt images are taken as conditions and added them to the generator and discriminator,so the generator can generate images with the characteristics of belt damage under the aforementioned conditions.Moreover,because the discriminator cannot identify multiple types of damage,the multi-class softmax function is used as the output function of the discriminator to output a vector of class probabilities,and it can accurately classify cracks,scratches,and tears.To avoid the features learned incompletely,skiplayer connection is adopted in the generator and discriminator.This not only can minimize the loss of features,but also improves the convergence speed.Compared with other algorithms,experimental results show that the loss value of the generator and discriminator is the least.Moreover,its convergence speed is faster,and the mean average precision of the proposed algorithm is up to 96.2%,which is at least 6%higher than that of other algorithms. 展开更多
关键词 Multi-class detection conditional deep convolution generative adversarial network conveyor belt tear skip-layer connection
在线阅读 下载PDF
Conditional Generative Adversarial Network Enabled Localized Stress Recovery of Periodic Composites
2
作者 Chengkan Xu Xiaofei Wang +2 位作者 Yixuan Li Guannan Wang He Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期957-974,共18页
Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstru... Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstructures under external loading is crucial.Repeating unit cells(RUCs)are commonly used to represent microstructural details and homogenize the effective response of composites.This work develops a machine learning-based micromechanics tool to accurately predict the stress distributions of extracted RUCs.The locally exact homogenization theory efficiently generates the microstructural stresses of RUCs with a wide range of parameters,including volume fraction,fiber/matrix property ratio,fiber shapes,and loading direction.Subsequently,the conditional generative adversarial network(cGAN)is employed and constructed as a surrogate model to establish the statistical correlation between these parameters and the corresponding localized stresses.The stresses predicted by cGAN are validated against the remaining true data not used for training,showing good agreement.This work demonstrates that the cGAN-based micromechanics tool effectively captures the local responses of composite RUCs.It can be used for predicting potential crack initiations starting from microstructures and evaluating the effective behavior of periodic composites. 展开更多
关键词 Periodic composites localized stress recovery conditional generative adversarial network
在线阅读 下载PDF
Data-Driven Structural Topology Optimization Method Using Conditional Wasserstein Generative Adversarial Networks with Gradient Penalty
3
作者 Qingrong Zeng Xiaochen Liu +2 位作者 Xuefeng Zhu Xiangkui Zhang Ping Hu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第12期2065-2085,共21页
Traditional topology optimization methods often suffer from the“dimension curse”problem,wherein the com-putation time increases exponentially with the degrees of freedom in the background grid.Overcoming this challe... Traditional topology optimization methods often suffer from the“dimension curse”problem,wherein the com-putation time increases exponentially with the degrees of freedom in the background grid.Overcoming this challenge,we introduce a real-time topology optimization approach leveraging Conditional Generative Adversarial Networks with Gradient Penalty(CGAN-GP).This innovative method allows for nearly instantaneous prediction of optimized structures.Given a specific boundary condition,the network can produce a unique optimized structure in a one-to-one manner.The process begins by establishing a dataset using simulation data generated through the Solid Isotropic Material with Penalization(SIMP)method.Subsequently,we design a conditional generative adversarial network and train it to generate optimized structures.To further enhance the quality of the optimized structures produced by CGAN-GP,we incorporate Pix2pixGAN.This augmentation results in sharper topologies,yielding structures with enhanced clarity,de-blurring,and edge smoothing.Our proposed method yields a significant reduction in computational time when compared to traditional topology optimization algorithms,all while maintaining an impressive accuracy rate of up to 85%,as demonstrated through numerical examples. 展开更多
关键词 Real-time topology optimization conditional generative adversarial networks dimension curse CMES 2024 vol.141 no.3
在线阅读 下载PDF
Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks 被引量:28
4
作者 Tuan-Feng Zhang Peter Tilke +3 位作者 Emilien Dupont Ling-Chen Zhu Lin Liang William Bailey 《Petroleum Science》 SCIE CAS CSCD 2019年第3期541-549,共9页
This paper proposes a novel approach for generating 3-dimensional complex geological facies models based on deep generative models.It can reproduce a wide range of conceptual geological models while possessing the fle... This paper proposes a novel approach for generating 3-dimensional complex geological facies models based on deep generative models.It can reproduce a wide range of conceptual geological models while possessing the flexibility necessary to honor constraints such as well data.Compared with existing geostatistics-based modeling methods,our approach produces realistic subsurface facies architecture in 3D using a state-of-the-art deep learning method called generative adversarial networks(GANs).GANs couple a generator with a discriminator,and each uses a deep convolutional neural network.The networks are trained in an adversarial manner until the generator can create "fake" images that the discriminator cannot distinguish from "real" images.We extend the original GAN approach to 3D geological modeling at the reservoir scale.The GANs are trained using a library of 3D facies models.Once the GANs have been trained,they can generate a variety of geologically realistic facies models constrained by well data interpretations.This geomodelling approach using GANs has been tested on models of both complex fluvial depositional systems and carbonate reservoirs that exhibit progradational and aggradational trends.The results demonstrate that this deep learning-driven modeling approach can capture more realistic facies architectures and associations than existing geostatistical modeling methods,which often fail to reproduce heterogeneous nonstationary sedimentary facies with apparent depositional trend. 展开更多
关键词 Geological FACIES Geomodeling Data conditIONING generative adversarial networkS
原文传递
Conditional Generative Adversarial Network-Based Travel Route Recommendation
5
作者 Sunbin Shin Luong Vuong Nguyen +3 位作者 Grzegorz J.Nalepa Paulo Novais Xuan Hau Pham Jason J.Jung 《Computers, Materials & Continua》 2026年第1期1178-1217,共40页
Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of... Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of user preferences.To address this,we propose a Conditional Generative Adversarial Network(CGAN)that generates diverse and highly relevant itineraries.Our approach begins by constructing a conditional vector that encapsulates a user’s profile.This vector uniquely fuses embeddings from a Heterogeneous Information Network(HIN)to model complex user-place-route relationships,a Recurrent Neural Network(RNN)to capture sequential path dynamics,and Neural Collaborative Filtering(NCF)to incorporate collaborative signals from the wider user base.This comprehensive condition,further enhanced with features representing user interaction confidence and uncertainty,steers a CGAN stabilized by spectral normalization to generate high-fidelity latent route representations,effectively mitigating the data sparsity problem.Recommendations are then formulated using an Anchor-and-Expand algorithm,which selects relevant starting Points of Interest(POI)based on user history,then expands routes through latent similarity matching and geographic coherence optimization,culminating in Traveling Salesman Problem(TSP)-based route optimization for practical travel distances.Experiments on a real-world check-in dataset validate our model’s unique generative capability,achieving F1 scores ranging from 0.163 to 0.305,and near-zero pairs−F1 scores between 0.002 and 0.022.These results confirm the model’s success in generating novel travel routes by recommending new locations and sequences rather than replicating users’past itineraries.This work provides a robust solution for personalized travel planning,capable of generating novel and compelling routes for both new and existing users by learning from collective travel intelligence. 展开更多
关键词 Travel route recommendation conditional generative adversarial network heterogeneous information network anchor-and-expand algorithm
在线阅读 下载PDF
An inverse design method for supercritical airfoil based on conditional generative models 被引量:13
6
作者 Jing WANG Runze LI +4 位作者 Cheng HE Haixin CHEN Ran CHENG Chen ZHAI Miao ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第3期62-74,共13页
Inverse design has long been an efficient and powerful design tool in the aircraft industry.In this paper,a novel inverse design method for supercritical airfoils is proposed based on generative models in deep learnin... Inverse design has long been an efficient and powerful design tool in the aircraft industry.In this paper,a novel inverse design method for supercritical airfoils is proposed based on generative models in deep learning.A Conditional Variational Auto Encoder(CVAE)and an integrated generative network CVAE-GAN that combines the CVAE with the Wasserstein Generative Adversarial Networks(WGAN),are conducted as generative models.They are used to generate target wall Mach distributions for the inverse design that matches specified features,such as locations of suction peak,shock and aft loading.Qualitative and quantitative results show that both adopted generative models can generate diverse and realistic wall Mach number distributions satisfying the given features.The CVAE-GAN model outperforms the CVAE model and achieves better reconstruction accuracies for all the samples in the dataset.Furthermore,a deep neural network for nonlinear mapping is adopted to obtain the airfoil shape corresponding to the target wall Mach number distribution.The performances of the designed deep neural network are fully demonstrated and a smoothness measurement is proposed to quantify small oscillations in the airfoil surface,proving the authenticity and accuracy of the generated airfoil shapes. 展开更多
关键词 conditional Variational AutoEncoder(CVAE) Deep learning generative adversarial networks(GAN) generative models Inverse design Supercritical airfoil
原文传递
High-speed multimode fiber imaging system based on conditional generative adversarial network 被引量:7
7
作者 Zhenming Yu Zhenyu Ju +3 位作者 Xinlei Zhang Ziyi Meng Feifei Yin Kun Xu 《Chinese Optics Letters》 SCIE EI CAS CSCD 2021年第8期1-5,共5页
The multimode fiber(MMF)has great potential to transmit high-resolution images with less invasive methods in endoscopy due to its large number of spatial modes and small core diameter.However,spatial modes crosstalk w... The multimode fiber(MMF)has great potential to transmit high-resolution images with less invasive methods in endoscopy due to its large number of spatial modes and small core diameter.However,spatial modes crosstalk will inevitably occur in MMFs,which makes the received images become speckles.A conditional generative adversarial network(GAN)composed of a generator and a discriminator was utilized to reconstruct the received speckles.We conduct an MMF imaging experimental system of transmitting over 1 m MMF with a 50μm core.Compared with the conventional method of U-net,this conditional GAN could reconstruct images with fewer training datasets to achieve the same performance and shows higher feature extraction capability. 展开更多
关键词 fiber optics imaging imaging systems deep learning conditional generative adversarial network
原文传递
CGAN-EB: A non-parametric empirical Bayes method for crash frequency modeling using conditional generative adversarial networks as safety performance functions
8
作者 Mohammad Zarei Bruce Hellinga Pedram Izadpanah 《International Journal of Transportation Science and Technology》 2023年第3期753-764,共12页
The empirical Bayes(EB)method based on parametric statistical models such as the negative binomial(NB)has been widely used for ranking sites in the road network safety screening process.In this paper a novel non-param... The empirical Bayes(EB)method based on parametric statistical models such as the negative binomial(NB)has been widely used for ranking sites in the road network safety screening process.In this paper a novel non-parametric EB method for modeling crash frequency data based on Conditional Generative Adversarial Networks(CGAN)is proposed and evaluated over a real-world crash data set.Unlike parametric approaches,there is no need for a pre-specified underlying relationship between dependent and independent variables in the proposed CGAN-EB and they are able to model any types of distributions.The proposed methodology is applied to real-world and simulated crash data sets.The performance of CGAN-EB in terms of model fit,predictive performance and network screening outcomes is compared with the conventional approach(NB-EB)as a benchmark.The results indicate that the proposed CGAN-EB approach outperforms NB-EB in terms of prediction power and hotspot identification tests. 展开更多
关键词 Crash predictive model conditional generative adversarial networks(CGAN) Crash data simulation Empirical Bayes method Safety performance function
在线阅读 下载PDF
Adversarial Training-Aided Time-Varying Channel Prediction for TDD/FDD Systems 被引量:5
9
作者 Zhen Zhang Yuxiang Zhang +1 位作者 Jianhua Zhang Feifei Gao 《China Communications》 SCIE CSCD 2023年第6期100-115,共16页
In this paper, a time-varying channel prediction method based on conditional generative adversarial network(CPcGAN) is proposed for time division duplexing/frequency division duplexing(TDD/FDD) systems. CPc GAN utiliz... In this paper, a time-varying channel prediction method based on conditional generative adversarial network(CPcGAN) is proposed for time division duplexing/frequency division duplexing(TDD/FDD) systems. CPc GAN utilizes a discriminator to calculate the divergence between the predicted downlink channel state information(CSI) and the real sample distributions under a conditional constraint that is previous uplink CSI. The generator of CPcGAN learns the function relationship between the conditional constraint and the predicted downlink CSI and reduces the divergence between predicted CSI and real CSI.The capability of CPcGAN fitting data distribution can capture the time-varying and multipath characteristics of the channel well. Considering the propagation characteristics of real channel, we further develop a channel prediction error indicator to determine whether the generator reaches the best state. Simulations show that the CPcGAN can obtain higher prediction accuracy and lower system bit error rate than the existing methods under the same user speeds. 展开更多
关键词 channel prediction time-varying channel conditional generative adversarial network multipath channel deep learning
在线阅读 下载PDF
基于深度学习的双相不锈钢应力-应变场预测模型
10
作者 邓彩艳 丁汉星 +2 位作者 马艳文 刘永 龚宝明 《天津大学学报(自然科学与工程技术版)》 北大核心 2026年第1期25-30,共6页
通过人工智能技术深度解析金属材料多尺度构效关系,构建基于深度学习的成分-工艺-性能高通量逆向设计范式,在材料研发的过程中具有重要作用.本研究提出了一种基于条件生成对抗网络(CGAN)的端到端深度学习模型,用于研究双相不锈钢微观组... 通过人工智能技术深度解析金属材料多尺度构效关系,构建基于深度学习的成分-工艺-性能高通量逆向设计范式,在材料研发的过程中具有重要作用.本研究提出了一种基于条件生成对抗网络(CGAN)的端到端深度学习模型,用于研究双相不锈钢微观组织与力学性能之间的关系.该模型结合了博弈论思想,通过整合双相不锈钢微观组织图像及仪器化压痕试验获取的相组织力学性能数据,实现了微观组织-性能关系的直接预测.模型数据库通过基于微观组织的有限元模拟方法构建,确保了训练数据的高保真性.结果表明,该模型能够直接从双相不锈钢的微观组织预测应力-应变场,其预测结果与有限元模拟和实验数据高度吻合. 展开更多
关键词 双相不锈钢 纳米压痕 条件生成对抗网络 微观组织 应力-应变场
在线阅读 下载PDF
Phase prediction for high-entropy alloys using generative adversarial network and active learning based on small datasets 被引量:3
11
作者 CHEN Cun ZHOU HengRu +2 位作者 LONG WeiMin WANG Gang REN JingLi 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第12期3615-3627,共13页
In this paper,a new machine learning(ML)model combining conditional generative adversarial networks(CGANs)and active learning(AL)is proposed to predict the body-centered cubic(BCC)phase,face-centered cubic(FCC)phase,a... In this paper,a new machine learning(ML)model combining conditional generative adversarial networks(CGANs)and active learning(AL)is proposed to predict the body-centered cubic(BCC)phase,face-centered cubic(FCC)phase,and BCC+FCC phase of high-entropy alloys(HEAs).Considering the lack of data,CGANs are introduced for data augmentation,and AL can achieve high prediction accuracy under a small sample size owing to its special sample selection strategy.Therefore,we propose an ML framework combining CGAN and AL to predict the phase of HEAs.The arithmetic optimization algorithm(AOA)is introduced to improve the artificial neural network(ANN).AOA can overcome the problem of falling into the locally optimal solution for the ANN and reduce the number of training iterations.The AOA-optimized ANN model trained by the AL sample selection strategy achieved high prediction accuracy on the test set.To improve the performance and interpretability of the model,domain knowledge is incorporated into the feature selection.Additionally,considering that the proposed method can alleviate the problem caused by the shortage of experimental data,it can be applied to predictions based on small datasets in other fields. 展开更多
关键词 high-entropy alloys phase prediction machine learning conditional generative adversarial networks active learning
原文传递
物理约束型生成对抗网络人工地震动合成方法
12
作者 陈苏 崔澳辉 +3 位作者 丁毅 傅磊 王苏阳 李小军 《地震研究》 北大核心 2026年第1期111-119,共9页
针对重大工程结构抗震分析中地震动记录稀缺,以及传统合成方法在物理真实性和多分量适应性上的瓶颈问题,基于日本KiK-net台站近11万条地震动记录,提出了一种物理经验引导型生成对抗网络算子(GM-WGANO)人工地震动合成方法。该方法利用生... 针对重大工程结构抗震分析中地震动记录稀缺,以及传统合成方法在物理真实性和多分量适应性上的瓶颈问题,基于日本KiK-net台站近11万条地震动记录,提出了一种物理经验引导型生成对抗网络算子(GM-WGANO)人工地震动合成方法。该方法利用生成对抗网络(GANs)框架,引入傅立叶神经算子(FNO)优化网络结构,结合震级、最小断层距、等效剪切波速、滑动机制和断层构造类别5个物理条件变量,从强震动观测数据中学习地震动的时空特征概率分布,并通过对抗训练生成与真实记录统计特性高度一致的三分量人工时程。结果表明:生成时程在时域上具有与真实记录相近的强震动持时、相位分布及峰值加速度特性;傅立叶谱与观测数据的误差均小于±1倍标准差;地震动峰值加速度(PGA)的对数分布均值与观测数据吻合。 展开更多
关键词 人工地震动合成 生成对抗网络 傅立叶神经算子 多物理条件约束
在线阅读 下载PDF
Application of Conditional Deep Generative Networks (CGAN) in empirical bayes estimation of road crash risk and identifying crash hotspots
13
作者 Mohammad Zarei Bruce Hellinga Pedram Izadpanah 《International Journal of Transportation Science and Technology》 2024年第1期258-269,共12页
The conditional generative adversarial network(CGAN)is used in this paper for empirical Bayes(EB)analysis of road crash hotspots.EB is a well-known method for estimating the expected crash frequency of sites(e.g.road ... The conditional generative adversarial network(CGAN)is used in this paper for empirical Bayes(EB)analysis of road crash hotspots.EB is a well-known method for estimating the expected crash frequency of sites(e.g.road segments,intersections)and then prioritising these sites to identify a subset of high priority sites(e.g.hotspots)for additional safety audits/improvements.In contrast to the conventional EB approach,which employs a statis tical model such as the negative binomial model(NB-EB)to model crash frequency data,the recently developed CGAN-EB approach uses a conditional generative adversarial net work,a form of deep neural network,that can model any form of distributions of the crash frequency data.Previous research has shown that the CGAN-EB performs as well as or bet ter than NB-EB,however that work considered only a small range of crash data character istics and did not examine the spatial and temporal transferability.In this paper a series of simulation experiments are devised and carried out to assess the CGAN-EB performance across a wide range of conditions and compares it to the NB-EB.The simulation results show that CGAN-EB performs as well as NB-EB when conditions favor the NB-EB model(i.e.data conform to the assumptions of the NB model)and outperforms NB-EB in experi ments reflecting conditions frequently encountered in practice(i.e.low sample mean crash rates,and when crash frequency does not follow a log-linear relationship with covariates).Also,temporal and spatial transferability of both approaches were evaluated using field data and both CGAN-EB and NB-EB approaches were found to have similar performance. 展开更多
关键词 conditional generative adversarial networks(CGAN) Hotspot identification Empirical Bayes method Safety performance function Negative binomial model network screening Crash data simulation
在线阅读 下载PDF
基于改进GAN的人机交互手势行为识别方法 被引量:2
14
作者 张富强 白筠妍 穆慧 《郑州大学学报(工学版)》 北大核心 2025年第2期43-50,共8页
为改善现有手势识别算法需要大量训练数据的现状,针对识别准确率不高、识别过程复杂等问题,基于生成式对抗网络(GAN)和变分自编码器,引入标签信息,提出一种基于改进GAN模型的人机交互手势行为识别方法。首先,在编码器和解码器中分别添... 为改善现有手势识别算法需要大量训练数据的现状,针对识别准确率不高、识别过程复杂等问题,基于生成式对抗网络(GAN)和变分自编码器,引入标签信息,提出一种基于改进GAN模型的人机交互手势行为识别方法。首先,在编码器和解码器中分别添加改进InceptionV2和InceptionV2-trans结构增强模型的特征还原能力;其次,在各组成网络中进行条件批量归一化(CBN)处理改善过拟合,以Mish激活函数代替ReLU函数提升网络性能;最后,通过实验证明该方法能够以较少的样本获得100%的分类准确率,且收敛时间短,验证了该方法的可靠性。 展开更多
关键词 人机交互 生成对抗网络 变分自编码器 手势识别 条件批量归一化
在线阅读 下载PDF
基于条件生成对抗网络与迁移学习的暂态电压稳定超前判别 被引量:4
15
作者 王渝红 何其多 +5 位作者 郑宗生 周旭 马欢 程定一 赵康 周辰予 《电力自动化设备》 北大核心 2025年第2期159-166,共8页
为解决样本不平衡导致的暂态电压稳定判别准确性不足的问题以及实现暂态电压稳定超前判别,提出一种基于条件生成对抗网络(CGAN)与迁移学习的暂态电压稳定超前判别方法。考虑暂态电压稳定样本类型,利用CGAN定向扩增暂态电压样本集,解决... 为解决样本不平衡导致的暂态电压稳定判别准确性不足的问题以及实现暂态电压稳定超前判别,提出一种基于条件生成对抗网络(CGAN)与迁移学习的暂态电压稳定超前判别方法。考虑暂态电压稳定样本类型,利用CGAN定向扩增暂态电压样本集,解决样本不平衡问题,从而提升暂态电压稳定判别准确性;考虑到CGAN生成器与暂态电压时序预测模型具有相似的学习任务,将CGAN生成器模型迁移至暂态电压时序预测模型,结合工程判据实现暂态电压稳定超前判别,并进一步提升暂态电压稳定判别准确性。在CEPRI-VC暂态电压稳定分析系统中验证了所提方法的有效性。 展开更多
关键词 暂态电压稳定 稳定超前判别 迁移学习 条件生成对抗网络 数据生成
在线阅读 下载PDF
基于样本扩充的黔西北垭都-蟒硐矿区铅锌矿成矿预测研究
16
作者 徐凯 徐城阳 +2 位作者 吴冲龙 蔡婧云 孔春芳 《地学前缘》 北大核心 2025年第4期95-107,共13页
黔西北拥有丰富的铅锌矿资源,但由于矿体埋藏较深,找矿难度大。利用机器学习进行的数据驱动的成矿预测正在成为深部隐伏铅锌矿找矿勘探的有力工具。然而,基于机器学习的找矿预测面临着一些普遍的问题,特别是成矿样本少导致训练样本不足... 黔西北拥有丰富的铅锌矿资源,但由于矿体埋藏较深,找矿难度大。利用机器学习进行的数据驱动的成矿预测正在成为深部隐伏铅锌矿找矿勘探的有力工具。然而,基于机器学习的找矿预测面临着一些普遍的问题,特别是成矿样本少导致训练样本不足和训练样本不平衡等问题。为此,本文提出了一种K均值聚类(K-means Clustering)改进条件表格生成对抗网络(Conditional Tabular Generative Adversarial Network,CTGAN)的见矿样本扩充方法来解决这些问题。具体来说,首先根据K均值聚类后各簇集样本间欧氏距离判断其疏密情况,在稀疏簇集扩充更多的样本以增加其密度实现见矿样本集的扩充。然后,对抗网络生成具有高度抽象的新类别标签,并将新类别标签用于条件生成,从而提高扩充样本的质量。最后,利用扩充后的正样本和随机欠采样的负样本建立数据量充足且平衡的有标签样本集,训练和验证Category Boosting(CatBoost)分类器,建立基于KC-CTGAN-CatBoost成矿预测模型。实验结果表明,相比于未经过KC-CTGAN见矿样本扩充的数据集构建的成矿预测模型,在准确度、召回率、精度和F1-score上分别提高了8.7%、7.4%、10.2%和8.8%,证明KC-CTGAN见矿样本扩充方法的有效性,并提高了成矿预测模型的性能。预测结果将更好地为深部隐伏铅锌矿体的找矿勘探提供更精确的靶区。 展开更多
关键词 样本扩充 条件表格生成对抗网络 铅锌矿 成矿预测
在线阅读 下载PDF
地震属性驱动的条件生成对抗网络沉积微相模型构建
17
作者 刘昕 孙胜 +3 位作者 张立强 蔡明俊 鲁玉 卢文娟 《中国石油大学学报(自然科学版)》 北大核心 2025年第4期1-10,共10页
由于地层结构的复杂性和强非均质性,同时受到测井、岩心、试油等数据不足的影响,现有沉积微相建模方法难以实现精确建模。提出一种基于条件生成对抗网络的沉积微相建模方法,采用灰色关联分析算法,计算各地震属性与砂地比的灰色关联度,... 由于地层结构的复杂性和强非均质性,同时受到测井、岩心、试油等数据不足的影响,现有沉积微相建模方法难以实现精确建模。提出一种基于条件生成对抗网络的沉积微相建模方法,采用灰色关联分析算法,计算各地震属性与砂地比的灰色关联度,挖掘对砂地比参数关联性较强的参数;将优选地震属性图像作为卷积神经网络模型的输入,构建砂地比预测模型,可视化砂地比预测结果,与井相图作为联合约束条件,训练条件生成对抗网络,构建沉积微相生成模型,实现沉积微相的精确建模。应用本方法对东部某油田进行沉积微相建模研究。结果表明,条件生成对抗网络沉积微相模型能精确刻画复杂地质模式,井点吻合率达到94.1%。 展开更多
关键词 条件生成对抗网络 深度学习 沉积微相 砂地比 灰色关联 卷积神经网络
在线阅读 下载PDF
基于CTGAN的自动驾驶车辆交通事故关键诱因识别
18
作者 张志清 于晓正 +2 位作者 朱雷鹏 孙玉凤 李祎昕 《华南理工大学学报(自然科学版)》 北大核心 2025年第10期14-28,共15页
明晰自动驾驶车辆交通事故机理是有效防控安全风险的重要前提。自动驾驶车辆交通事故诱因分析通常基于小样本和不平衡数据进行建模,但这类模型对于少数类预测精度低。基于数据增强的分析框架可以提高模型对于少数类的预测精度。通过条... 明晰自动驾驶车辆交通事故机理是有效防控安全风险的重要前提。自动驾驶车辆交通事故诱因分析通常基于小样本和不平衡数据进行建模,但这类模型对于少数类预测精度低。基于数据增强的分析框架可以提高模型对于少数类的预测精度。通过条件表格生成对抗网络(CTGAN)、联合生成对抗网络(CopulaGAN)以及合成少数过采样(SMOTE)、自适应过采样(ADASYN)技术增加样本量,平衡数据集,对比不同方法的合成数据质量;基于合成数据,对逻辑回归(LR)、决策树(DT)、随机森林(RF)、极端梯度提升(XGB)、支持向量机(SVM)5种分类算法进行评估,采用召回率、特异性、加权F_1分数及曲线下面积(AUC)等指标确定最优组合;最后结合沙普利可加解释(SHAP)框架量化事故关键诱因重要度。结果表明:CTGAN生成数据的边际分布得分(0.96)和相关性得分(0.92)最高,合成数据的平均质量为0.94,显著优于其他方法;CTGAN与随机森林算法结合时,模型在召回率(0.82)、特异性(0.84)、AUC(0.86)等指标上均表现优异,在包含10%标签噪声的测试集中仍保持鲁棒性(召回率提升至0.88),进一步验证了其在复杂场景中的适用性。关键诱因分析表明,路面状况(潮湿状态显著增加受伤风险)、夜间行车(低光照导致传感器性能下降)、交叉口及街道化程度(复杂场景增加检测延迟)是导致事故的核心因素。该研究为自动驾驶测试场景搭建及道路基础设施改造提供了关键依据。 展开更多
关键词 自动驾驶车辆 小样本量 数据不平衡 条件表格生成对抗网络 事故预测
在线阅读 下载PDF
基于深度学习的传统色彩创新设计方法研究
19
作者 丁满 冯光宇 +1 位作者 王鹏博 谷泽杨 《包装工程》 北大核心 2025年第10期56-67,共12页
目的挖掘文化内涵,提升传统色彩创新设计的创新性和多样性,解决传统色彩创新设计中缺乏文化底蕴,设计效率不高等问题。方法首先采用网络爬虫、聚类算法、自然语言处理等方法构建显性传统色彩库与隐性文化意象库,并结合语意差异法和ResNe... 目的挖掘文化内涵,提升传统色彩创新设计的创新性和多样性,解决传统色彩创新设计中缺乏文化底蕴,设计效率不高等问题。方法首先采用网络爬虫、聚类算法、自然语言处理等方法构建显性传统色彩库与隐性文化意象库,并结合语意差异法和ResNet18构建传统色彩文化数据集;其次,采用C-WGAN构建一个生成传统色彩创新设计方案的模型,该模型能够创造性地生成符合色彩搭配规则且富有文化意象的产品色彩设计方案;最后,以武强年画为传统色彩文化研究对象,以旅游观光车为设计应用对象,进行传统色彩创新设计,并搭建设计系统,以验证论文所提方法的有效性和适用性。结果提出一种基于深度学习的传统色彩创新设计方法,该方法可快速设计出符合文化意象的产品色彩设计方案,实现传统色彩、文化底蕴、现代产品的交融。结论论文验证了深度学习技术在传统色彩创新设计中的应用潜力,为传统色彩创新设计提供一种可行且可靠的思路,促进了传统色彩在现代产品设计中的创新和传承。 展开更多
关键词 传统色彩 创新设计 文化意象 条件Wassertein生成对抗网络(C-WGAN) 残差网络ResNet-18
在线阅读 下载PDF
相关干扰环境下基于cGAN的MIMO信号检测算法
20
作者 康晓非 李雨玫 梁琪悦 《电讯技术》 北大核心 2025年第12期2078-2085,共8页
复杂通信场景下非高斯干扰噪声使得传统多输入多输出(Multiple-Input Multiple-Output,MIMO)检测的误码性能受限。为解决在相关动态干扰噪声环境下的MIMO信号检测问题,提出了一种将半正定松弛(Semi-definite Relaxation,SDR)检测器和条... 复杂通信场景下非高斯干扰噪声使得传统多输入多输出(Multiple-Input Multiple-Output,MIMO)检测的误码性能受限。为解决在相关动态干扰噪声环境下的MIMO信号检测问题,提出了一种将半正定松弛(Semi-definite Relaxation,SDR)检测器和条件生成对抗网络(conditional Generative Adversarial Network,cGAN)联合的新型迭代检测算法,称为SDR-cGAN。SDR对接收信号进行初始检测,cGAN实现对相关干扰噪声的精确估计,通过两者构成的迭代框架,不断消除干扰噪声残差,从而提升检测算法的误码性能。仿真实验结果表明,当系统收发天线数相等,信噪比为15 dB时,SDR-cGAN算法误码率接近10^(-6),与其他基于深度学习的检测算法相比,误码率降低1~2个数量级,表现出接近最优检测的优良性能。在不同的调制方式下,SDR-cGAN算法较传统检测算法的误码性能也展现出明显优势,具有较好的鲁棒性。 展开更多
关键词 多输入多输出 信号检测 相关干扰 半正定松弛 条件生成对抗网络
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部