Accurate and robust detection of wax appearance(a medium-to high-molecular-weight component of crude oil)is crucial for the efficient operation of hydrocarbon transportation.The wax appearance temperature(WAT)is the l...Accurate and robust detection of wax appearance(a medium-to high-molecular-weight component of crude oil)is crucial for the efficient operation of hydrocarbon transportation.The wax appearance temperature(WAT)is the lowest temperature at which the wax begins to form.When crude oil cools to its WAT,wax crystals precipitate,forming deposits on pipelines as the solubility limit is reached.Therefore,WAT is a crucial quality assurance parameter,especially when dealing with modern fuel oil blends.In this study,we use machine learning via MATLAB’s Bioinformatics Toolbox to predict the WAT of marine fuel samples by correlating near-infrared spectral data with laboratory-measured values.The dataset provided by Intertek PLC-a total quality assurance provider of inspection,testing,and certification services-includes industrial data that is imbalanced,with a higher proportion of high-WAT samples compared to low-WAT samples.The objective is to predict marine fuel oil blends with unusually high WAT values(>35℃)without relying on time-consuming and irregular laboratory-based measurements.The results demonstrate that the developed model,based on the one-class support vector machine(OCSVM)algorithm,achieved a Recall of 96,accurately predicting 96%of fuel samples with WAT>35℃.For standard binary classification,the Recall was 85.7.The trained OCSVM model is expected to facilitate rapid and well-informed decision-making for logistics and storage when choosing fuel oils.展开更多
Abstract Accurate aerodynamic models are the basis of flight simulation and control law design. Mathematically modeling unsteady aerodynamics at high angles of attack bears great difficulties in model structure determ...Abstract Accurate aerodynamic models are the basis of flight simulation and control law design. Mathematically modeling unsteady aerodynamics at high angles of attack bears great difficulties in model structure determination and parameter estimation due to little understanding of the flow mechanism. Support vector machines (SVMs) based on statistical learning theory provide a novel tool for nonlinear system modeling. The work presented here examines the feasibility of applying SVMs to high angle.-of-attack unsteady aerodynamic modeling field. Mainly, after a review of SVMs, several issues associated with unsteady aerodynamic modeling by use of SVMs are discussed in detail, such as sele, ction of input variables, selection of output variables and determination of SVM parameters. The least squares SVM (LS-SVM) models are set up from certain dynamic wind tunnel test data of a delta wing and an aircraft configuration, and then used to predict the aerodynamic responses in other tests. The predictions are in good agreement with the test data, which indicates the satisfving learning and generalization performance of LS-SVMs.展开更多
In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the...In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements.展开更多
Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a...Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm.展开更多
Common,unsteady aerodynamic modeling methods usually use wind tunnel test data from forced vibration tests to predict stable hysteresis loop.However,these methods ignore the initial unstable process of entering the hy...Common,unsteady aerodynamic modeling methods usually use wind tunnel test data from forced vibration tests to predict stable hysteresis loop.However,these methods ignore the initial unstable process of entering the hysteresis loop that exists in the actual maneuvering process of the aircraft.Here,an excitation input suitable for nonlinear system identification is introduced to model unsteady aerodynamic forces with any motion in the amplitude and frequency ranges based on the Least Squares Support Vector Machines(LS-SVMs).In the selection of the input form,avoiding the use of reduced frequency as a parameter makes the model more universal.After model training is completed,the method is applied to predict the lift coefficient,drag coefficient and pitching moment coefficient of the RAE2822 airfoil,in sine and sweep motions under the conditions of plunging and pitching at Mach number 0.8.The predicted results of the initial unstable process and the final stable process are in close agreement with the Computational Fluid Dynamics(CFD)data,demonstrating the feasibility of the model for nonlinear unsteady aerodynamics modeling and the effectiveness of the input design approach.展开更多
A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established...A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection.展开更多
Soft sensor is widely used in industrial process control. It plays animportant role to improve the quality of product and assure safety in production. The core of softsensor is to construct soft sensing model. A new s...Soft sensor is widely used in industrial process control. It plays animportant role to improve the quality of product and assure safety in production. The core of softsensor is to construct soft sensing model. A new soft sensing modeling method based on supportvector machine (SVM) is proposed. SVM is a new machine learning method based on statistical learningtheory and is powerful for the problem characterized by small sample, nonlinearity, high dimensionand local minima. The proposed methods are applied to the estimation of frozen point of light dieseloil in distillation column. The estimated outputs of soft sensing model based on SVM match the realvalues of frozen point and follow varying trend of frozen point very well. Experiment results showthat SVM provides a new effective method for soft sensing modeling and has promising application inindustrial process applications.展开更多
In this paper, we present a novel Support Vector Machine active learning algorithm for effective 3D model retrieval using the concept of relevance feedback. The proposed method learns from the most informative objects...In this paper, we present a novel Support Vector Machine active learning algorithm for effective 3D model retrieval using the concept of relevance feedback. The proposed method learns from the most informative objects which are marked by the user, and then creates a boundary separating the relevant models from irrelevant ones. What it needs is only a small number of 3D models labelled by the user. It can grasp the user's semantic knowledge rapidly and accurately. Experimental results showed that the proposed algorithm significantly improves the retrieval effectiveness. Compared with four state-of-the-art query refinement schemes for 3D model retrieval, it provides superior retrieval performance after no more than two rounds of relevance feedback.展开更多
Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs ...Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs based MPC was derived, and then the necessary and sufficient stability condition for MPC closed loop was given according to SVM model, and finally a method of judging the discrepancy between SVM model and the actual plant was presented, and consequently the constraint sets, which can guarantee that the stability condition is still robust for model/plant mismatch within some given bounds, were obtained by applying small-gain theorem. Simulation experiments show the proposed stability condition and robust constraint sets can provide a convenient way of adjusting controller parameters to ensure a closed-loop with larger stable margin.展开更多
Turbopump condition monitoring is a significant approach to ensure the safety of liquid rocket engine (LRE).Because of lack of fault samples,a monitoring system cannot be trained on all possible condition patterns.T...Turbopump condition monitoring is a significant approach to ensure the safety of liquid rocket engine (LRE).Because of lack of fault samples,a monitoring system cannot be trained on all possible condition patterns.Thus it is important to differentiate abnormal or unknown patterns from normal pattern with novelty detection methods.One-class support vector machine (OCSVM) that has been commonly used for novelty detection cannot deal well with large scale samples.In order to model the normal pattern of the turbopump with OCSVM and so as to monitor the condition of the turbopump,a monitoring method that integrates OCSVM with incremental clustering is presented.In this method,the incremental clustering is used for sample reduction by extracting representative vectors from a large training set.The representative vectors are supposed to distribute uniformly in the object region and fulfill the region.And training OCSVM on these representative vectors yields a novelty detector.By applying this method to the analysis of the turbopump's historical test data,it shows that the incremental clustering algorithm can extract 91 representative points from more than 36 000 training vectors,and the OCSVM detector trained on these 91 representative points can recognize spikes in vibration signals caused by different abnormal events such as vane shedding,rub-impact and sensor faults.This monitoring method does not need fault samples during training as classical recognition methods.The method resolves the learning problem of large samples and is an alternative method for condition monitoring of the LRE turbopump.展开更多
A new multiple models(MM) approach was proposed to model complex industrial process by using Fuzzy Support Vector Machines(F -SVMs). By applying the proposed approach to a pH neutralization titration experiment, F -SV...A new multiple models(MM) approach was proposed to model complex industrial process by using Fuzzy Support Vector Machines(F -SVMs). By applying the proposed approach to a pH neutralization titration experiment, F -SVMs MM not only provides satisfactory approximation and generalization property, but also achieves superior performance to USOCPN multiple modeling method and single modeling method based on standard SVMs.展开更多
This paper proposes a novel excitation controller using support vector machines (SVM) and approximate models. The nonlinear control law is derived directly based on an input-output approximation method via Taylor ex...This paper proposes a novel excitation controller using support vector machines (SVM) and approximate models. The nonlinear control law is derived directly based on an input-output approximation method via Taylor expansion, which not only avoids complex control development and intensive computation, but also avoids online learning or adjustment. Only a general SVM modelling technique is involved in both model identification and controller implementation. The robustness of the stability is rigorously established using the Lyapunov method. Several simulations demonstrate the effectiveness of the proposed excitation controller.展开更多
This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used ...This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection.展开更多
This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework base...This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework based on SVM. At last a numerical experiment is taken to demonstrate the proposed approach's correctness and effectiveness.展开更多
In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression ...In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression and the support vector machine network-based model predictive control (SVMN-MPC) algorithm corresponding to each environment is developed, and then a multi-class SVM model is established to recognize multiple operating conditions. As for control, the current environment is identified by the multi-class SVM model and then the corresponding SVMN-MPC controller is activated at each sampling instant. The proposed modeling, switching and controller design is demonstrated in simulation results.展开更多
Various methods of tyre modelling are implemented from pure theoretical to empirical or semi-empirical models based on experimental results. A new way of representing tyre data obtained from measurements is presented ...Various methods of tyre modelling are implemented from pure theoretical to empirical or semi-empirical models based on experimental results. A new way of representing tyre data obtained from measurements is presented via support vector machines (SVMs). The feasibility of applying SVMs to steady-state tyre modelling is investigated by comparison with three-layer backpropagation (BP) neural network at pure slip and combined slip. The results indicate SVMs outperform the BP neural network in modelling the tyre characteristics with better generalization performance. The SVMsqyre is implemented in 8-DOF vehicle model for vehicle dynamics simulation by means of the PAC 2002 Magic Formula as reference. The SVMs-tyre can be a competitive and accurate method to model a tyre for vehicle dynamics simuLation.展开更多
Deformation monitoring is a critical measure for intuitively reflecting the operational behavior of a dam.However,the deformation monitoring data are often incomplete due to environmental changes,monitoring instrument...Deformation monitoring is a critical measure for intuitively reflecting the operational behavior of a dam.However,the deformation monitoring data are often incomplete due to environmental changes,monitoring instrument faults,and human operational errors,thereby often hindering the accurate assessment of actual deformation patterns.This study proposed a method for quantifying deformation similarity between measurement points by recognizing the spatiotemporal characteristics of concrete dam deformation monitoring data.It introduces a spatiotemporal clustering analysis of the concrete dam deformation behavior and employs the support vector machine model to address the missing data in concrete dam deformation monitoring.The proposed method was validated in a concrete dam project,with the model error maintaining within 5%,demonstrating its effectiveness in processing missing deformation data.This approach enhances the capability of early-warning systems and contributes to enhanced dam safety management.展开更多
This paper presents a novel evaluation model of the customer satisfaction degree (CSD) in logistics based on support vector machine (SVM). Firstly, the relation between the suppliers and the customers is analyzed....This paper presents a novel evaluation model of the customer satisfaction degree (CSD) in logistics based on support vector machine (SVM). Firstly, the relation between the suppliers and the customers is analyzed. Seondly, the evaluation index system and fuzzy quantitative methods are provided. Thirdly, the CSD evaluation system including eight indexes and three ranks based on one-against-one mode of SVM is built, last simulation experint is presented to illustrate the theoretical results.展开更多
Objective: Support Vector Machine (SVM) is a machine-learning method, based on the principle of structural risk minimization, which performs well when applied to data outside the training set. In this paper, SVM wa...Objective: Support Vector Machine (SVM) is a machine-learning method, based on the principle of structural risk minimization, which performs well when applied to data outside the training set. In this paper, SVM was applied to predict 5-year survival status of patients with nasopharyngeal carcinoma (NPC) after treatment, we expect to find a new way for prognosis studies in cancer so as to assist right clinical decision for individual patient. Methods: Two modelling methods were used in the study; SVM network and a standard parametric logistic regression were used to model 5-year survival status. And the two methods were compared on a prospective set of patients not used in model construction via receiver operating characteristic (ROC) curve analysis. Results: The SVM1, trained with the 25 original input variables without screening, yielded a ROC area of 0.868, at sensitivity to mortality of 79.2% and the specificity of 94.5%. Similarly, the SVM2, trained with 9 input variables which were obtained by optimal input variable selection from the 25 original variables by logistic regression screening, yielded a ROC area of 0.874, at a sensitivity to mortality of 79.2% and the specificity of 95.6%, while the logistic regression yielded a ROC area of 0.751 at a sensitivity to mortality of 66.7% and gave a specificity of 83.5%. Conclusion: SVM found a strong pattern in the database predictive of 5-year survival status. The logistic regression produces somewhat similar, but better, results. These results show that the SVM models have the potential to predict individual patient's 5-year survival status after treatment, and to assist the clinicians for making a good clinical decision.展开更多
BACKGROUND Delayed wound healing is a common clinical complication following gastric cancer radical surgery,adversely affecting patient prognosis.With advances in artificial intelligence,machine learning offers a prom...BACKGROUND Delayed wound healing is a common clinical complication following gastric cancer radical surgery,adversely affecting patient prognosis.With advances in artificial intelligence,machine learning offers a promising approach for developing predictive models that can identify high-risk patients and support early clinical intervention.AIM To construct machine learning-based risk prediction models for delayed wound healing after gastric cancer surgery to support clinical decision-making.METHODS We reviewed a total of 514 patients who underwent gastric cancer radical surgery under general anesthesia from January 1,2014 to December 30,2023.Seventy percent of the dataset was selected as the training set and 30%as the validation set.Decision trees,support vector machines,and logistic regression were used to construct a risk prediction model.The performance of the model was evaluated using accuracy,recall,precision,F1 index,and area under the receiver operating characteristic curve and decision curve.RESULTS This study included five variables:Sex,elderly,duration of abdominal drainage,preoperative white blood cell(WBC)count,and absolute value of neutrophils.These variables were selected based on their clinical relevance and statistical significance in predicting delayed wound healing.The results showed that the decision tree model outperformed the logistic regression and support vector machine models in both the training and validation sets.Specifically,the decision tree model achieved higher accuracy,F1 index,recall,and area under the curve(AUC)values.The support vector machine model also demonstrated better performance than logistic regression,with higher accuracy,recall,and F1 index,but a slightly lower AUC.The key variables of sex,elderly,duration of abdominal drainage,preoperative WBC count,and absolute value of neutrophils were found to be strong predictors of delayed wound healing.Patients with longer duration of abdominal drainage had a significantly higher risk of delayed wound healing,with a risk ratio of 1.579 compared to those with shorter duration of abdominal drainage.Similarly,preoperative WBC count,sex,elderly,and absolute value of neutrophils were associated with a higher risk of delayed wound healing,highlighting the importance of these variables in the model.CONCLUSION The model is able to identify high-risk patients based on sex,elderly,duration of abdominal drainage,preoperative WBC count,and absolute value of neutrophils can provide valuable insights for clinical decision-making.展开更多
基金Newcastle University and EPSRC(Grant No.2020/21 DTP:ref.EP/T517914/1).
文摘Accurate and robust detection of wax appearance(a medium-to high-molecular-weight component of crude oil)is crucial for the efficient operation of hydrocarbon transportation.The wax appearance temperature(WAT)is the lowest temperature at which the wax begins to form.When crude oil cools to its WAT,wax crystals precipitate,forming deposits on pipelines as the solubility limit is reached.Therefore,WAT is a crucial quality assurance parameter,especially when dealing with modern fuel oil blends.In this study,we use machine learning via MATLAB’s Bioinformatics Toolbox to predict the WAT of marine fuel samples by correlating near-infrared spectral data with laboratory-measured values.The dataset provided by Intertek PLC-a total quality assurance provider of inspection,testing,and certification services-includes industrial data that is imbalanced,with a higher proportion of high-WAT samples compared to low-WAT samples.The objective is to predict marine fuel oil blends with unusually high WAT values(>35℃)without relying on time-consuming and irregular laboratory-based measurements.The results demonstrate that the developed model,based on the one-class support vector machine(OCSVM)algorithm,achieved a Recall of 96,accurately predicting 96%of fuel samples with WAT>35℃.For standard binary classification,the Recall was 85.7.The trained OCSVM model is expected to facilitate rapid and well-informed decision-making for logistics and storage when choosing fuel oils.
文摘Abstract Accurate aerodynamic models are the basis of flight simulation and control law design. Mathematically modeling unsteady aerodynamics at high angles of attack bears great difficulties in model structure determination and parameter estimation due to little understanding of the flow mechanism. Support vector machines (SVMs) based on statistical learning theory provide a novel tool for nonlinear system modeling. The work presented here examines the feasibility of applying SVMs to high angle.-of-attack unsteady aerodynamic modeling field. Mainly, after a review of SVMs, several issues associated with unsteady aerodynamic modeling by use of SVMs are discussed in detail, such as sele, ction of input variables, selection of output variables and determination of SVM parameters. The least squares SVM (LS-SVM) models are set up from certain dynamic wind tunnel test data of a delta wing and an aircraft configuration, and then used to predict the aerodynamic responses in other tests. The predictions are in good agreement with the test data, which indicates the satisfving learning and generalization performance of LS-SVMs.
基金Project supported by the National Natural Science Foundation of China (Grant No 60573065)the Natural Science Foundation of Shandong Province,China (Grant No Y2007G33)the Key Subject Research Foundation of Shandong Province,China(Grant No XTD0708)
文摘In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements.
基金Supported by the State Key Development Program for Basic Research of China (No.2002CB312200) and the National Natural Science Foundation of China (No.60574019).
文摘Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm.
文摘Common,unsteady aerodynamic modeling methods usually use wind tunnel test data from forced vibration tests to predict stable hysteresis loop.However,these methods ignore the initial unstable process of entering the hysteresis loop that exists in the actual maneuvering process of the aircraft.Here,an excitation input suitable for nonlinear system identification is introduced to model unsteady aerodynamic forces with any motion in the amplitude and frequency ranges based on the Least Squares Support Vector Machines(LS-SVMs).In the selection of the input form,avoiding the use of reduced frequency as a parameter makes the model more universal.After model training is completed,the method is applied to predict the lift coefficient,drag coefficient and pitching moment coefficient of the RAE2822 airfoil,in sine and sweep motions under the conditions of plunging and pitching at Mach number 0.8.The predicted results of the initial unstable process and the final stable process are in close agreement with the Computational Fluid Dynamics(CFD)data,demonstrating the feasibility of the model for nonlinear unsteady aerodynamics modeling and the effectiveness of the input design approach.
文摘A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection.
基金This project is supported by Special Foundation for Major State Basic Research of China (No.G1998030415).
文摘Soft sensor is widely used in industrial process control. It plays animportant role to improve the quality of product and assure safety in production. The core of softsensor is to construct soft sensing model. A new soft sensing modeling method based on supportvector machine (SVM) is proposed. SVM is a new machine learning method based on statistical learningtheory and is powerful for the problem characterized by small sample, nonlinearity, high dimensionand local minima. The proposed methods are applied to the estimation of frozen point of light dieseloil in distillation column. The estimated outputs of soft sensing model based on SVM match the realvalues of frozen point and follow varying trend of frozen point very well. Experiment results showthat SVM provides a new effective method for soft sensing modeling and has promising application inindustrial process applications.
基金the National Basic Research Program (973) of China (No. 2004CB719401)the National Research Foundation for the Doctoral Program of Higher Education of China (No.20060003060)
文摘In this paper, we present a novel Support Vector Machine active learning algorithm for effective 3D model retrieval using the concept of relevance feedback. The proposed method learns from the most informative objects which are marked by the user, and then creates a boundary separating the relevant models from irrelevant ones. What it needs is only a small number of 3D models labelled by the user. It can grasp the user's semantic knowledge rapidly and accurately. Experimental results showed that the proposed algorithm significantly improves the retrieval effectiveness. Compared with four state-of-the-art query refinement schemes for 3D model retrieval, it provides superior retrieval performance after no more than two rounds of relevance feedback.
基金Project(2002CB312200) supported by the National Key Fundamental Research and Development Program of China project(60574019) supported by the National Natural Science Foundation of China
文摘Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs based MPC was derived, and then the necessary and sufficient stability condition for MPC closed loop was given according to SVM model, and finally a method of judging the discrepancy between SVM model and the actual plant was presented, and consequently the constraint sets, which can guarantee that the stability condition is still robust for model/plant mismatch within some given bounds, were obtained by applying small-gain theorem. Simulation experiments show the proposed stability condition and robust constraint sets can provide a convenient way of adjusting controller parameters to ensure a closed-loop with larger stable margin.
基金supported by National Natural Science Foundation of China (Grant No. 50675219)Hu’nan Provincial Science Committee Excellent Youth Foundation of China (Grant No. 08JJ1008)
文摘Turbopump condition monitoring is a significant approach to ensure the safety of liquid rocket engine (LRE).Because of lack of fault samples,a monitoring system cannot be trained on all possible condition patterns.Thus it is important to differentiate abnormal or unknown patterns from normal pattern with novelty detection methods.One-class support vector machine (OCSVM) that has been commonly used for novelty detection cannot deal well with large scale samples.In order to model the normal pattern of the turbopump with OCSVM and so as to monitor the condition of the turbopump,a monitoring method that integrates OCSVM with incremental clustering is presented.In this method,the incremental clustering is used for sample reduction by extracting representative vectors from a large training set.The representative vectors are supposed to distribute uniformly in the object region and fulfill the region.And training OCSVM on these representative vectors yields a novelty detector.By applying this method to the analysis of the turbopump's historical test data,it shows that the incremental clustering algorithm can extract 91 representative points from more than 36 000 training vectors,and the OCSVM detector trained on these 91 representative points can recognize spikes in vibration signals caused by different abnormal events such as vane shedding,rub-impact and sensor faults.This monitoring method does not need fault samples during training as classical recognition methods.The method resolves the learning problem of large samples and is an alternative method for condition monitoring of the LRE turbopump.
基金National High Technology Research andDevelopment Program of China( Project 863 G2 0 0 1AA413 13 0
文摘A new multiple models(MM) approach was proposed to model complex industrial process by using Fuzzy Support Vector Machines(F -SVMs). By applying the proposed approach to a pH neutralization titration experiment, F -SVMs MM not only provides satisfactory approximation and generalization property, but also achieves superior performance to USOCPN multiple modeling method and single modeling method based on standard SVMs.
基金the National Natural Science Foundation of China (No.60375001,60775047,60402024).
文摘This paper proposes a novel excitation controller using support vector machines (SVM) and approximate models. The nonlinear control law is derived directly based on an input-output approximation method via Taylor expansion, which not only avoids complex control development and intensive computation, but also avoids online learning or adjustment. Only a general SVM modelling technique is involved in both model identification and controller implementation. The robustness of the stability is rigorously established using the Lyapunov method. Several simulations demonstrate the effectiveness of the proposed excitation controller.
基金Supported by the National Natural Science Foundation of China(21076179)the National Basic Research Program of China(2012CB720500)
文摘This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection.
文摘This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework based on SVM. At last a numerical experiment is taken to demonstrate the proposed approach's correctness and effectiveness.
基金the 973 Program of China (No.2002CB312200)the National Science Foundation of China (No.60574019)
文摘In this paper, a support vector machine-based multi-model predictive control is proposed, in which SVM classification combines well with SVM regression. At first, each working environment is modeled by SVM regression and the support vector machine network-based model predictive control (SVMN-MPC) algorithm corresponding to each environment is developed, and then a multi-class SVM model is established to recognize multiple operating conditions. As for control, the current environment is identified by the multi-class SVM model and then the corresponding SVMN-MPC controller is activated at each sampling instant. The proposed modeling, switching and controller design is demonstrated in simulation results.
基金This project is supported by Shanghai Automobile Industry Corporation Technology Foundation, China(No.0224).
文摘Various methods of tyre modelling are implemented from pure theoretical to empirical or semi-empirical models based on experimental results. A new way of representing tyre data obtained from measurements is presented via support vector machines (SVMs). The feasibility of applying SVMs to steady-state tyre modelling is investigated by comparison with three-layer backpropagation (BP) neural network at pure slip and combined slip. The results indicate SVMs outperform the BP neural network in modelling the tyre characteristics with better generalization performance. The SVMsqyre is implemented in 8-DOF vehicle model for vehicle dynamics simulation by means of the PAC 2002 Magic Formula as reference. The SVMs-tyre can be a competitive and accurate method to model a tyre for vehicle dynamics simuLation.
基金supported by the National Key R&D Program of China(Grant No.2022YFC3005401)the Fundamental Research Funds for the Central Universities(Grant No.B230201013)+2 种基金the National Natural Science Foundation of China(Grants No.52309152,U2243223,and U23B20150)the Natural Science Foundation of Jiangsu Province(Grant No.BK20220978)the Open Fund of National Dam Safety Research Center(Grant No.CX2023B03).
文摘Deformation monitoring is a critical measure for intuitively reflecting the operational behavior of a dam.However,the deformation monitoring data are often incomplete due to environmental changes,monitoring instrument faults,and human operational errors,thereby often hindering the accurate assessment of actual deformation patterns.This study proposed a method for quantifying deformation similarity between measurement points by recognizing the spatiotemporal characteristics of concrete dam deformation monitoring data.It introduces a spatiotemporal clustering analysis of the concrete dam deformation behavior and employs the support vector machine model to address the missing data in concrete dam deformation monitoring.The proposed method was validated in a concrete dam project,with the model error maintaining within 5%,demonstrating its effectiveness in processing missing deformation data.This approach enhances the capability of early-warning systems and contributes to enhanced dam safety management.
文摘This paper presents a novel evaluation model of the customer satisfaction degree (CSD) in logistics based on support vector machine (SVM). Firstly, the relation between the suppliers and the customers is analyzed. Seondly, the evaluation index system and fuzzy quantitative methods are provided. Thirdly, the CSD evaluation system including eight indexes and three ranks based on one-against-one mode of SVM is built, last simulation experint is presented to illustrate the theoretical results.
文摘Objective: Support Vector Machine (SVM) is a machine-learning method, based on the principle of structural risk minimization, which performs well when applied to data outside the training set. In this paper, SVM was applied to predict 5-year survival status of patients with nasopharyngeal carcinoma (NPC) after treatment, we expect to find a new way for prognosis studies in cancer so as to assist right clinical decision for individual patient. Methods: Two modelling methods were used in the study; SVM network and a standard parametric logistic regression were used to model 5-year survival status. And the two methods were compared on a prospective set of patients not used in model construction via receiver operating characteristic (ROC) curve analysis. Results: The SVM1, trained with the 25 original input variables without screening, yielded a ROC area of 0.868, at sensitivity to mortality of 79.2% and the specificity of 94.5%. Similarly, the SVM2, trained with 9 input variables which were obtained by optimal input variable selection from the 25 original variables by logistic regression screening, yielded a ROC area of 0.874, at a sensitivity to mortality of 79.2% and the specificity of 95.6%, while the logistic regression yielded a ROC area of 0.751 at a sensitivity to mortality of 66.7% and gave a specificity of 83.5%. Conclusion: SVM found a strong pattern in the database predictive of 5-year survival status. The logistic regression produces somewhat similar, but better, results. These results show that the SVM models have the potential to predict individual patient's 5-year survival status after treatment, and to assist the clinicians for making a good clinical decision.
基金Supported by the Shandong Province Traditional Chinese Medicine Technology Project,No.Q-2023147the Weifang Health Commission Research Project,No.WFWSJK-2023-033+3 种基金the Weifang City Science and Technology Development Plan(Medical Category),No.2023YX057the Weifang Medical University 2022 Campus Level Education and Teaching Reform and Research Project,No.2022YB051Norman Bethune Public Welfare Foundation,No.ezmr2023-037Special Research Project on Optimized Management of Acute Pain,Wu Jieping Medical Foundation.
文摘BACKGROUND Delayed wound healing is a common clinical complication following gastric cancer radical surgery,adversely affecting patient prognosis.With advances in artificial intelligence,machine learning offers a promising approach for developing predictive models that can identify high-risk patients and support early clinical intervention.AIM To construct machine learning-based risk prediction models for delayed wound healing after gastric cancer surgery to support clinical decision-making.METHODS We reviewed a total of 514 patients who underwent gastric cancer radical surgery under general anesthesia from January 1,2014 to December 30,2023.Seventy percent of the dataset was selected as the training set and 30%as the validation set.Decision trees,support vector machines,and logistic regression were used to construct a risk prediction model.The performance of the model was evaluated using accuracy,recall,precision,F1 index,and area under the receiver operating characteristic curve and decision curve.RESULTS This study included five variables:Sex,elderly,duration of abdominal drainage,preoperative white blood cell(WBC)count,and absolute value of neutrophils.These variables were selected based on their clinical relevance and statistical significance in predicting delayed wound healing.The results showed that the decision tree model outperformed the logistic regression and support vector machine models in both the training and validation sets.Specifically,the decision tree model achieved higher accuracy,F1 index,recall,and area under the curve(AUC)values.The support vector machine model also demonstrated better performance than logistic regression,with higher accuracy,recall,and F1 index,but a slightly lower AUC.The key variables of sex,elderly,duration of abdominal drainage,preoperative WBC count,and absolute value of neutrophils were found to be strong predictors of delayed wound healing.Patients with longer duration of abdominal drainage had a significantly higher risk of delayed wound healing,with a risk ratio of 1.579 compared to those with shorter duration of abdominal drainage.Similarly,preoperative WBC count,sex,elderly,and absolute value of neutrophils were associated with a higher risk of delayed wound healing,highlighting the importance of these variables in the model.CONCLUSION The model is able to identify high-risk patients based on sex,elderly,duration of abdominal drainage,preoperative WBC count,and absolute value of neutrophils can provide valuable insights for clinical decision-making.