MicroRNAs are a class of small, single-stranded RNAs which are produced by non-protein-coding RNA genes with a length of 21-29 nt. They regulate the expression of protein-encoding genes at the post-transcriptional lev...MicroRNAs are a class of small, single-stranded RNAs which are produced by non-protein-coding RNA genes with a length of 21-29 nt. They regulate the expression of protein-encoding genes at the post-transcriptional level and the degradation ofmRNAs by base pairing to mRNAs. Mature miRNAs are processed from 60-90 nt RNA hairpin structures called pre-miRNAs. At present, most of the machine learning computational methods for pre-miRNAs prediction are based on two-class SVM and use structural information of pre-miRNA hairpins. Those methods share a common feature that all of them need a negative dataset in the training dataset and feature selection in both training and testing dataset. In order to avoid selecting false negative examples of miRNA hairpins in the training dataset which may mislead the classifiers, we presented a microRNA prediction algorithm called MirBio based on miRNAs Biogenesis which is trained only on the information of the positive miRNAs class to predict miRNAs. It can predict both pre-miRNAs and miRNAs and get a relatively satisfying result in this study.展开更多
针对燃煤机组锅炉主再热汽温控制中存在的滞后性、多变量耦合及动态工况适应难题,文章提出一种融合数字孪生技术与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)的汽温寻优方法。通过构建锅炉三维数字孪生模型实现...针对燃煤机组锅炉主再热汽温控制中存在的滞后性、多变量耦合及动态工况适应难题,文章提出一种融合数字孪生技术与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)的汽温寻优方法。通过构建锅炉三维数字孪生模型实现设备状态实时映射,结合LS-SVM建立多变量动态预测模型,并引入多目标微分进化算法(MODE)进行参数优化。实际应用表明,该方法使主汽温波动范围从±7℃缩小至±2.5℃,再热汽温预测误差稳定在±1.5℃以内,年节约燃煤成本超400万元,为火电机组深度调峰与能效提升提供技术支撑。展开更多
基金Supported by the National Natural Science Foundation of China(No.60971089)
文摘MicroRNAs are a class of small, single-stranded RNAs which are produced by non-protein-coding RNA genes with a length of 21-29 nt. They regulate the expression of protein-encoding genes at the post-transcriptional level and the degradation ofmRNAs by base pairing to mRNAs. Mature miRNAs are processed from 60-90 nt RNA hairpin structures called pre-miRNAs. At present, most of the machine learning computational methods for pre-miRNAs prediction are based on two-class SVM and use structural information of pre-miRNA hairpins. Those methods share a common feature that all of them need a negative dataset in the training dataset and feature selection in both training and testing dataset. In order to avoid selecting false negative examples of miRNA hairpins in the training dataset which may mislead the classifiers, we presented a microRNA prediction algorithm called MirBio based on miRNAs Biogenesis which is trained only on the information of the positive miRNAs class to predict miRNAs. It can predict both pre-miRNAs and miRNAs and get a relatively satisfying result in this study.
文摘针对燃煤机组锅炉主再热汽温控制中存在的滞后性、多变量耦合及动态工况适应难题,文章提出一种融合数字孪生技术与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)的汽温寻优方法。通过构建锅炉三维数字孪生模型实现设备状态实时映射,结合LS-SVM建立多变量动态预测模型,并引入多目标微分进化算法(MODE)进行参数优化。实际应用表明,该方法使主汽温波动范围从±7℃缩小至±2.5℃,再热汽温预测误差稳定在±1.5℃以内,年节约燃煤成本超400万元,为火电机组深度调峰与能效提升提供技术支撑。