期刊文献+
共找到15,537篇文章
< 1 2 250 >
每页显示 20 50 100
基于One-Class SVM的青鳉鱼异常行为识别方法 被引量:8
1
作者 罗毅 王伟 +9 位作者 刘勇 姜杰 刘翠棉 赵乐 李歆琰 李治国 廖日红 王艳 王新春 饶凯锋 《河北工业科技》 CAS 2022年第3期230-236,共7页
为了更准确地解析青鳉鱼在突发污染环境中的行为变化趋势,提出了一种基于One-Class SVM模型的青鳉鱼异常行为识别方法。以青鳉鱼的生理及行为特征作为观测指标,将采集到的暴露在不同类型和浓度特征污染物下的青鳉鱼行为强度信号作为经... 为了更准确地解析青鳉鱼在突发污染环境中的行为变化趋势,提出了一种基于One-Class SVM模型的青鳉鱼异常行为识别方法。以青鳉鱼的生理及行为特征作为观测指标,将采集到的暴露在不同类型和浓度特征污染物下的青鳉鱼行为强度信号作为经验数据,利用直方图统计和主成分分析(PCA)对行为强度数据进行降维,实现行为特征提取,基于One-Class SVM构建模型,并以五水合硫酸铜和三氯酚作为特征污染物进行暴露实验对算法进行验证。结果表明,One-Class SVM模型可以准确地识别正常行为和污染物暴露时发生的异常行为;对于有机污染物最快可在10 min内完成预警,重金属污染物可在1 h内完成预警,并且污染物浓度越高,模型的识别效果越好。识别方法可对水源突发性水质污染进行更有效的监测和预警,也可为水污染应急决策提供技术支撑。 展开更多
关键词 环境质量监测与评价 模式识别 青鳉鱼 异常行为 one-class svm
在线阅读 下载PDF
基于one-class SVM与融合多可视化特征的可通行区域检测 被引量:2
2
作者 高华 赵春霞 韩光 《机器人》 EI CSCD 北大核心 2011年第6期731-735,741,共6页
针对难以获取完备的非可通行区域样本问题,为提高算法在不同场景的适应性,首次把可通行性检测看作单类分类问题,提出了基于one-class SVM的可通行区域检测算法.提出一种改进的融合颜色和纹理的特征提取方法,对各颜色分量进行离散余弦变... 针对难以获取完备的非可通行区域样本问题,为提高算法在不同场景的适应性,首次把可通行性检测看作单类分类问题,提出了基于one-class SVM的可通行区域检测算法.提出一种改进的融合颜色和纹理的特征提取方法,对各颜色分量进行离散余弦变换(DCT)变换,对DCT系数进行金字塔分解,用每个分解的均值和方差描述特征窗口.利用one-class SVM进行训练生成可通行区域的模式.实验表明,方法对新数据具有很好的识别能力,具有较高的检测精度和较低的误检率. 展开更多
关键词 可通行区域检测 one-class svm 多可视化特征 自主导航
在线阅读 下载PDF
融合自编码器和one-class SVM的异常事件检测 被引量:15
3
作者 胡海洋 张力 李忠金 《中国图象图形学报》 CSCD 北大核心 2020年第12期2614-2629,共16页
目的在自动化和智能化的现代生产制造过程中,视频异常事件检测技术扮演着越来越重要的角色,但由于实际生产制造中异常事件的复杂性及无关生产背景的干扰,使其成为一项非常具有挑战性的任务。很多传统方法采用手工设计的低级特征对视频... 目的在自动化和智能化的现代生产制造过程中,视频异常事件检测技术扮演着越来越重要的角色,但由于实际生产制造中异常事件的复杂性及无关生产背景的干扰,使其成为一项非常具有挑战性的任务。很多传统方法采用手工设计的低级特征对视频的局部区域进行特征提取,然而此特征很难同时表示运动与外观特征。此外,一些基于深度学习的视频异常事件检测方法直接通过自编码器的重构误差大小来判定测试样本是否为正常或异常事件,然而实际情况往往会出现一些原本为异常的测试样本经过自编码得到的重构误差也小于设定阈值,从而将其错误地判定为正常事件,出现异常事件漏检的情形。针对此不足,本文提出一种融合自编码器和one-class支持向量机(support vector machine,SVM)的异常事件检测模型。方法通过高斯混合模型(Gaussian mixture model,GMM)提取固定大小的时空兴趣块(region of interest,ROI);通过预训练的3维卷积神经网络(3D convolutional neural network,C3D)对ROI进行高层次的特征提取;利用提取的高维特征训练一个堆叠的降噪自编码器,通过比较重构误差与设定阈值的大小,将测试样本判定为正常、异常和可疑3种情况之一;对自编码器降维后的特征训练一个one-class SVM模型,用于对可疑测试样本进行二次检测,进一步排除异常事件。结果本文对实际生产制造环境下的机器人工作场景进行实验,采用AUC(area under ROC)和等错误率(equal error rate,EER)两个常用指标进行评估。在设定合适的误差阈值时,结果显示受试者工作特征(receiver operating characteristic,ROC)曲线下AUC达到91.7%,EER为13.8%。同时,在公共数据特征集USCD(University of California,San Diego)Ped1和USCD Ped2上进行了模型评估,并与一些常用方法进行了比较,在USCD Ped1数据集中,相比于性能第2的方法,AUC在帧级别和像素级别分别提高了2.6%和22.3%;在USCD Ped2数据集中,相比于性能第2的方法,AUC在帧级别提高了6.7%,从而验证了所提检测方法的有效性与准确性。结论本文提出的视频异常事件检测模型,结合了传统模型与深度学习模型,使视频异常事件检测结果更加准确。 展开更多
关键词 视频异常事件检测 时空兴趣块 3维卷积神经网络 降噪自编码器 one-class支持向量机
原文传递
基于One-class SVM的实时入侵检测系统 被引量:12
4
作者 黄谦 王震 +1 位作者 韦韬 陈昱 《计算机工程》 CAS CSCD 北大核心 2006年第16期127-129,共3页
将One-class支持向量机和Online训练算法应用于入侵检测研究中,把入侵检测看作是一种单值分类问题,能够在有噪声的数据集中进行训练,降低了对训练集的要求,提高了检测准确性。同时解决了基于SVM的入侵检测系统实时训练的问题,在实际运... 将One-class支持向量机和Online训练算法应用于入侵检测研究中,把入侵检测看作是一种单值分类问题,能够在有噪声的数据集中进行训练,降低了对训练集的要求,提高了检测准确性。同时解决了基于SVM的入侵检测系统实时训练的问题,在实际运用中可以实时地添加新的训练样本对新出现的攻击手段进行分类。在KDDCUP'99标准入侵检测数据集上进行实验,系统缩短了训练时间并且获得了较高的检测准确率。 展开更多
关键词 信息安全 入侵检测 支持向量机
在线阅读 下载PDF
基于One-class SVM的网络时间隐蔽信道检测方法 被引量:5
5
作者 刘义 兰少华 《计算机与现代化》 2017年第6期108-111,121,共5页
网络时间隐蔽信道的检测是网络隐蔽信道研究中的热点和难点。当前的网络时间隐蔽信道的检测方法更多是针对某个或者某些特定的网络时间隐蔽信道,不具备通用性。本文利用机器学习中的SVM思想,提出一种基于One-class SVM的通用检测方法。... 网络时间隐蔽信道的检测是网络隐蔽信道研究中的热点和难点。当前的网络时间隐蔽信道的检测方法更多是针对某个或者某些特定的网络时间隐蔽信道,不具备通用性。本文利用机器学习中的SVM思想,提出一种基于One-class SVM的通用检测方法。把时间隐蔽信道的检测看作是一种单值分类问题,利用正常信道数据集进行训练,构建分类模型。实验表明该检测方法在保证较高检测率的同时,又具备较好的通用性,可以比较有效地检测出多种网络时间隐蔽信道。 展开更多
关键词 时间隐蔽信道 单类支持向量机 网络安全
在线阅读 下载PDF
基于蚁群算法改进One-Class SVM的电力离群用户检测算法研究 被引量:3
6
作者 黄宇腾 裴旭斌 +2 位作者 孔历波 李波 殷杰 《自动化与仪器仪表》 2019年第5期111-114,共4页
用电采集负荷数据反映了用户的用电特性及用电习惯,通过用电负荷数据分析识别用电离群用户在工业生产中具有重要意义。本文根据高维用电负荷数据的特点,提出了一种基于改进One-Class SVM算法的电力离群用户检测方法,同时采用蚁群算法对... 用电采集负荷数据反映了用户的用电特性及用电习惯,通过用电负荷数据分析识别用电离群用户在工业生产中具有重要意义。本文根据高维用电负荷数据的特点,提出了一种基于改进One-Class SVM算法的电力离群用户检测方法,同时采用蚁群算法对支持向量机的训练参数进行优化,可以在样本分布不均匀、样本分布未知的环境下有效识别电力离群用户。通过对某市纺织业用户的数据进行实践证明,改进的算法能够有效提高收敛速度,并有效地识别离群的用电用户。 展开更多
关键词 蚁群算法 one-class svm 离群检测 电力离群
原文传递
基于One-Class SVM的机载塔康测距信息异常检测方法研究
7
作者 李城梁 《现代导航》 2015年第3期282-285,309,共5页
针对多源导航信息融合系统中导航传感器数据保障的问题,本文提出了一种基于One-Class SVM的机载塔康测距信息异常检测方法。首先,提取机载塔康测距信息的时域参数构成特征样本空间;然后,采用One-Class SVM训练出机载塔康测距信息正常状... 针对多源导航信息融合系统中导航传感器数据保障的问题,本文提出了一种基于One-Class SVM的机载塔康测距信息异常检测方法。首先,提取机载塔康测距信息的时域参数构成特征样本空间;然后,采用One-Class SVM训练出机载塔康测距信息正常状态时的模型,通过发现非正常状态的样本进行异常检测。利用模拟的机载塔康测距数据进行方法验证,实验结果表明:该异常检测方法对机载塔康测距信息中的噪声有一定的鲁棒性,可以满足实际应用的需要。 展开更多
关键词 异常检测 机载塔康测距 one-class svm
在线阅读 下载PDF
融合连续域蚁群算法One-Class SVM的电力离群用户检测
8
作者 郭玮 《国外电子测量技术》 2020年第6期148-154,共7页
连续域蚁群优化算法是蚁群优化算法的主要研究方向。通过分析蚁群觅食过程中的位置分布与食物来源之间的关系,提出了蚁群一类支持向量机(One-Class SVM)算法。在此算法的基础上,设计了一种电力离群用户检测算法,给出了算法的求解形式,... 连续域蚁群优化算法是蚁群优化算法的主要研究方向。通过分析蚁群觅食过程中的位置分布与食物来源之间的关系,提出了蚁群一类支持向量机(One-Class SVM)算法。在此算法的基础上,设计了一种电力离群用户检测算法,给出了算法的求解形式,根据高维用电负荷数据的特点,提出了一种基于改进One-Class SVM算法的电力离群用户检测方法,同时采用蚁群算法对支持向量机的训练参数进行优化,可以在样本分布不均匀、样本分布未知的环境下有效识别电力离群用户,并对其他算法的测试结果进行了比较和分析,以验证所提出算法的正确性和有效性。 展开更多
关键词 蚁群算法 one-class svm 离群检测 电力离群
原文传递
Prediction of miRNA Based on miRNA Biogenesis via One-class SVM
9
作者 LIU Yuan-ning YAN Wen +3 位作者 ZHANG Hao LI Zhi LU Hui-jun LI Xin 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2010年第5期803-809,共7页
MicroRNAs are a class of small, single-stranded RNAs which are produced by non-protein-coding RNA genes with a length of 21-29 nt. They regulate the expression of protein-encoding genes at the post-transcriptional lev... MicroRNAs are a class of small, single-stranded RNAs which are produced by non-protein-coding RNA genes with a length of 21-29 nt. They regulate the expression of protein-encoding genes at the post-transcriptional level and the degradation ofmRNAs by base pairing to mRNAs. Mature miRNAs are processed from 60-90 nt RNA hairpin structures called pre-miRNAs. At present, most of the machine learning computational methods for pre-miRNAs prediction are based on two-class SVM and use structural information of pre-miRNA hairpins. Those methods share a common feature that all of them need a negative dataset in the training dataset and feature selection in both training and testing dataset. In order to avoid selecting false negative examples of miRNA hairpins in the training dataset which may mislead the classifiers, we presented a microRNA prediction algorithm called MirBio based on miRNAs Biogenesis which is trained only on the information of the positive miRNAs class to predict miRNAs. It can predict both pre-miRNAs and miRNAs and get a relatively satisfying result in this study. 展开更多
关键词 MIRNAS HAIRPIN one-class classification miRNAs Biogenesis
在线阅读 下载PDF
基于One-class SVM的噪声图像分割方法 被引量:6
10
作者 尚方信 郭浩 +1 位作者 李钢 张玲 《计算机应用》 CSCD 北大核心 2019年第3期874-881,共8页
为解决现有无监督图像分割模型对强噪声环境鲁棒性差、无法适应复杂混合噪声的问题,提出了一种基于One-class SVM方法的改进后的噪声鲁棒图像分割模型。首先,基于One-class SVM构建一种数据离群程度检测机制;然后,将离群程度值引入能量... 为解决现有无监督图像分割模型对强噪声环境鲁棒性差、无法适应复杂混合噪声的问题,提出了一种基于One-class SVM方法的改进后的噪声鲁棒图像分割模型。首先,基于One-class SVM构建一种数据离群程度检测机制;然后,将离群程度值引入能量泛函,令分割模型可以在多种噪声强度下获得较为准确的图像信息,同时避免现有方法在强噪声环境下,降权机制失效的问题;最后,通过最小化能量函数,驱动分割轮廓向目标边缘演化。在噪声图像分割实验中,当选取不同类型和强度的噪声时,该模型均能得到较为理想的分割结果。在F_1-score评估标准下,该模型比基于局部相关熵的K-means(LCK)模型高0.2~0.3,在强噪声环境下具有更高的稳定性,且在分割收敛时间上仅略大于LCK模型0.1 s左右。实验结果表明,所提模型在未显著增加分割耗时的前提下,对于概率、极值及混合噪声均有着更强的鲁棒性,并且可以分割带有噪声的自然图像。 展开更多
关键词 图像分割 图像噪声 单类支持向量机 离群检测 能量项
在线阅读 下载PDF
基于One-class SVM的大工业负荷模型研究 被引量:1
11
作者 程婷婷 陈云龙 +2 位作者 梁雅洁 张海静 张玉敏 《山东电力技术》 2019年第6期10-15,共6页
随着新型能源的不断增长,电力系统的负荷特性不断变化,电网的供需关系特性改变,给电网运行调峰、有序用电、客户管理带来了新的挑战。提出基于单类支持向量机(One-class SVM)的大工业用户负荷模型,从典型日选取、相关系数、频谱分析、... 随着新型能源的不断增长,电力系统的负荷特性不断变化,电网的供需关系特性改变,给电网运行调峰、有序用电、客户管理带来了新的挑战。提出基于单类支持向量机(One-class SVM)的大工业用户负荷模型,从典型日选取、相关系数、频谱分析、指标体系4个层面建立大工业负荷模型,按照典型客户、客户群、行业负荷3个层级研究多时间维度、多层次的大用户负荷特性,实现对大工业电力负荷数据的实时跟踪。实际应用表明,该方法能够有效分析各类大用户用电规律以及相关特性。 展开更多
关键词 大工业负荷模型 one-classsvm 频谱分析 典型日负荷曲线 负荷特性指标
在线阅读 下载PDF
基于PSO和网格优化结合的SVM算法癌症分类研究
12
作者 汪颖 王琳 《兰州文理学院学报(自然科学版)》 2026年第1期56-61,共6页
针对乳腺癌良性与恶性的鉴别,提出一种融合粒子群优化与网格搜索的支持向量机模型(GPSO-SVM).该方法先通过网格搜索初步确定粒子群优化的超参数范围,并在粒子群优化迭代过程中阶段性引入网格搜索.联合完成对支持向量机超参数的优化,有... 针对乳腺癌良性与恶性的鉴别,提出一种融合粒子群优化与网格搜索的支持向量机模型(GPSO-SVM).该方法先通过网格搜索初步确定粒子群优化的超参数范围,并在粒子群优化迭代过程中阶段性引入网格搜索.联合完成对支持向量机超参数的优化,有效结合了网格搜索的全局搜索能力与粒子群算法的局部精细寻优优势,提高了参数寻优的效率与准确性.实验结果显示,GPSO-SVM模型在4种不同乳腺癌数据集上的五折交叉验证准确率分别达到98.60%、97.00%、90.52%和88.89%,优于其他寻优方法. 展开更多
关键词 癌症分类 网格搜索 GPSO-svm
在线阅读 下载PDF
基于转矩角的永磁同步电机SVM-DTC研究
13
作者 董艮滔 余垚博 +5 位作者 张鑫杰 张平 严伟 郭明 雷新卓 彭恺 《工业控制计算机》 2026年第1期132-133,135,共3页
通过对永磁同步电机转矩角控制进行分析,将空间矢量脉宽调制(SVPWM)与直接转矩控制(DTC)相结合。在此基础上对速度控制器进行改进,构建了基于转矩角的SVM-DTC转速闭环控制系统。仿真结果表明这套控制架构具有良好的稳定性和动态性能,实... 通过对永磁同步电机转矩角控制进行分析,将空间矢量脉宽调制(SVPWM)与直接转矩控制(DTC)相结合。在此基础上对速度控制器进行改进,构建了基于转矩角的SVM-DTC转速闭环控制系统。仿真结果表明这套控制架构具有良好的稳定性和动态性能,实现了对电机转速更为精准的控制。 展开更多
关键词 转矩角 永磁同步电机 svm-DTC PI
在线阅读 下载PDF
基于SVM和MOPSO算法的西安地区高层住宅多目标优化设计研究
14
作者 邵腾 张锟 杨玉湘 《新材料·新装饰》 2026年第3期1-5,共5页
院随着我国城市化率的持续升高,高层住宅规模逐渐扩大,已成为建筑能耗和碳排放的主要来源之一。因此,在方案设计阶段开展适配气候与资源的节能设计十分关键,同时还应兼顾对经济与环境的影响,以实现能源、碳排、经济和环境协同优化。文... 院随着我国城市化率的持续升高,高层住宅规模逐渐扩大,已成为建筑能耗和碳排放的主要来源之一。因此,在方案设计阶段开展适配气候与资源的节能设计十分关键,同时还应兼顾对经济与环境的影响,以实现能源、碳排、经济和环境协同优化。文章基于西安地区的气候背景,以建筑能耗、自然采光、全生命周期碳排放和成本为优化目标,搭建以智能算法为核心的高层住宅优化设计框架,并通过实证研究构建综合最优设计模式进行对比分析。研究结果可为西安地区高层住宅性能优化设计提供科学量化依据和指导方案。 展开更多
关键词 高层住宅 svm MOPSO 智能算法 多目标优化
在线阅读 下载PDF
基于改进SVM的火力发电机组锅炉管异物堵塞检测方法
15
作者 李哲 《电气技术与经济》 2026年第1期237-240,共4页
在火力发电机组中,只能采用单一异物堵塞特征,导致检测精度较差,因此设计一种基于改进SVM的火力发电机组锅炉管异物堵塞检测方法。对锅炉管数据列进行无量纲化处理,采用标准化变化率方法消除量纲影响,并通过灰色关联度归一化确定各数据... 在火力发电机组中,只能采用单一异物堵塞特征,导致检测精度较差,因此设计一种基于改进SVM的火力发电机组锅炉管异物堵塞检测方法。对锅炉管数据列进行无量纲化处理,采用标准化变化率方法消除量纲影响,并通过灰色关联度归一化确定各数据列权重系数。利用改进SVM融合颜色、形态及频域特征,根据特征区分能力动态赋予权重,通过高维非线性变换形成更具判别力的特征向量。引入多项式核函数与高斯核函数的组合核函数,并考虑数据多样性和不平衡性,对不同类别样本赋予不同权重,实现火力发电机组锅炉管异物堵塞检测。实验结果表明,设计方法的过热器管压力异常检测结果与实际基本一致,并且平均误报率仅为3.0%,远低于其他方法,充分证明其具有更高的检测精度。 展开更多
关键词 改进svm 火力发电机组 锅炉管 异物堵塞 检测误报率
在线阅读 下载PDF
基于PSO-SVM-SST模型的地震应急物资需求预测研究
16
作者 唐彦东 程梅 +2 位作者 刘军 于汐 林浩 《大地测量与地球动力学》 北大核心 2026年第1期86-93,共8页
建立基于粒子群算法(PSO)优化的支持向量机(SVM)震后受灾人口预测模型,依据安全库存理论建立SST地震应急物资需求预测模型。选取地震危险性、破坏程度等9项指标参数,经降维和去冗处理后作为基于PSO优化的SVM模型输入变量,并开展受灾人... 建立基于粒子群算法(PSO)优化的支持向量机(SVM)震后受灾人口预测模型,依据安全库存理论建立SST地震应急物资需求预测模型。选取地震危险性、破坏程度等9项指标参数,经降维和去冗处理后作为基于PSO优化的SVM模型输入变量,并开展受灾人数预测,根据受灾人口与应急物资间的内在关联,应用SST模型对九寨沟地震震后初期所需的典型物资数量进行间接估算。结果表明,通过采用误差对比分析方法对模型进行有效性验证,PSO-SVM模型较SVM模型的预测误差降低14.27%,预测精度显著提高。估算得到九寨沟地震震后典型物资需求量,预测结果具有一定的参考价值,表明PSO-SVM-SST预测模型在理论和实践层面均具有一定的合理性和实用性。 展开更多
关键词 地震应急物资 需求预测 支持向量机 安全库存理论
在线阅读 下载PDF
基于SVM的价值导向分类模型研究
17
作者 曹红宝 《现代信息科技》 2026年第1期132-137,共6页
以传统机器学习分类模型较缺乏经济学理论支撑为起点,提出了一种基于支持向量机(SVM)的价值导向分类模型(Value-Driven Classification,VDC)。通过深度结合马克思主义价值理论,该模型创新性地将数据样本类比为商品和劳动力,构建了特征... 以传统机器学习分类模型较缺乏经济学理论支撑为起点,提出了一种基于支持向量机(SVM)的价值导向分类模型(Value-Driven Classification,VDC)。通过深度结合马克思主义价值理论,该模型创新性地将数据样本类比为商品和劳动力,构建了特征价值量化体系和剩余价值波动计算模型,并利用核函数处理复杂特征。实验结果表明,该模型在保持与传统模型分类性能相当的同时,增强了理论解释性。这一成果不仅拓展了机器学习模型的理论基础,也为经济学量化研究提供了新方法,在经济学实证分析和市场预测等领域具有应用潜力。 展开更多
关键词 分类模型 价值 价值分类导向模型 PYTHON语言 支持向量机模型 核函数
在线阅读 下载PDF
基于数字孪生与LS-SVM的燃煤机组锅炉主再热汽温寻优研究
18
作者 王旭东 傅谦晶 +4 位作者 程爱勇 刘俊麟 陈辉 李斌 邵尉涛 《计算机应用文摘》 2026年第2期87-89,共3页
针对燃煤机组锅炉主再热汽温控制中存在的滞后性、多变量耦合及动态工况适应难题,文章提出一种融合数字孪生技术与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)的汽温寻优方法。通过构建锅炉三维数字孪生模型实现... 针对燃煤机组锅炉主再热汽温控制中存在的滞后性、多变量耦合及动态工况适应难题,文章提出一种融合数字孪生技术与最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)的汽温寻优方法。通过构建锅炉三维数字孪生模型实现设备状态实时映射,结合LS-SVM建立多变量动态预测模型,并引入多目标微分进化算法(MODE)进行参数优化。实际应用表明,该方法使主汽温波动范围从±7℃缩小至±2.5℃,再热汽温预测误差稳定在±1.5℃以内,年节约燃煤成本超400万元,为火电机组深度调峰与能效提升提供技术支撑。 展开更多
关键词 数字孪生 LS-svm 主再热汽温 多目标优化 深度调峰
在线阅读 下载PDF
基于改进SVM与马氏距离的机器人状态评估方法研究
19
作者 姚伟滨 吴湘柠 +3 位作者 陈义时 陈成刚 韦锦 蒙艳玫 《组合机床与自动化加工技术》 北大核心 2025年第10期32-38,43,共8页
针对复杂环境作业机器人运行过程健康状态定量评估不准确问题,以及进一步进行机器人故障异常检测分析。从机器人电机故障引起的电流信号异常特征与数据驱动两个方面出发,采用一种自适应窗口的特征提取方法提取时频域运动不敏感特征。提... 针对复杂环境作业机器人运行过程健康状态定量评估不准确问题,以及进一步进行机器人故障异常检测分析。从机器人电机故障引起的电流信号异常特征与数据驱动两个方面出发,采用一种自适应窗口的特征提取方法提取时频域运动不敏感特征。提出一种基于增量one-class SVM算法的无监督学习机器人实时异常检测方法,提升局部异常检测能力,并采用马氏距离法建立状态数据与健康值之间的非线性映射关系,最终得到健康状态评估结果。通过分析机器人维护前后的运行数据结果表明,该方法检测效果达到97.54%,与其他类似方法对比,准确率更高,耗时更短,适应性和鲁棒性更好,能有效应用于作业机器人运行过程的健康状态评估。 展开更多
关键词 机器人 增量学习 one-class svm 马氏距离 健康评估
在线阅读 下载PDF
局部密度最小不确定性的SVM样本选择算法 被引量:1
20
作者 周玉 刘虹瑜 +2 位作者 李京京 丁红强 白磊 《哈尔滨工业大学学报》 北大核心 2025年第8期45-56,共12页
为解决支持向量机(SVM)在分类时通常含有大量的冗余样本,从而导致面对较大规模数据集时SVM计算复杂度受到限制的问题,提出一种局部密度最小不确定性的SVM样本选择算法。该方法对决策面影响较大的边界数据进行有效选择,通过提取可能含有... 为解决支持向量机(SVM)在分类时通常含有大量的冗余样本,从而导致面对较大规模数据集时SVM计算复杂度受到限制的问题,提出一种局部密度最小不确定性的SVM样本选择算法。该方法对决策面影响较大的边界数据进行有效选择,通过提取可能含有支持向量的训练样本,降低计算开销,进而提高SVM性能。首先,计算训练样本的K互近邻个数与高斯核密度估计。其次,将K互近邻个数与高斯核密度估计进行加和得到每个样本点的K局部密度并获取密度矩阵。然后,利用局部密度不确定性平衡优化方法,将密度矩阵进行三值映射后使不确定性改变量达到最小时得到最优阈值,并划分密度矩阵为中心数据与边界数据。最后,提取边界数据并作为SVM的训练样本建立分类模型。结果表明:利用该方法在UCI数据集上与其他6种常用样本选择方法进行实验对比,以准确率、保存率作为性能指标,文中提出的算法可以迅速划分中心数据与边界数据并删除大量冗余的训练样本,有效降低SVM的训练负担的同时提高了分类性能。 展开更多
关键词 支持向量机(svm) 样本选择 局部密度 不确定性平衡 分类
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部