Rapid screening of inorganic arsenic(iAs)in groundwater used for drinking by hundreds of millions of mostly rural residents worldwide is crucial for health protection.Most commercial field test kits are based on the G...Rapid screening of inorganic arsenic(iAs)in groundwater used for drinking by hundreds of millions of mostly rural residents worldwide is crucial for health protection.Most commercial field test kits are based on the Gutzeit reaction that uses mercury-based reagents for color development,an environmental concern that increasingly limits its utilization.This study further improves the Molybdenum Blue(MB)colorimetric method to allow for faster screening with more stable reagents.More importantly,a portable three-channel colorimeter is developed for screening iAs relative to the WHO drinking water guideline value(10μg/L).Adding the reducing reagents in sequence not only prolongs the storage time to>7 days,but also accelerates the color development time to 6 min in conjunction with lowering the H_(2)SO_(4) concentration in chromogenic reagents.The optimal pH ranges from 1.2 to 1.3 and is achieved by acidifying groundwater to 1%(V/V)HCl.With detection limits of 3.7μg/L for inorganic arsenate(iAs(V))and 3.8μg/L for inorganic arsenite(iAs(Ⅲ)),testing groundwater with-10μg/L of As has a precision<20%.The method works well for a range of phosphate concentrations of 48-950μg/L(0.5-10μmol/L).Concentrations of total_iAs(6-300μg/L),iAs(V)(6-230μg/L)and iAs(Ⅲ)(0-170μg/L)for 14 groundwater samples from Yinchuan Plain,Pearl River Delta,and Jianghan Plain,are in excellent agreements(linear regression slope:0.969-1.029)with the benchmark methods.The improved chemistry here lays the foundation for the MB colorimetric method to become a commercially viable screening tool,with further engineering and design improvement of the colorimeter.展开更多
Acrylamide(AA)is a neurotoxin and carcinogen that formed during the thermal food processing.Conventional quantification techniques are difficult to realize on-site detection of AA.Herein,a flower-like bimetallic FeCu ...Acrylamide(AA)is a neurotoxin and carcinogen that formed during the thermal food processing.Conventional quantification techniques are difficult to realize on-site detection of AA.Herein,a flower-like bimetallic FeCu nanozyme(FeCuzyme)sensor and portable platform were developed for naked-eye and on-site detection of AA.The FeCuzyme was successfully prepared and exhibited flower-like structure with 3D catalytic centers.Fe/Cu atoms were considered as active center and ligand frameworks were used as cofactor,resulting in collaborative substrate-binding features and remarkably peroxidase-like activity.During the catalytic process,the 3,3′,5,5′-tetrame-thylbenzidine(TMB)oxidation can be quenched by glutathione(GSH),and then restored after thiolene Michael addition reaction between GSH and AA.Given the“on–off–on”effect for TMB oxidation and high PODlike activity,FeCuzyme sensor exhibited a wide linear relationship from 0.50 to 18.00μM(R^(2)=0.9987)and high sensitivity(LOD=0.2360μM)with high stability.The practical application of FeCuzyme sensor was successfully validated by HPLC method.Furthermore,a FeCuzyme portable platform was designed with smartphone/laptop,and which can be used for naked-eye and on-site quantitative determination of AA in real food samples.This research provides a way for rational design of a novel nanozyme-based sensing platform for AA detection.展开更多
One of the primary tasks of earthquake early warning(EEW)systems is to predict potential earthquake damage rapidly and accurately.Cumulative absolute velocity(CAV),Arias intensity(I_(A)),and spectrum intensity(SI)are ...One of the primary tasks of earthquake early warning(EEW)systems is to predict potential earthquake damage rapidly and accurately.Cumulative absolute velocity(CAV),Arias intensity(I_(A)),and spectrum intensity(SI)are important parameters for measuring ground motion intensity and assessing earthquake damage.Due to the limited available information in EEW,CAV,I_(A),and SI cannot be accurately predicted using traditional EEW methods.In this paper,we propose an end-to-end deep learning-based Ground motion Intensity prediction Network(ENGINet)for on-site EEW.The aim of the ENGINet is to predict CAV,I_(A),and SI rapidly and reliably.ENGINet is based on a convolutional neural network and recurrent neural network.The inputs of the network are three-component acceleration records,three-component velocity records,and three-component displacement records obtained by a single station.The results from the test dataset show that at 3 s after the P-wave arrival,compared with the baseline models and other traditional methods,ENGINet has better performance in predicting CAV,I_(A),and SI.Our results indicate that ENGINet can quickly and accurately predict CAV,I_(A),and SI to some extent and has good potential in EEW efforts.展开更多
To accomplish on-site separation, preconcentration and cold storage of highly volatile organic compounds(VOCs) from water samples as well as their rapid transportation to laboratory, a high-throughput miniaturized pur...To accomplish on-site separation, preconcentration and cold storage of highly volatile organic compounds(VOCs) from water samples as well as their rapid transportation to laboratory, a high-throughput miniaturized purge-and-trap(μP&T) device integrating semiconductor refrigeration storage was developed in this work. Water samples were poured into the purge vessels and purged with purified air generated by an air pump. The VOCs in water samples were then separated and preconcentrated with sorbent tubes. After their complete separation and preconcentration, the tubes were subsequently preserved in the semiconductor refrigeration unit of the μP&T device. Notably, the high integration, small size, light weight, and low power consumption of the device makes it easy to be hand-carried to the field and transport by drone from remote locations, significantly enhancing the flexibility of field sampling. The performances of the device were evaluated by comparing analytical figures of merit for the detection of four cyclic volatile methylsiloxanes(cVMSs) in water. Compared to conventional collection and preservation methods, our proposed device preserved the VOCs more consistently in the sorbent tubes, with less than 5% loss of all analytes, and maintained stability for at least 20 days at 4℃. As a proof-of-concept,10 municipal wastewater samples were pretreated using this device with recoveries ranging from 82.5% to 99.9% for the target VOCs.展开更多
The integration of Global Navigation Satellite System(GNSS)technology into railway train control systems is a crucial step toward achieving the vision of a digital railway.Traditional train control systems undergo ext...The integration of Global Navigation Satellite System(GNSS)technology into railway train control systems is a crucial step toward achieving the vision of a digital railway.Traditional train control systems undergo extensive in-house tests and prolonged field tests for certification and approval before operational deployment,leading to high costs,delays,and operational disruptions.This paper introduces a GNSS-based train control localization framework which eliminates the need for on-site testing by leveraging train movement dynamics and 3D environment modeling to create a zero on-site testing platform.The proposed framework simulates train movement and the surrounding 3D environment using collected railway line location data and environmental attributes to generate realistic multipath signals and obscuration effects.This approach enables comprehensive laboratory-based case studies for train localization,reducing the huge amount test of needed for physical field trials.The framework is established in house,using the data collected at the Test Base of China Academy of Railway Sciences(Circular Railway).Results from the open area and cutting environment tests demonstrate high localization accuracy repeatability within the simulated environment,validating the feasibility and effectiveness of zero on-site testing for GNSS-based train control systems.This research highlights the potential of GNSS simulation platforms in enhancing cost efficiency,operational safety,and accuracy for future digital railways.展开更多
Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSP...Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSPS and Cry1Ab/Ac was proposed and combined with a lateral flow immunochromatographic assay,named“Dual-RPA-LFD”,to visualize the dual detection of genetically modified(GM)crops.In which,the herbicide tolerance gene CP4-EPSPS and the insect resistance gene Cry1Ab/Ac were selected as targets taking into account the current status of the most widespread application of insect resistance and herbicide tolerance traits and their stacked traits.Gradient diluted plasmids,transgenic standards,and actual samples were used as templates to conduct sensitivity,specificity,and practicality assays,respectively.The constructed method achieved the visual detection of plasmid at levels as low as 100 copies,demonstrating its high sensitivity.In addition,good applicability to transgenic samples was observed,with no cross-interference between two test lines and no influence from other genes.In conclusion,this strategy achieved the expected purpose of simultaneous detection of the two popular targets in GM crops within 20 min at 37°C in a rapid,equipmentfree field manner,providing a new alternative for rapid screening for transgenic assays in the field.展开更多
The preparation of large crystals is highly important for the characterization and application of a newly found structure but remains a challenge for one-dimensional(1D)C_(60) polymers.In this work,we successfully fab...The preparation of large crystals is highly important for the characterization and application of a newly found structure but remains a challenge for one-dimensional(1D)C_(60) polymers.In this work,we successfully fabricated a 1D C_(60) polymer crystal via on-site annealing of a millimeter-sized C_(60) molecular crystal withα-Li_(3)N at 500°C and ambient pres�sure.Characterizations show that the C_(60) cages in the crystal have been efficiently connected,forming 1D chains along the<110>direction in an orthorhombic 3D structure.At the same time,the crystal maintains a morphology similar to that of the pristine C_(60)crystal,providing opportunities for characterization of all the facets of the crystal via Raman spectroscopy and thus suggesting the formation mechanism of such crystals.展开更多
BACKGROUND The concept of macroscopic on-site evaluation(MOSE)was introduced in 2015 when the endoscopist observed better diagnostic yield when the macroscopically visible core on MOSE was superior to 4 mm.Recent stud...BACKGROUND The concept of macroscopic on-site evaluation(MOSE)was introduced in 2015 when the endoscopist observed better diagnostic yield when the macroscopically visible core on MOSE was superior to 4 mm.Recent studies suggest that MOSE by the endoscopist may be an excellent alternative to rapid on-site evaluation,and some classi-fications have been published.Few studies have assessed the adequacy of histologic cores in MOSE during endoscopic ultrasound-guided fine-needle aspiration/biopsy(EUS-FNA/FNB).AIM To evaluate the performance of MOSE during EUS-FNA/FNB.METHODS This multicentric prospective study was conducted in 16 centers in 3 countries(Egypt,Iraq,and Morocco)and included 1108 patients with pancreatic,biliary,or gastrointestinal pathology who were referred for EUS examination.We prospectively analyzed the MOSE in 1008 patients with available histopathological reports according to 2 classifications to determine the adequacy of the histological core samples.Data management and analysis were performed using a Statistical Package for Social Sciences(SPSS)version 27.RESULTS A total of 1074 solid lesions were biopsied in 1008 patients with available cytopathological reports.Mean age was 59 years,and 509 patients(50.5%)were male.The mean lesion size was 38 mm.The most frequently utilized needles were FNB-Franseen(74.5%)and 22 G(93.4%),with a median of 2 passes.According to 2 classifications,618 non-bloody cores(61.3%)and 964 good samples(95.6%)were adequate for histological evaluation.The overall diagnostic yield of cytopathology was 95.5%.The cytological examination confirmed the diagnosis of malignancy in 861 patients(85.4%),while 45 samples(4.5%)were inconclusive.Post-procedural adverse events occurred in 33 patients(3.3%).Statistical analysis showed a difference between needle types(P=0.035)with a high sensitivity of FNB(97%).The analysis of the relationship between the MOSE-score and the final diagnosis showed a significant difference between the different scores of the MOSE(P<0.001).CONCLUSION MOSE is a simple method that allows endoscopists to increase needle passes to improve sample quality.There is significantly higher FNB sensitivity and cytopathology diagnostic yield with good MOSE cores.展开更多
[Objective] The aim was to test the controlling effect of cleaning steriliza- tion system, material conveying system, and fermentation jar cooling system with equip- ments of fruit wine production line introduced in t...[Objective] The aim was to test the controlling effect of cleaning steriliza- tion system, material conveying system, and fermentation jar cooling system with equip- ments of fruit wine production line introduced in this study and its auto-control sys- tem field assembled and debugged. [Method] Based on controlling equipment and setting parameters on the configuration interface, the operation state of the control equipments could be real-time monitored and controlled with the help of configura- tion software. [Result] The result showed that the equipment system could reduce the temperature into 12 ℃ with the error of +0.5 ℃within 110 minutes when the fermentation temperature is set at 12 ℃ in real production. [Conclusion] The auto- control system of fruit wine production line was easy to be assembled and de- bugged to meet demands of different fruit wine productions.展开更多
The problems including excessive flow of attemperating water for boiler, failure of butterfly valve at the outlet of circulating water pump, burnt-out of thyristor for excitation regulator, load variation rate of CCS ...The problems including excessive flow of attemperating water for boiler, failure of butterfly valve at the outlet of circulating water pump, burnt-out of thyristor for excitation regulator, load variation rate of CCS not complying with the contract target, etc. occurred during start-up and debugging of two 600 MW generating units in Yangzhou No.2 Thermal Power Plant. Through analysis on these problems. the remedial measures were put forward, to which can be referred for similar units.展开更多
Testing-effort(TE) and imperfect debugging(ID) in the reliability modeling process may further improve the fitting and prediction results of software reliability growth models(SRGMs). For describing the S-shaped...Testing-effort(TE) and imperfect debugging(ID) in the reliability modeling process may further improve the fitting and prediction results of software reliability growth models(SRGMs). For describing the S-shaped varying trend of TE increasing rate more accurately, first, two S-shaped testing-effort functions(TEFs), i.e.,delayed S-shaped TEF(DS-TEF) and inflected S-shaped TEF(IS-TEF), are proposed. Then these two TEFs are incorporated into various types(exponential-type, delayed S-shaped and inflected S-shaped) of non-homogeneous Poisson process(NHPP)SRGMs with two forms of ID respectively for obtaining a series of new NHPP SRGMs which consider S-shaped TEFs as well as ID. Finally these new SRGMs and several comparison NHPP SRGMs are applied into four real failure data-sets respectively for investigating the fitting and prediction power of these new SRGMs.The experimental results show that:(i) the proposed IS-TEF is more suitable and flexible for describing the consumption of TE than the previous TEFs;(ii) incorporating TEFs into the inflected S-shaped NHPP SRGM may be more effective and appropriate compared with the exponential-type and the delayed S-shaped NHPP SRGMs;(iii) the inflected S-shaped NHPP SRGM considering both IS-TEF and ID yields the most accurate fitting and prediction results than the other comparison NHPP SRGMs.展开更多
Endoscopic ultrasound (EUS) has become an essential tool for the study of pancreatic diseases. Specifically, EUS plays a pivotal role evaluating patients with a known or suspected pancreatic mass. In this setting, dif...Endoscopic ultrasound (EUS) has become an essential tool for the study of pancreatic diseases. Specifically, EUS plays a pivotal role evaluating patients with a known or suspected pancreatic mass. In this setting, differential diagnosis remains a clinical challenge. EUS-guided fine-needle aspiration (FNA) and fine-needle biopsy (FNB) have been proven to be safe and useful tools in this setting. EUS-guided FNA and FNB, by obtaining cytological and/or histological samples, are able to diagnose pancreatic lesions with high sensitivity and specificity. In this context, several methodological features, trying to increase the diagnostic yield of EUS-guided FNA and FNB, have been evaluated. In this review, we focus on the role of rapid on-site evaluation (ROSE). From data reported in the literature, ROSE may increase diagnostic yield of EUS-FNA specimens by 10%-30%, and thus, diagnostic accuracy. However, we should point out that many recent studies have reported adequacy rates of > 90% without ROSE, indicating that, perhaps, at high-volume centers, ROSE may not be indispensable to achieve excellent results. The use of ROSE can be considered important during the learning curve of EUS-FNA, and also in hospital with diagnostic accuracy rates < 90%.展开更多
Approximately 94 to 220 million people worldwide are at risk of drinking well water containing arsenic > 10 μg/L, the WHO guideline value. To identify non-compliant domestic wells, assess health risks and reduce e...Approximately 94 to 220 million people worldwide are at risk of drinking well water containing arsenic > 10 μg/L, the WHO guideline value. To identify non-compliant domestic wells, assess health risks and reduce exposure, accurate and rapid on-site inorganic arsenic screening methods are desirable because all domestic wells worldwide need to be tested.Here, the principles, advantages and limitations of commonly used colorimetry, electrochemistry, and biosensing methods are critically reviewed, with the performance compared with laboratory-based benchmark methods. Most commercial kits are based on the classic Gutzeit reaction. Despite being semi-quantitative, the more recent and more expensive products display improved and acceptable accuracy and shorter testing time (~10 min). Carried out by trained professionals, electrochemical methods are also feasible for on-site analysis, although miniaturization is desirable yet challenging. Biosensing using whole bacterial cells or bio-engineered materials such as aptamers is promising, if incorporated with function specific nanomaterials and biomaterials. Since arsenic is frequently found as arsenite in reducing groundwater and subject to oxidation during sampling, transportation and storage, on-site separation and sample preservation are feasible but the specific methods should be chosen based on sample matrix and tested before use. To eliminate arsenic exposure among hundreds of millions of mostly rural residents worldwide, we call for concerted efforts in research community and regulatory authority to develop accurate, rapid, and affordable tests for on-site screening and monitoring of arsenic in drinking water. Access to affordable testing will benefit people who are socioeconomically disadvantaged.展开更多
A“cloud-edge-end”collaborative system architecture is adopted for real-time security management of power system on-site work,and mobile edge computing equipment utilizes lightweight intelligent recognition algorithm...A“cloud-edge-end”collaborative system architecture is adopted for real-time security management of power system on-site work,and mobile edge computing equipment utilizes lightweight intelligent recognition algorithms for on-site risk assessment and alert.Owing to its lightweight and fast speed,YOLOv4-Tiny is often deployed on edge computing equipment for real-time video stream detection;however,its accuracy is relatively low.This study proposes an improved YOLOv4-Tiny algorithm based on attention mechanism and optimized training methods,achieving higher accuracy without compromising the speed.Specifically,a convolution block attention module branch is added to the backbone network to enhance the feature extraction capability and an efficient channel attention mechanism is added in the neck network to improve feature utilization.Moreover,three optimized training methods:transfer learning,mosaic data augmentation,and label smoothing are used to improve the training effect of this improved algorithm.Finally,an edge computing equipment experimental platform equipped with an NVIDIA Jetson Xavier NX chip is established and the newly developed algorithm is tested on it.According to the results,the speed of the improved YOLOv4-Tiny algorithm in detecting on-site dress code compliance datasets is 17.25 FPS,and the mean average precision(mAP)is increased from 70.89%to 85.03%.展开更多
Endoscopic ultrasound-guided fine-needle biopsy(EUS-FNB)is an excellent investigation to diagnose pancreatic lesions and has shown high accuracy for its use in pathologic diagnosis.Recently,macroscopic on-site evaluat...Endoscopic ultrasound-guided fine-needle biopsy(EUS-FNB)is an excellent investigation to diagnose pancreatic lesions and has shown high accuracy for its use in pathologic diagnosis.Recently,macroscopic on-site evaluation(MOSE)performed by an endoscopist was introduced as an alternative to rapid on-site cytologic evaluation to increase the diagnostic yield of EUS-FNB.The MOSE of the biopsy can estimate the adequacy of the sample directly by the macroscopic evaluation of the core tissue obtained from EUS-FNB.Isolated pancreatic tuberculosis is extremely rare and difficult to diagnose because of its non-specific signs and symptoms.Therefore,this challenging diagnosis is based on endoscopy,imaging,and the bacteriological and histological examination of tissue biopsies.This uncommon presentation of tuberculosis can be revealed as pancreatic mass mimicking cancer.EUS-FNB can be very useful in providing a valuable histopathological diagnosis.A calcified lesion with a cheesy core in MOSE must be suggestive of tuberculosis,leading to the request of the GeneXpert,which can detect Mycobacterium tuberculosis deoxyribonucleic acid and resistance to rifampicin.A decent diagnostic strategy is crucial to prevent unnecessary surgical resection and to supply conservative management with antitubercular therapy.展开更多
In view of the flaws of component-based software (CBS) reliability modeling and analysis, the low recognition degree of debugging process, too many assumptions and difficulties in obtaining the solution, a CBS relia...In view of the flaws of component-based software (CBS) reliability modeling and analysis, the low recognition degree of debugging process, too many assumptions and difficulties in obtaining the solution, a CBS reliability simulation process is presented incorporating the imperfect debugging and the limitation of debugging resources. Considering the effect of imperfect debugging on fault detec- tion and correction process, a CBS integration testing model is sketched by multi-queue muhichannel and finite server queuing model (MMFSQM). Compared with the analytical method based on pa- rameters and other nonparametric approaches, the simulation approach can relax more of the usual reliability modeling assumptions and effectively expound integration testing process of CBS. Then, CBS reliability process simulation procedure is developed accordingly. The proposed simulation ap- proach is validated to be sound and effective by simulation experiment studies and analysis.展开更多
Fault localization is an important topic in software testing, as it enables the developer to specify fault location in their code. One of the dynamic fault localization techniques is statistical debugging. In this stu...Fault localization is an important topic in software testing, as it enables the developer to specify fault location in their code. One of the dynamic fault localization techniques is statistical debugging. In this study, two statistical debugging algorithms are implemented, SOBER and Cause Isolation, and then the experimental works are conducted on five programs coded using Python as an example of well-known dynamic programming language. Results showed that in programs that contain only single bug, the two studied statistical debugging algorithms are very effective to localize a bug. In programs that have more than one bug, SOBER algorithm has limitations related to nested predicates, rarely observed predicates and complement predicates. The Cause Isolation has limitations related to sorting predicates based on importance and detecting bugs in predicate condition. The accuracy of both SOBER and Cause Isolation is affected by the program size. Quality comparison showed that SOBER algorithm requires more code examination than Cause Isolation to discover the bugs.展开更多
On-site programming big data refers to the massive data generated in the process of software development with the characteristics of real-time,complexity and high-difficulty for processing.Therefore,data cleaning is e...On-site programming big data refers to the massive data generated in the process of software development with the characteristics of real-time,complexity and high-difficulty for processing.Therefore,data cleaning is essential for on-site programming big data.Duplicate data detection is an important step in data cleaning,which can save storage resources and enhance data consistency.Due to the insufficiency in traditional Sorted Neighborhood Method(SNM)and the difficulty of high-dimensional data detection,an optimized algorithm based on random forests with the dynamic and adaptive window size is proposed.The efficiency of the algorithm can be elevated by improving the method of the key-selection,reducing dimension of data set and using an adaptive variable size sliding window.Experimental results show that the improved SNM algorithm exhibits better performance and achieve higher accuracy.展开更多
Software reliability model is the tool to measure the software reliability quantitatively. Hazard-Rate model is one of the most popular ones. The purpose of our research is to propose the hazard-rate model considering...Software reliability model is the tool to measure the software reliability quantitatively. Hazard-Rate model is one of the most popular ones. The purpose of our research is to propose the hazard-rate model considering fault level for Open Source Software (OSS). Moreover, we aim to adapt our proposed model to the hazard-rate considering the imperfect debugging environment. We have analyzed the trend of fault severity level by using fault data in Bug Tracking System (BTS) and proposed our model based on the result of analysis. Also, we have shown the numerical example for evaluating the performance of our proposed model. Furthermore, we have extended our proposed model to the hazard-rate considering the imperfect debugging environment and showed numerical example for evaluating the possibility of application. As the result, we found out that performance of our proposed model is better than typical hazard-rate models. Also, we verified the possibility of application of proposed model to hazard-rate model considering imperfect debugging.展开更多
基金the National Key R&D Program of China(No.2021YFA0715900)the National Natural Science Foundation of China(No.41831279)+2 种基金the Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks(No.ZDSYS20220606100604008)the Guangdong Province Bureau of Education(No.2020KCXTD006)the Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control(No.2023B1212060002).
文摘Rapid screening of inorganic arsenic(iAs)in groundwater used for drinking by hundreds of millions of mostly rural residents worldwide is crucial for health protection.Most commercial field test kits are based on the Gutzeit reaction that uses mercury-based reagents for color development,an environmental concern that increasingly limits its utilization.This study further improves the Molybdenum Blue(MB)colorimetric method to allow for faster screening with more stable reagents.More importantly,a portable three-channel colorimeter is developed for screening iAs relative to the WHO drinking water guideline value(10μg/L).Adding the reducing reagents in sequence not only prolongs the storage time to>7 days,but also accelerates the color development time to 6 min in conjunction with lowering the H_(2)SO_(4) concentration in chromogenic reagents.The optimal pH ranges from 1.2 to 1.3 and is achieved by acidifying groundwater to 1%(V/V)HCl.With detection limits of 3.7μg/L for inorganic arsenate(iAs(V))and 3.8μg/L for inorganic arsenite(iAs(Ⅲ)),testing groundwater with-10μg/L of As has a precision<20%.The method works well for a range of phosphate concentrations of 48-950μg/L(0.5-10μmol/L).Concentrations of total_iAs(6-300μg/L),iAs(V)(6-230μg/L)and iAs(Ⅲ)(0-170μg/L)for 14 groundwater samples from Yinchuan Plain,Pearl River Delta,and Jianghan Plain,are in excellent agreements(linear regression slope:0.969-1.029)with the benchmark methods.The improved chemistry here lays the foundation for the MB colorimetric method to become a commercially viable screening tool,with further engineering and design improvement of the colorimeter.
基金supported by the National Natural Science Foundation of China(32060577 and 32360619)Natural Science Foundation of Jiangxi Province(20224ACB203016 and 20212BAB203034)the Open Project of China Food Flavor and Nutrition Health Innovation Center(CFC2023B-013).
文摘Acrylamide(AA)is a neurotoxin and carcinogen that formed during the thermal food processing.Conventional quantification techniques are difficult to realize on-site detection of AA.Herein,a flower-like bimetallic FeCu nanozyme(FeCuzyme)sensor and portable platform were developed for naked-eye and on-site detection of AA.The FeCuzyme was successfully prepared and exhibited flower-like structure with 3D catalytic centers.Fe/Cu atoms were considered as active center and ligand frameworks were used as cofactor,resulting in collaborative substrate-binding features and remarkably peroxidase-like activity.During the catalytic process,the 3,3′,5,5′-tetrame-thylbenzidine(TMB)oxidation can be quenched by glutathione(GSH),and then restored after thiolene Michael addition reaction between GSH and AA.Given the“on–off–on”effect for TMB oxidation and high PODlike activity,FeCuzyme sensor exhibited a wide linear relationship from 0.50 to 18.00μM(R^(2)=0.9987)and high sensitivity(LOD=0.2360μM)with high stability.The practical application of FeCuzyme sensor was successfully validated by HPLC method.Furthermore,a FeCuzyme portable platform was designed with smartphone/laptop,and which can be used for naked-eye and on-site quantitative determination of AA in real food samples.This research provides a way for rational design of a novel nanozyme-based sensing platform for AA detection.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2024B08。
文摘One of the primary tasks of earthquake early warning(EEW)systems is to predict potential earthquake damage rapidly and accurately.Cumulative absolute velocity(CAV),Arias intensity(I_(A)),and spectrum intensity(SI)are important parameters for measuring ground motion intensity and assessing earthquake damage.Due to the limited available information in EEW,CAV,I_(A),and SI cannot be accurately predicted using traditional EEW methods.In this paper,we propose an end-to-end deep learning-based Ground motion Intensity prediction Network(ENGINet)for on-site EEW.The aim of the ENGINet is to predict CAV,I_(A),and SI rapidly and reliably.ENGINet is based on a convolutional neural network and recurrent neural network.The inputs of the network are three-component acceleration records,three-component velocity records,and three-component displacement records obtained by a single station.The results from the test dataset show that at 3 s after the P-wave arrival,compared with the baseline models and other traditional methods,ENGINet has better performance in predicting CAV,I_(A),and SI.Our results indicate that ENGINet can quickly and accurately predict CAV,I_(A),and SI to some extent and has good potential in EEW efforts.
基金the National Natural Science Foundation of China (No. 22306146)the PhD Scientific Research Startup Foundation of Xihua University (No. RX2200002003) for their financial support。
文摘To accomplish on-site separation, preconcentration and cold storage of highly volatile organic compounds(VOCs) from water samples as well as their rapid transportation to laboratory, a high-throughput miniaturized purge-and-trap(μP&T) device integrating semiconductor refrigeration storage was developed in this work. Water samples were poured into the purge vessels and purged with purified air generated by an air pump. The VOCs in water samples were then separated and preconcentrated with sorbent tubes. After their complete separation and preconcentration, the tubes were subsequently preserved in the semiconductor refrigeration unit of the μP&T device. Notably, the high integration, small size, light weight, and low power consumption of the device makes it easy to be hand-carried to the field and transport by drone from remote locations, significantly enhancing the flexibility of field sampling. The performances of the device were evaluated by comparing analytical figures of merit for the detection of four cyclic volatile methylsiloxanes(cVMSs) in water. Compared to conventional collection and preservation methods, our proposed device preserved the VOCs more consistently in the sorbent tubes, with less than 5% loss of all analytes, and maintained stability for at least 20 days at 4℃. As a proof-of-concept,10 municipal wastewater samples were pretreated using this device with recoveries ranging from 82.5% to 99.9% for the target VOCs.
基金supported by the National Natural Science Foundation of China(62027809,U2268206,T2222015,U2468202).
文摘The integration of Global Navigation Satellite System(GNSS)technology into railway train control systems is a crucial step toward achieving the vision of a digital railway.Traditional train control systems undergo extensive in-house tests and prolonged field tests for certification and approval before operational deployment,leading to high costs,delays,and operational disruptions.This paper introduces a GNSS-based train control localization framework which eliminates the need for on-site testing by leveraging train movement dynamics and 3D environment modeling to create a zero on-site testing platform.The proposed framework simulates train movement and the surrounding 3D environment using collected railway line location data and environmental attributes to generate realistic multipath signals and obscuration effects.This approach enables comprehensive laboratory-based case studies for train localization,reducing the huge amount test of needed for physical field trials.The framework is established in house,using the data collected at the Test Base of China Academy of Railway Sciences(Circular Railway).Results from the open area and cutting environment tests demonstrate high localization accuracy repeatability within the simulated environment,validating the feasibility and effectiveness of zero on-site testing for GNSS-based train control systems.This research highlights the potential of GNSS simulation platforms in enhancing cost efficiency,operational safety,and accuracy for future digital railways.
基金supported by the Scientific and Innovative Action Plan of Shanghai(21N31900800)Shanghai Rising-Star Program(23QB1403500)+4 种基金the Shanghai Sailing Program(20YF1443000)Shanghai Science and Technology Commission,the Belt and Road Project(20310750500)Talent Project of SAAS(2023-2025)Runup Plan of SAAS(ZP22211)the SAAS Program for Excellent Research Team(2022(B-16))。
文摘Traditional transgenic detection methods require high test conditions and struggle to be both sensitive and efficient.In this study,a one-tube dual recombinase polymerase amplification(RPA)reaction system for CP4-EPSPS and Cry1Ab/Ac was proposed and combined with a lateral flow immunochromatographic assay,named“Dual-RPA-LFD”,to visualize the dual detection of genetically modified(GM)crops.In which,the herbicide tolerance gene CP4-EPSPS and the insect resistance gene Cry1Ab/Ac were selected as targets taking into account the current status of the most widespread application of insect resistance and herbicide tolerance traits and their stacked traits.Gradient diluted plasmids,transgenic standards,and actual samples were used as templates to conduct sensitivity,specificity,and practicality assays,respectively.The constructed method achieved the visual detection of plasmid at levels as low as 100 copies,demonstrating its high sensitivity.In addition,good applicability to transgenic samples was observed,with no cross-interference between two test lines and no influence from other genes.In conclusion,this strategy achieved the expected purpose of simultaneous detection of the two popular targets in GM crops within 20 min at 37°C in a rapid,equipmentfree field manner,providing a new alternative for rapid screening for transgenic assays in the field.
基金supported by the National Key R&D Program of China(2020YFA0711502)the National Natural Science Foundation of China(52325202,52202052,52373310)。
文摘The preparation of large crystals is highly important for the characterization and application of a newly found structure but remains a challenge for one-dimensional(1D)C_(60) polymers.In this work,we successfully fabricated a 1D C_(60) polymer crystal via on-site annealing of a millimeter-sized C_(60) molecular crystal withα-Li_(3)N at 500°C and ambient pres�sure.Characterizations show that the C_(60) cages in the crystal have been efficiently connected,forming 1D chains along the<110>direction in an orthorhombic 3D structure.At the same time,the crystal maintains a morphology similar to that of the pristine C_(60)crystal,providing opportunities for characterization of all the facets of the crystal via Raman spectroscopy and thus suggesting the formation mechanism of such crystals.
文摘BACKGROUND The concept of macroscopic on-site evaluation(MOSE)was introduced in 2015 when the endoscopist observed better diagnostic yield when the macroscopically visible core on MOSE was superior to 4 mm.Recent studies suggest that MOSE by the endoscopist may be an excellent alternative to rapid on-site evaluation,and some classi-fications have been published.Few studies have assessed the adequacy of histologic cores in MOSE during endoscopic ultrasound-guided fine-needle aspiration/biopsy(EUS-FNA/FNB).AIM To evaluate the performance of MOSE during EUS-FNA/FNB.METHODS This multicentric prospective study was conducted in 16 centers in 3 countries(Egypt,Iraq,and Morocco)and included 1108 patients with pancreatic,biliary,or gastrointestinal pathology who were referred for EUS examination.We prospectively analyzed the MOSE in 1008 patients with available histopathological reports according to 2 classifications to determine the adequacy of the histological core samples.Data management and analysis were performed using a Statistical Package for Social Sciences(SPSS)version 27.RESULTS A total of 1074 solid lesions were biopsied in 1008 patients with available cytopathological reports.Mean age was 59 years,and 509 patients(50.5%)were male.The mean lesion size was 38 mm.The most frequently utilized needles were FNB-Franseen(74.5%)and 22 G(93.4%),with a median of 2 passes.According to 2 classifications,618 non-bloody cores(61.3%)and 964 good samples(95.6%)were adequate for histological evaluation.The overall diagnostic yield of cytopathology was 95.5%.The cytological examination confirmed the diagnosis of malignancy in 861 patients(85.4%),while 45 samples(4.5%)were inconclusive.Post-procedural adverse events occurred in 33 patients(3.3%).Statistical analysis showed a difference between needle types(P=0.035)with a high sensitivity of FNB(97%).The analysis of the relationship between the MOSE-score and the final diagnosis showed a significant difference between the different scores of the MOSE(P<0.001).CONCLUSION MOSE is a simple method that allows endoscopists to increase needle passes to improve sample quality.There is significantly higher FNB sensitivity and cytopathology diagnostic yield with good MOSE cores.
基金Supported by Fundamental Research Foundation of GXAAS(GNK2013YM02)~~
文摘[Objective] The aim was to test the controlling effect of cleaning steriliza- tion system, material conveying system, and fermentation jar cooling system with equip- ments of fruit wine production line introduced in this study and its auto-control sys- tem field assembled and debugged. [Method] Based on controlling equipment and setting parameters on the configuration interface, the operation state of the control equipments could be real-time monitored and controlled with the help of configura- tion software. [Result] The result showed that the equipment system could reduce the temperature into 12 ℃ with the error of +0.5 ℃within 110 minutes when the fermentation temperature is set at 12 ℃ in real production. [Conclusion] The auto- control system of fruit wine production line was easy to be assembled and de- bugged to meet demands of different fruit wine productions.
文摘The problems including excessive flow of attemperating water for boiler, failure of butterfly valve at the outlet of circulating water pump, burnt-out of thyristor for excitation regulator, load variation rate of CCS not complying with the contract target, etc. occurred during start-up and debugging of two 600 MW generating units in Yangzhou No.2 Thermal Power Plant. Through analysis on these problems. the remedial measures were put forward, to which can be referred for similar units.
基金supported by the Pre-research Foundation of CPLA General Equipment Department
文摘Testing-effort(TE) and imperfect debugging(ID) in the reliability modeling process may further improve the fitting and prediction results of software reliability growth models(SRGMs). For describing the S-shaped varying trend of TE increasing rate more accurately, first, two S-shaped testing-effort functions(TEFs), i.e.,delayed S-shaped TEF(DS-TEF) and inflected S-shaped TEF(IS-TEF), are proposed. Then these two TEFs are incorporated into various types(exponential-type, delayed S-shaped and inflected S-shaped) of non-homogeneous Poisson process(NHPP)SRGMs with two forms of ID respectively for obtaining a series of new NHPP SRGMs which consider S-shaped TEFs as well as ID. Finally these new SRGMs and several comparison NHPP SRGMs are applied into four real failure data-sets respectively for investigating the fitting and prediction power of these new SRGMs.The experimental results show that:(i) the proposed IS-TEF is more suitable and flexible for describing the consumption of TE than the previous TEFs;(ii) incorporating TEFs into the inflected S-shaped NHPP SRGM may be more effective and appropriate compared with the exponential-type and the delayed S-shaped NHPP SRGMs;(iii) the inflected S-shaped NHPP SRGM considering both IS-TEF and ID yields the most accurate fitting and prediction results than the other comparison NHPP SRGMs.
文摘Endoscopic ultrasound (EUS) has become an essential tool for the study of pancreatic diseases. Specifically, EUS plays a pivotal role evaluating patients with a known or suspected pancreatic mass. In this setting, differential diagnosis remains a clinical challenge. EUS-guided fine-needle aspiration (FNA) and fine-needle biopsy (FNB) have been proven to be safe and useful tools in this setting. EUS-guided FNA and FNB, by obtaining cytological and/or histological samples, are able to diagnose pancreatic lesions with high sensitivity and specificity. In this context, several methodological features, trying to increase the diagnostic yield of EUS-guided FNA and FNB, have been evaluated. In this review, we focus on the role of rapid on-site evaluation (ROSE). From data reported in the literature, ROSE may increase diagnostic yield of EUS-FNA specimens by 10%-30%, and thus, diagnostic accuracy. However, we should point out that many recent studies have reported adequacy rates of > 90% without ROSE, indicating that, perhaps, at high-volume centers, ROSE may not be indispensable to achieve excellent results. The use of ROSE can be considered important during the learning curve of EUS-FNA, and also in hospital with diagnostic accuracy rates < 90%.
基金Support was provided by NSFC grants 41831279 and 41772265 to Yan Zhenggrant 2021YFA0715900 from the National Key Research and Development Program of China。
文摘Approximately 94 to 220 million people worldwide are at risk of drinking well water containing arsenic > 10 μg/L, the WHO guideline value. To identify non-compliant domestic wells, assess health risks and reduce exposure, accurate and rapid on-site inorganic arsenic screening methods are desirable because all domestic wells worldwide need to be tested.Here, the principles, advantages and limitations of commonly used colorimetry, electrochemistry, and biosensing methods are critically reviewed, with the performance compared with laboratory-based benchmark methods. Most commercial kits are based on the classic Gutzeit reaction. Despite being semi-quantitative, the more recent and more expensive products display improved and acceptable accuracy and shorter testing time (~10 min). Carried out by trained professionals, electrochemical methods are also feasible for on-site analysis, although miniaturization is desirable yet challenging. Biosensing using whole bacterial cells or bio-engineered materials such as aptamers is promising, if incorporated with function specific nanomaterials and biomaterials. Since arsenic is frequently found as arsenite in reducing groundwater and subject to oxidation during sampling, transportation and storage, on-site separation and sample preservation are feasible but the specific methods should be chosen based on sample matrix and tested before use. To eliminate arsenic exposure among hundreds of millions of mostly rural residents worldwide, we call for concerted efforts in research community and regulatory authority to develop accurate, rapid, and affordable tests for on-site screening and monitoring of arsenic in drinking water. Access to affordable testing will benefit people who are socioeconomically disadvantaged.
基金supported by the Science and technology project of State Grid Information&Telecommunication Group Co.,Ltd (SGTYHT/19-JS-218)
文摘A“cloud-edge-end”collaborative system architecture is adopted for real-time security management of power system on-site work,and mobile edge computing equipment utilizes lightweight intelligent recognition algorithms for on-site risk assessment and alert.Owing to its lightweight and fast speed,YOLOv4-Tiny is often deployed on edge computing equipment for real-time video stream detection;however,its accuracy is relatively low.This study proposes an improved YOLOv4-Tiny algorithm based on attention mechanism and optimized training methods,achieving higher accuracy without compromising the speed.Specifically,a convolution block attention module branch is added to the backbone network to enhance the feature extraction capability and an efficient channel attention mechanism is added in the neck network to improve feature utilization.Moreover,three optimized training methods:transfer learning,mosaic data augmentation,and label smoothing are used to improve the training effect of this improved algorithm.Finally,an edge computing equipment experimental platform equipped with an NVIDIA Jetson Xavier NX chip is established and the newly developed algorithm is tested on it.According to the results,the speed of the improved YOLOv4-Tiny algorithm in detecting on-site dress code compliance datasets is 17.25 FPS,and the mean average precision(mAP)is increased from 70.89%to 85.03%.
文摘Endoscopic ultrasound-guided fine-needle biopsy(EUS-FNB)is an excellent investigation to diagnose pancreatic lesions and has shown high accuracy for its use in pathologic diagnosis.Recently,macroscopic on-site evaluation(MOSE)performed by an endoscopist was introduced as an alternative to rapid on-site cytologic evaluation to increase the diagnostic yield of EUS-FNB.The MOSE of the biopsy can estimate the adequacy of the sample directly by the macroscopic evaluation of the core tissue obtained from EUS-FNB.Isolated pancreatic tuberculosis is extremely rare and difficult to diagnose because of its non-specific signs and symptoms.Therefore,this challenging diagnosis is based on endoscopy,imaging,and the bacteriological and histological examination of tissue biopsies.This uncommon presentation of tuberculosis can be revealed as pancreatic mass mimicking cancer.EUS-FNB can be very useful in providing a valuable histopathological diagnosis.A calcified lesion with a cheesy core in MOSE must be suggestive of tuberculosis,leading to the request of the GeneXpert,which can detect Mycobacterium tuberculosis deoxyribonucleic acid and resistance to rifampicin.A decent diagnostic strategy is crucial to prevent unnecessary surgical resection and to supply conservative management with antitubercular therapy.
基金Supported by the National High Technology Research and Development Program of China(No.2008AA01A201)the National Nature Science Foundation of China(No.60503015,90818016)
文摘In view of the flaws of component-based software (CBS) reliability modeling and analysis, the low recognition degree of debugging process, too many assumptions and difficulties in obtaining the solution, a CBS reliability simulation process is presented incorporating the imperfect debugging and the limitation of debugging resources. Considering the effect of imperfect debugging on fault detec- tion and correction process, a CBS integration testing model is sketched by multi-queue muhichannel and finite server queuing model (MMFSQM). Compared with the analytical method based on pa- rameters and other nonparametric approaches, the simulation approach can relax more of the usual reliability modeling assumptions and effectively expound integration testing process of CBS. Then, CBS reliability process simulation procedure is developed accordingly. The proposed simulation ap- proach is validated to be sound and effective by simulation experiment studies and analysis.
文摘Fault localization is an important topic in software testing, as it enables the developer to specify fault location in their code. One of the dynamic fault localization techniques is statistical debugging. In this study, two statistical debugging algorithms are implemented, SOBER and Cause Isolation, and then the experimental works are conducted on five programs coded using Python as an example of well-known dynamic programming language. Results showed that in programs that contain only single bug, the two studied statistical debugging algorithms are very effective to localize a bug. In programs that have more than one bug, SOBER algorithm has limitations related to nested predicates, rarely observed predicates and complement predicates. The Cause Isolation has limitations related to sorting predicates based on importance and detecting bugs in predicate condition. The accuracy of both SOBER and Cause Isolation is affected by the program size. Quality comparison showed that SOBER algorithm requires more code examination than Cause Isolation to discover the bugs.
基金supported by the National Key R&D Program of China(Nos.2018YFB1003905)the National Natural Science Foundation of China under Grant No.61971032,Fundamental Research Funds for the Central Universities(No.FRF-TP-18-008A3).
文摘On-site programming big data refers to the massive data generated in the process of software development with the characteristics of real-time,complexity and high-difficulty for processing.Therefore,data cleaning is essential for on-site programming big data.Duplicate data detection is an important step in data cleaning,which can save storage resources and enhance data consistency.Due to the insufficiency in traditional Sorted Neighborhood Method(SNM)and the difficulty of high-dimensional data detection,an optimized algorithm based on random forests with the dynamic and adaptive window size is proposed.The efficiency of the algorithm can be elevated by improving the method of the key-selection,reducing dimension of data set and using an adaptive variable size sliding window.Experimental results show that the improved SNM algorithm exhibits better performance and achieve higher accuracy.
文摘Software reliability model is the tool to measure the software reliability quantitatively. Hazard-Rate model is one of the most popular ones. The purpose of our research is to propose the hazard-rate model considering fault level for Open Source Software (OSS). Moreover, we aim to adapt our proposed model to the hazard-rate considering the imperfect debugging environment. We have analyzed the trend of fault severity level by using fault data in Bug Tracking System (BTS) and proposed our model based on the result of analysis. Also, we have shown the numerical example for evaluating the performance of our proposed model. Furthermore, we have extended our proposed model to the hazard-rate considering the imperfect debugging environment and showed numerical example for evaluating the possibility of application. As the result, we found out that performance of our proposed model is better than typical hazard-rate models. Also, we verified the possibility of application of proposed model to hazard-rate model considering imperfect debugging.