期刊文献+
共找到369,452篇文章
< 1 2 250 >
每页显示 20 50 100
NEURAL NETWORK INTELLIGENT SYSTEM FOR THE ON-LINE OPTIMIZATION IN CHEMICAL PLANTS 被引量:1
1
作者 陈丙珍 何小荣 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1997年第1期61-66,共6页
A strategy of developing on-line optimization intelligent systems based on combiningflowsheeting simulation and optimization package with artificial neural networks(ANN)is presented inthis paper.A number of optimizati... A strategy of developing on-line optimization intelligent systems based on combiningflowsheeting simulation and optimization package with artificial neural networks(ANN)is presented inthis paper.A number of optimization cases for a certain chemical plant are obtained off-line byusing PROCESS-Ⅱ or other flowsheeting programming with optimization.Then,taking these cases astraining examples,we establish a neural network systems which can be used on-line as an optimizer toobtain setpoints from input data sampled from distributed control system through gross error detectionand data reconciliation procedures.Such an on-line optimizer possesses two advantages over nonlinearprogramming package:first of all,there is no convergence problem for the trained ANN to be usedonline;secondly,the frequency for setpoints updating is not limited because only algebraic calculationrather than optimization is required to be carried out on-line.Here two key problems ofimplementing ANN approaches to the on-line optimization 展开更多
关键词 artificial NEURAL NETWORK on-line optimization INTELLIGENT system
在线阅读 下载PDF
A New Strategy of Integrated Control and On-line Optimization on High-purity Distillation Process 被引量:10
2
作者 吕文祥 朱鹰 +2 位作者 黄德先 江永亨 金以慧 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第1期66-79,共14页
For high-purity distillation processes,it is difficult to achieve a good direct product quality control using traditional proportional-integral-differential(PID)control or multivariable predictive control technique du... For high-purity distillation processes,it is difficult to achieve a good direct product quality control using traditional proportional-integral-differential(PID)control or multivariable predictive control technique due to some difficulties,such as long response time,many un-measurable disturbances,and the reliability and precision issues of product quality soft-sensors.In this paper,based on the first principle analysis and dynamic simulation of a distillation process,a new predictive control scheme is proposed by using the split ratio of distillate flow rate to that of bottoms as an essential controlled variable.Correspondingly,a new strategy with integrated control and on-line optimization is developed,which consists of model predictive control of the split ratio,surrogate model based on radial basis function neural network for optimization,and modified differential evolution optimization algorithm. With the strategy,the process achieves its steady state quickly,so more profit can be obtained.The proposed strategy has been successfully applied to a gas separation plant for more than three years,which shows that the strategy is feasible and effective. 展开更多
关键词 distillation process control split ratio surrogate model optimization modified differential evolution
在线阅读 下载PDF
An Adaptive Cubic Regularisation Algorithm Based on Affine Scaling Methods for Constrained Optimization
3
作者 PEI Yonggang WANG Jingyi 《应用数学》 北大核心 2026年第1期258-277,共20页
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op... In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported. 展开更多
关键词 Constrained optimization Adaptive cubic regularisation Affine scaling Global convergence
在线阅读 下载PDF
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
4
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
Emittance optimization of gridded thermionic‑cathode electron gun for high‑quality beam injectors
5
作者 Xiao‑Yu Peng Hao Hu +3 位作者 Tong‑Ning Hu Jian Pang Jian‑Jun Deng Guang‑Yao Feng 《Nuclear Science and Techniques》 2026年第1期119-129,共11页
Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced... Electron beam injectors are pivotal components of large-scale scientific instruments,such as synchrotron radiation sources,free-electron lasers,and electron-positron colliders.The quality of the electron beam produced by the injector critically influences the performance of the entire accelerator-based scientific research apparatus.The injectors of such facilities usually use photocathode and thermionic-cathode electron guns.Although the photocathode injector can produce electron beams of excellent quality,its associated laser system is massive and intricate.The thermionic-cathode electron gun,especially the gridded electron gun injector,has a simple structure capable of generating numerous electron beams.However,its emittance is typically high.In this study,methods to reduce beam emittance are explored through a comprehensive analysis of various grid structures and preliminary design results,examining the evolution of beam phase space at different grid positions.An optimization method for reducing the emittance of a gridded thermionic-cathode electron gun is proposed through theoretical derivation,electromagnetic-field simulation,and beam-dynamics simulation.A 50%reduction in emittance was achieved for a 50 keV,1.7 A electron gun,laying the foundation for the subsequent design of a high-current,low-emittance injector. 展开更多
关键词 Electron gun Gridded Beam injector Beam dynamics Emittance optimization
在线阅读 下载PDF
Research on Electric Vehicle Charging Optimization Strategy Based on Improved Crossformer for Carbon Emission Factor Prediction
6
作者 Hongyu Wang Wenwu Cui +4 位作者 Kai Cui Zixuan Meng BinLi Wei Zhang Wenwen Li 《Energy Engineering》 2026年第1期332-355,共24页
To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobje... To achieve low-carbon regulation of electric vehicle(EV)charging loads under the“dual carbon”goals,this paper proposes a coordinated scheduling strategy that integrates dynamic carbon factor prediction and multiobjective optimization.First,a dual-convolution enhanced improved Crossformer prediction model is constructed,which employs parallel 1×1 global and 3×3 local convolutionmodules(Integrated Convolution Block,ICB)formultiscale feature extraction,combinedwith anAdaptive Spectral Block(ASB)to enhance time-series fluctuationmodeling.Based on high-precision predictions,a carbon-electricity cost joint optimization model is further designed to balance economic,environmental,and grid-friendly objectives.The model’s superiority was validated through a case study using real-world data from a renewable-heavy grid.Simulation results show that the proposed multi-objective strategy demonstrated a superior balance compared to baseline and benchmark models,achieving a 15.8%reduction in carbon emissions and a 5.2%reduction in economic costs,while still providing a substantial 22.2%reduction in the peak-valley difference.Its balanced performance significantly outperformed both a single-objective strategy and a state-of-the-art Model Predictive Control(MPC)benchmark,highlighting the advantage of a global optimization approach.This study provides theoretical and technical pathways for dynamic carbon factor-driven EV charging optimization. 展开更多
关键词 Carbon factor prediction electric vehicles ordered charging multi-objective optimization Crossformer
在线阅读 下载PDF
High-Dimensional Multi-Objective Computation Offloading for MEC in Serial Isomerism Tasks via Flexible Optimization Framework
7
作者 Zheng Yao Puqing Chang 《Computers, Materials & Continua》 2026年第1期1160-1177,共18页
As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays... As Internet of Things(IoT)applications expand,Mobile Edge Computing(MEC)has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices.Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies,conflicting objectives,and limited resources.This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC.We jointly consider task heterogeneity,high-dimensional objectives,and flexible resource scheduling,modeling the problem as a Many-objective optimization.To solve it,we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on decomposition(MOCC/D)and a flexible scheduling strategy.Experimental results on benchmark functions and simulation scenarios show that the proposed method outperforms existing approaches in both convergence and solution quality. 展开更多
关键词 Edge computing offload serial Isomerism applications many-objective optimization flexible resource scheduling
在线阅读 下载PDF
A Boundary Element Reconstruction (BER) Model for Moving Morphable Component Topology Optimization
8
作者 Zhao Li Hongyu Xu +2 位作者 Shuai Zhang Jintao Cui Xiaofeng Liu 《Computers, Materials & Continua》 2026年第1期2213-2230,共18页
The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is m... The moving morphable component(MMC)topology optimization method,as a typical explicit topology optimization method,has been widely concerned.In the MMC topology optimization framework,the surrogate material model is mainly used for finite element analysis at present,and the effectiveness of the surrogate material model has been fully confirmed.However,there are some accuracy problems when dealing with boundary elements using the surrogate material model,which will affect the topology optimization results.In this study,a boundary element reconstruction(BER)model is proposed based on the surrogate material model under the MMC topology optimization framework to improve the accuracy of topology optimization.The proposed BER model can reconstruct the boundary elements by refining the local meshes and obtaining new nodes in boundary elements.Then the density of boundary elements is recalculated using the new node information,which is more accurate than the original model.Based on the new density of boundary elements,the material properties and volume information of the boundary elements are updated.Compared with other finite element analysis methods,the BER model is simple and feasible and can improve computational accuracy.Finally,the effectiveness and superiority of the proposed method are verified by comparing it with the optimization results of the original surrogate material model through several numerical examples. 展开更多
关键词 Topology optimization MMC method boundary element reconstruction surrogate material model local mesh
在线阅读 下载PDF
CAPGen: An MLLM-Based Framework Integrated with Iterative Optimization Mechanism for Cultural Artifacts Poster Generation
9
作者 Qianqian Hu Chuhan Li +1 位作者 Mohan Zhang Fang Liu 《Computers, Materials & Continua》 2026年第1期494-510,共17页
Due to the digital transformation tendency among cultural institutions and the substantial influence of the social media platform,the demands of visual communication keep increasing for promoting traditional cultural ... Due to the digital transformation tendency among cultural institutions and the substantial influence of the social media platform,the demands of visual communication keep increasing for promoting traditional cultural artifacts online.As an effective medium,posters serve to attract public attention and facilitate broader engagement with cultural artifacts.However,existing poster generation methods mainly rely on fixed templates and manual design,which limits their scalability and adaptability to the diverse visual and semantic features of the artifacts.Therefore,we propose CAPGen,an automated aesthetic Cultural Artifacts Poster Generation framework built on a Multimodal Large Language Model(MLLM)with integrated iterative optimization.During our research,we collaborated with designers to define principles of graphic design for cultural artifact posters,to guide the MLLM in generating layout parameters.Later,we generated these parameters into posters.Finally,we refined the posters using an MLLM integrated with a multi-round iterative optimization mechanism.Qualitative results show that CAPGen consistently outperforms baseline methods in both visual quality and aesthetic performance.Furthermore,ablation studies indicate that the prompt,iterative optimization mechanism,and design principles significantly enhance the effectiveness of poster generation. 展开更多
关键词 Aesthetic poster generation prompt engineering multimodal large language models iterative optimization design principles
在线阅读 下载PDF
Cooperative Metaheuristics with Dynamic Dimension Reduction for High-Dimensional Optimization Problems
10
作者 Junxiang Li Zhipeng Dong +2 位作者 Ben Han Jianqiao Chen Xinxin Zhang 《Computers, Materials & Continua》 2026年第1期1484-1502,共19页
Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when ta... Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when tackling high-dimensional optimization challenges.To effectively address these challenges,this study introduces cooperative metaheuristics integrating dynamic dimension reduction(DR).Building upon particle swarm optimization(PSO)and differential evolution(DE),the proposed cooperative methods C-PSO and C-DE are developed.In the proposed methods,the modified principal components analysis(PCA)is utilized to reduce the dimension of design variables,thereby decreasing computational costs.The dynamic DR strategy implements periodic execution of modified PCA after a fixed number of iterations,resulting in the important dimensions being dynamically identified.Compared with the static one,the dynamic DR strategy can achieve precise identification of important dimensions,thereby enabling accelerated convergence toward optimal solutions.Furthermore,the influence of cumulative contribution rate thresholds on optimization problems with different dimensions is investigated.Metaheuristic algorithms(PSO,DE)and cooperative metaheuristics(C-PSO,C-DE)are examined by 15 benchmark functions and two engineering design problems(speed reducer and composite pressure vessel).Comparative results demonstrate that the cooperative methods achieve significantly superior performance compared to standard methods in both solution accuracy and computational efficiency.Compared to standard metaheuristic algorithms,cooperative metaheuristics achieve a reduction in computational cost of at least 40%.The cooperative metaheuristics can be effectively used to tackle both high-dimensional unconstrained and constrained optimization problems. 展开更多
关键词 Dimension reduction modified principal components analysis high-dimensional optimization problems cooperative metaheuristics metaheuristic algorithms
在线阅读 下载PDF
Efficient Arabic Essay Scoring with Hybrid Models: Feature Selection, Data Optimization, and Performance Trade-Offs
11
作者 Mohamed Ezz Meshrif Alruily +4 位作者 Ayman Mohamed Mostafa Alaa SAlaerjan Bader Aldughayfiq Hisham Allahem Abdulaziz Shehab 《Computers, Materials & Continua》 2026年第1期2274-2301,共28页
Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic... Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage. 展开更多
关键词 Automated essay scoring text-based features vector-based features embedding-based features feature selection optimal data efficiency
在线阅读 下载PDF
Multi-objective spatial optimization by considering land use suitability in the Yangtze River Delta region
12
作者 CHENG Qianwen LI Manchun +4 位作者 LI Feixue LIN Yukun DING Chenyin XIAO Lishan LI Weiyue 《Journal of Geographical Sciences》 2026年第1期45-78,共34页
Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method f... Rapid urbanization in China has led to spatial antagonism between urban development and farmland protection and ecological security maintenance.Multi-objective spatial collaborative optimization is a powerful method for achieving sustainable regional development.Previous studies on multi-objective spatial optimization do not involve spatial corrections to simulation results based on the natural endowment of space resources.This study proposes an Ecological Security-Food Security-Urban Sustainable Development(ES-FS-USD)spatial optimization framework.This framework combines the non-dominated sorting genetic algorithm II(NSGA-II)and patch-generating land use simulation(PLUS)model with an ecological protection importance evaluation,comprehensive agricultural productivity evaluation,and urban sustainable development potential assessment and optimizes the territorial space in the Yangtze River Delta(YRD)region in 2035.The proposed sustainable development(SD)scenario can effectively reduce the destruction of landscape patterns of various land-use types while considering both ecological and economic benefits.The simulation results were further revised by evaluating the land-use suitability of the YRD region.According to the revised spatial pattern for the YRD in 2035,the farmland area accounts for 43.59%of the total YRD,which is 5.35%less than that in 2010.Forest,grassland,and water area account for 40.46%of the total YRD—an increase of 1.42%compared with the case in 2010.Construction land accounts for 14.72%of the total YRD—an increase of 2.77%compared with the case in 2010.The ES-FS-USD spatial optimization framework ensures that spatial optimization outcomes are aligned with the natural endowments of land resources,thereby promoting the sustainable use of land resources,improving the ability of spatial management,and providing valuable insights for decision makers. 展开更多
关键词 multi-objective spatial optimization multi-scenario simulation ecological protection importance comprehensive agricultural productivity urban sustainable development land-use suitability
原文传递
Energy Optimization for Autonomous Mobile Robot Path Planning Based on Deep Reinforcement Learning
13
作者 Longfei Gao Weidong Wang Dieyun Ke 《Computers, Materials & Continua》 2026年第1期984-998,共15页
At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown ... At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown and complex environments,this paper proposes an Attention-Enhanced Dueling Deep Q-Network(ADDueling DQN),which integrates a multi-head attention mechanism and a prioritized experience replay strategy into a Dueling-DQN reinforcement learning framework.A multi-objective reward function,centered on energy efficiency,is designed to comprehensively consider path length,terrain slope,motion smoothness,and obstacle avoidance,enabling optimal low-energy trajectory generation in 3D space from the source.The incorporation of a multihead attention mechanism allows the model to dynamically focus on energy-critical state features—such as slope gradients and obstacle density—thereby significantly improving its ability to recognize and avoid energy-intensive paths.Additionally,the prioritized experience replay mechanism accelerates learning from key decision-making experiences,suppressing inefficient exploration and guiding the policy toward low-energy solutions more rapidly.The effectiveness of the proposed path planning algorithm is validated through simulation experiments conducted in multiple off-road scenarios.Results demonstrate that AD-Dueling DQN consistently achieves the lowest average energy consumption across all tested environments.Moreover,the proposed method exhibits faster convergence and greater training stability compared to baseline algorithms,highlighting its global optimization capability under energy-aware objectives in complex terrains.This study offers an efficient and scalable intelligent control strategy for the development of energy-conscious autonomous navigation systems. 展开更多
关键词 Autonomous mobile robot deep reinforcement learning energy optimization multi-attention mechanism prioritized experience replay dueling deep Q-Network
在线阅读 下载PDF
Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization
14
作者 Songsong Zhang Huazhong Jin +5 位作者 Zhiwei Ye Jia Yang Jixin Zhang Dongfang Wu Xiao Zheng Dingfeng Song 《Computers, Materials & Continua》 2026年第1期1141-1159,共19页
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal... Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics. 展开更多
关键词 Multi-label feature selection federated learning manifold regularization sparse constraints hybrid breeding optimization algorithm particle swarm optimizatio algorithm privacy protection
在线阅读 下载PDF
Reagent optimization for on-line simultaneous polarographic determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in the presence of anextremely large excess of Zn^(2+) 被引量:4
15
作者 WANG Guo-wei YANG Chun-hua +2 位作者 ZHU Hong-qiu LI Yong-gang GUI Wei-hua 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2199-2204,共6页
Reagents are optimized for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in zinc sulfate solution, which contains an extremely large excess of Zn^(2+). First, the reagents and their d... Reagents are optimized for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in zinc sulfate solution, which contains an extremely large excess of Zn^(2+). First, the reagents and their doses for the experiment are selected according to the characteristics of the zinc sulfate solution. Then, the reagent doses are optimized by analyzing the influence of reagent dose on the polarographic parameters(i.e. half-wave potential E_(1/2) and limiting diffusion current I_p). Finally, the optimization results are verified by simultaneously determining trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in the presence of an extremely large excess of Zn^(2+). The determination results indicate that the optimized reagents exhibit wide linearity, low detection limits, high accuracy and good precision for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in the presence of an extremely large excess of Zn^(2+). 展开更多
关键词 on-line simultaneous determination trace polymetallic ions reagent optimization high concentration ratio
在线阅读 下载PDF
Research on Distribution of Electromagnetic Environment around Substations and Optimization Layout of On-line Monitoring 被引量:1
16
作者 Li Peiming Xiao Jun Wang Wenjin 《Meteorological and Environmental Research》 CAS 2019年第6期60-63,共4页
The characteristics and distribution law of electromagnetic environment around substations with different levels of voltage were studied,and the main influencing factors were discussed. Meanwhile,a scheme for locating... The characteristics and distribution law of electromagnetic environment around substations with different levels of voltage were studied,and the main influencing factors were discussed. Meanwhile,a scheme for locating monitoring points suitable for an on-line monitoring system of electromagnetic environment was proposed. 展开更多
关键词 on-line monitoring ELECTROMAGNETIC environment SUBSTATION optimization layout
在线阅读 下载PDF
A new non-linear vortex lattice method:Applications to wing aerodynamic optimizations 被引量:7
17
作者 Oliviu Sugar Gabor Andreea Koreanschi Ruxandra Mihaela Botez 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1178-1195,共18页
This paper presents a new non-linear formulation of the classical Vortex Lattice Method(VLM)approach for calculating the aerodynamic properties of lifting surfaces.The method accounts for the effects of viscosity,and ... This paper presents a new non-linear formulation of the classical Vortex Lattice Method(VLM)approach for calculating the aerodynamic properties of lifting surfaces.The method accounts for the effects of viscosity,and due to its low computational cost,it represents a very good tool to perform rapid and accurate wing design and optimization procedures.The mathematical model is constructed by using two-dimensional viscous analyses of the wing span-wise sections,according to strip theory,and then coupling the strip viscous forces with the forces generated by the vortex rings distributed on the wing camber surface,calculated with a fully three-dimensional vortex lifting law.The numerical results obtained with the proposed method are validated with experimental data and show good agreement in predicting both the lift and pitching moment,as well as in predicting the wing drag.The method is applied to modifying the wing of an Unmanned Aerial System to increase its aerodynamic efficiency and to calculate the drag reductions obtained by an upper surface morphing technique for an adaptable regional aircraft wing. 展开更多
关键词 Aerodynamic design Aerodynamic optimization Enhanced potential method Morphing wing Nonlinear vortex latticemethod Quasi-3D aerodynamic method UAS optimization
原文传递
Particle swarm optimization based RVM classifier for non-linear circuit fault diagnosis 被引量:5
18
作者 高成 黄姣英 +1 位作者 孙悦 刁胜龙 《Journal of Central South University》 SCIE EI CAS 2012年第2期459-464,共6页
A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessi... A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessing technique based on the kurtosis and entropy of signals were used. Firstly, sinusoidal inputs with different frequencies were applied to the circuit under test (CUT). Then, the resulting frequency responses were sampled to generate features. The frequency response was sampled to compute its kurtosis and entropy, which can show the information capacity of signal. By analyzing the output signals, the proposed method can detect and identify faulty components in circuits. The results indicate that the fault classes can be classified correctly for at least 99% of the test data in example circuit. And the proposed method can diagnose hard and soft faults. 展开更多
关键词 non-linear circuits fault diagnosis relevance vector machine particle swarm optimization KURTOSIS ENTROPY
在线阅读 下载PDF
Design and optimization of a SiC thermal emitter/absorber composed of periodic microstructures based on a non-linear method
19
作者 王卫杰 赵振国 +2 位作者 赵艺 周海京 符策基 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期276-283,共8页
Spectral and directional control of thermal emission based on excitation of confined electromagnetic resonant modes paves a viable way for the design and construction of microscale thermal emitters/absorbers. In this ... Spectral and directional control of thermal emission based on excitation of confined electromagnetic resonant modes paves a viable way for the design and construction of microscale thermal emitters/absorbers. In this paper, we present numerical simulation results of the thermal radiative properties of a silicon carbide(Si C) thermal emitter/absorber composed of periodic microstructures. We illustrate different electromagnetic resonant modes which can be excited with the structure,such as surface phonon polaritons, magnetic polaritons and photonic crystal modes, and the process of radiation spectrum optimization based on a non-linear optimization algorithm. We show that the spectral and directional control of thermal emission/absorption can be efficiently achieved by adjusting the geometrical parameters of the structure. Moreover, the optimized spectrum is insensitive to 3% dimension modification. 展开更多
关键词 silicon carbide radiative heat transfer photonic crystal optimization method
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部